REPORT

Tonkin+Taylor

Te Awamutu T6 and T11 Structure Plans

Transportation Assessment

Prepared for Boffa Miskell Prepared by Tonkin & Taylor Ltd Date August 2019 Job Number 1008305.1000

Exceptional thinking together www.tonkintaylor.co.nz

Document Control

Title: Te Awamutu T6 and T11 Structure Plans					
Date	Version	Description	Prepared by:	Reviewed by:	Authorised by:
June 2019	1	Draft	T Broadhead	A Gregory	
August 2019	2	Draft following WDC comments	J Brzeski	A Gregory	
August 2019	3	Final	T Broadhead	A Gregory	G Nicholson

Distribution:

Boffa Miskell Tonkin & Taylor Ltd (FILE) 1 PDF copy 1 PDF copy

Table of contents

1	Te A	wamutu	ı: T6	1
	1.1	Structu	ure Plan Area	1
	1.2	Existin	g Situation	2
		1.2.1	Existing Transport Environment	2
		1.2.2	Crash History	4
		1.2.3	Crash Prediction Modelling	6
		1.2.4	Road Safety	7
		1.2.5	Travel Patterns	7
		1.2.6	Public Transport	9
		1.2.7	Other Modes	9
	1.3	Propos	sed Situation	10
		1.3.1	Proposed Road Network	11
		1.3.2	Proposed Alternative Mode Links	12
	1.4	Model	ling Assessments	13
		1.4.1	Trip Distribution	13
		1.4.2	Intersection Modelling	14
		1.4.3	Access 4 – Belle Amie Drive	24
		1.4.4	Crash Prediction Modelling	25
	1.5	Indicat	tive Costs	25
	1.6	Conclu	ision	26
	1.7	Recom	nmendations	26
2	Te A	wamutu	ı: T11	28
	2.1	Structu	ure Plan Area	28
	2.2	Existin	g Situation	28
		2.2.1	Existing Transport Environment	28
		2.2.2	Crash History	29
		2.2.3	Crash Prediction Modelling	29
		2.2.4	Road Safety	30
		2.2.5	Travel Patterns	30
		2.2.6	Public Transport	31
		2.2.7	Other Modes	31
	2.3	Feasibi	ility Report	31
	2.4	Propos	sed Situation	33
		2.4.1	Proposed Road Network	33
		2.4.2	Proposed Alternative Mode Links	34
	2.5	Model	ling Assessments	34
		2.5.1	Trip Distribution	34
		2.5.2	Intersection Modelling	35
		2.5.3	Crash Prediction Modelling	42
	2.6	Indicat	tive Costs	42
	2.7	Conclu	ision	43
	2.8	Recom	nmendations	43
3	Appl	icability		44
Арр	endix A	A :	T6 CAS Outputs	
-		_		

- Appendix B : T6 Modelling Reports
- Appendix C : T11 CAS Outputs
- Appendix D : T11 Modelling Reports

Executive summary

Growth Cells T6 and T11, both in the Te Awamutu area of Waipa District, were assessed for both the existing and potential future statuses of the transport network.

Considerations were as follows:

- Existing nature of the roads and other transport facilities around each growth area, including safety considerations.
- Crash history for the existing roads, including a comparison against NZTA Crash Prediction Modelling.
- Likely attractors for travel, and resulting travel patterns.
- Network assessment using the principles of 'Gravity Modelling' for those travel patterns in various scenarios from Existing to a predicted 2035 2% per annum increase plus High Development of the growth areas (anticipating future sub-division).
- Intersection modelling for key locations based on the assessed trip distribution.
- A comparison of the worst case future Crash Prediction Model with the existing situation.
- Consideration of a previous Feasibility Report by Opus (T11 only).

Taking all these factors, including results of modelling exercises, into account the following conclusions and recommendations were reached.

Growth Area T6 Conclusions and Recommendations:

This report found that there may be existing deficiencies in road width on several local roads and one local arterial (Golf Road) in the rural area, and that existing crash statistics on two of these roads (Herbert Street and Whitmore Street) are in excess of what would be expected using NZTA crash prediction modelling.

The traffic modelling also revealed that normal traffic growth to 2035, without including additional demand for growth area T6, could result in the following three intersections having unacceptable waiting times:

- State Highway 3 / St Leger Road / Golf Road intersection
- State Highway 3 / Herbert Street / Nixon Street intersection
- State Highway 3 / Whitmore Street intersection

The further demand placed on the network is estimated to be 2,400 additional vehicles per day in the proposed "Low Development" scenario, or 4,800 vehicles per day in the suggested conservative "High Development" scenario (assuming future sub-division of these lots).

These additional vehicles, whilst not helping existing issues if they go unaddressed, are otherwise able to be accommodated within the assessed network even with further baseline traffic growth.

In addition, there are also a lack of pedestrian and cyclist facilities around T6 which, whilst arguably not currently a known issue, the desire of Waipa District Council to incorporate these facilities in a growth area means there could be a lack of connectivity if not addressed in the existing network.

In line with these conclusions we have prepared some recommendations for work going forward to help address existing and future concerns:

- 1 Existing Local Roads:
 - a The following council roads have higher than expected crash injury rates, and further investigation is required to determine why this is occurring:

- i Herbert Street
- ii Whitmore Street
- b The following council roads are currently considered to have too narrow a seal width for their future purpose, and it is recommended investigation into widening and marking them is undertaken:
 - i St Leger Road (some sections of)
 - ii Brill Road
 - iii Haultain Street
 - iv McAndrew Street
 - v Golf Road (rural section)
 - vi McGhie Road (if desired to include as an alternative route east)
- 2 Pedestrian and Cyclist Facilities:
 - a Pedestrian and cyclist facilities around the growth area are lacking for connections to the anticipated facilities within the growth area. It is recommended that Waipa District Council review the existing facilities and programme in providing new infrastructure as the growth area is developed. The key connections to focus on for these facilities are anticipated to be:
 - i St Leger Road from Brill Road to State Highway 3
 - ii Ballance Street from the growth area connection to State Highway 3
 - iii Leslie Street from 'Access 3' to State Highway 3
 - b There are currently no dedicated or shared cyclist facilities along State Highway 3. It is recommended that NZTA look into providing these in some form.
 - c The only existing crossing facility along State Highway 3 is in Kihikihi town centre. It is recommended that NZTA look into additional provision for pedestrian (and possibly cyclist, depending on the solution) safe crossing facilities in the residential areas to the north and south of the town centre.
- 3 Intersection traffic issues:
 - a The State Highway 3 / Golf Road / St Leger Road intersection is recommended for an immediate investigation, for potential upgrade due to existing issues with vehicles trying to exit Golf Road. This intersection is designated as the junction of the proposed Western Arterial Road with SH3 in the Integrated Transport Strategy for WDC published in 2010.
 - b The State Highway 3 / Herbert Street / Nixon Street intersection is recommended for an upgrade investigation should growth area T6 be approved.
 - c The following intersections are recommended for an upgrade investigation before 2035 whether or not growth area T6 is approved for development:
 - i State Highway 3 / Whitmore Street
 - ii State Highway 3 / Herbert Street / Nixon Street

Growth Area T11 Conclusions and Recommendations:

This report found that the existing injury crash rate on Cambridge Road is higher than is predicted by NZTA modelling guidelines, which should be investigated further.

The traffic modelling around the State Highway 3 intersection with Cambridge Road and Arawata Street at a high level appears to be indicating that the intersection is near if not at capacity with current traffic flows.

The further demand placed on the network is estimated to be 1,510 additional vehicles per day in the proposed "Low Development" scenario, or 3,020 vehicles per day in the suggested conservative "High Development" scenario (assuming future sub-division of these lots).

These additional vehicles, whilst not helping existing issues, are able to be accommodated within the assessed network with no measureable detriment, even with further baseline traffic growth.

In addition, there is also a lack of dedicated cyclist facilities around T11 which, whilst arguably not currently a known issue, the desire of Waipa District Council to incorporate these facilities in the growth area means there could be a break in connectivity if not addressed in the existing network.

In line with these conclusions we have prepared some recommendations for work going forward to help address existing and future concerns:

- 1 Pedestrian and Cyclist Facilities:
 - a Cyclist facilities down Cambridge Road are lacking for connections to the anticipated facilities within the growth area, although a shared path facility exists at the State Highway roundabout with Cambridge Road. It is recommended that Waipa District Council review the existing facilities and programme in providing / extending infrastructure as the growth area is developed.
 - b The only existing crossing facility along Cambridge Road is at the State Highway roundabout where there is a refuge island at the intersection. It is recommended that Waipa District Council look at a more formal facility near the supermarket, or at least another refuge island, to enable pedestrian traffic to more safely access local amenities.
- 2 The arrangement of Access 2 with the service lane for the shopping complex is considered to be a safety issue, and it is recommended discussions are held with the owner of that service lane to form an arrangement which is less problematic.

It is noted that Mitre 10 does not appear to have delivery doors/facilities to the rear, so there remains the possibility of combining the two into an intersection, and providing an access off the new road.

The following points are recommendations from the Opus Feasibility Report which we believe are still relevant:

- 1 Undertake a more detail assessment of speed management measures for Cambridge Road.
- 2 Undertake a review of pedestrian and cycling connectivity.
 - Recommendations have been made in this regard, however a specific detailed review of what facilities are warranted has not been undertaken and could be useful to Waipa District Council in targeting funds.
- 3 Detailed assessment of how to change the right of way at Cambridge Road Access 1 to be a public road.

1 Te Awamutu: T6

1.1 Structure Plan Area

Figure 1.1: Approximate extents of T6 growth cell (image sourced from Google Earth)

The T6 growth cell lies between Kihikihi and Te Awamutu in a currently rural area zoned for future large-lot residential, immediately south of State Highway 3.

Document Set ID: 10411011 Version: 2, Version Date: 29/06/2020

1.2 Existing Situation

1.2.1 Existing Transport Environment

With the exception of State Highway 3 to the north of the growth cell, all roads directly affected by T6 are classified as Local Roads.

There is a single narrow footpath on the northern / eastern side of the State Highway, otherwise there are no existing pedestrian or cyclist facilities on this major arterial.

Local roads surrounding the growth cell are generally consistent with a rural environment, with some residential on the Kihikihi (eastern) side.

Road Name	Total Seal Width (m)	Lanes	Shoulder	Cycle Facilities	Footpaths	Posted Speed (km/hr)
St Leger Road	6.0 – 8.5	2 – Partially marked	Unmarked	None	None	80 - 100
Lawbrooke Lane	6.0	Unmarked (2 inferred)	Unmarked	None	None	80
Leger Grove	6.0	Unmarked (2 inferred)	Unmarked	None	None	80
Linehan Road	5.5	Unmarked (2 inferred)	Unmarked	None	None	80
Brill Road	5.5	2 – Partially marked	Unmarked	None	None	100
Haultain Street	4.5	2-way but effectively single lane	Unmarked	None	None	50
McAndrew Street	4.5 – 6.5	Unmarked (2 inferred)	Unmarked	None	None	50
Acacia Avenue	7.5	Unmarked (2 inferred)	Unmarked	None	1.5 m wide, northern side, full length	50
Walmsley Street	6.5 – 8.0	Unmarked (2 inferred)	Unmarked	None	1.5 m wide, western side, full length	50
Cameron Street	6.5	Unmarked (2 inferred)	Unmarked	None	None	50
Ballance Street	8.5	Unmarked (2 inferred)	Unmarked	None	1.5 m wide, northern side, full length	50
Havelock Street	4.5	2-way but effectively single lane	Unmarked	None	None	50
Leslie Street	7.5 – 8.5	Unmarked (2 inferred)	Unmarked	None	1.5 m wide, western side, 200 m long only from south	

Table 1.1: Road Details (Indicative Existing): Immediate Area

Note: Measurements are approximate only using Google Earth.

Tonkin & Taylor Ltd Te Awamutu T6 and T11 Structure Plans - Transportation Assessment Boffa Miskell

In addition to the above the following roads, whilst not directly associated with the development (with the exception of the State Highway), will provide key links to the wider area:

Road Name	Total Seal Width (m)	Lanes	Shoulder	Cycle Facilities	Footpaths	Posted Speed (km/hr)
State Highway 3 Significant Road Corridor Major Arterial Regional Strategic	15.5 – 16.5	2 + median	2, varies but generally at least 1.0 m wide	None	1.5 m wide, Northern / eastern side, full length	50 - 80
Golf Road <i>Major Arterial</i>	7.9 (town) 6.0 (rural)	2, fully marked with centreline and edgelines	1 on northern side to town boundary only, approximately 1.0 m wide	None	None	70 (town) 100 (rural)
McGhie Road Local Road (connects SH3 to a Collector)	4.5	2-way but effectively single lane	Unmarked	None	None	80
Herbert Street Local Road (connects SH3 to a Collector)	8.1	2 – Partially marked	Unmarked	None	1.5 m wide, northern side to Moule Street where it switches to southern side, ends at Oliver Street	50
Whitmore Street <i>Minor Arterial</i>	11.2 – 12.0	2, fully marked with centreline and edgelines	2, at least 2.0 m wide each	None	2 (both sides), 1.5 m wide each, full length within town	50
Church Street Local Road (possible key link between Ballance and Whitmore)	7.8	Unmarked (2 inferred)	Unmarked	None	1.5 m wide, southern side, full length	50

Table 1.2: Road Details (Indicative Existing): Key Links

Note: Measurements are approximate only using Google Earth.

Herbert Street and, to a lesser extent, McGhie Road, provide key linkage through to Flat Road (a local Collector), and in turn feed into Golf Road, which also has its own connection to State Highway 3. Collectively these roads provide a key link to Cambridge and the rural businesses between the towns.

3

Document Set ID: 10411011 Version: 2, Version Date: 29/06/2020 Whitmore Street (turning into Arapuni Road at the town boundary) provides a key link to the South Waikato towns of Putaruru and Tokoroa, as well as serving the rural areas around and to the south of Mount Maungatautari.

Church Street is a small section of road providing a second connection from State Highway 3 to Whitmore Street, however it lies directly opposite the Ballance Street intersection forming a crossroads, and would be the ideal route of many trying to travel from T6 out to the east.

These roads are not considered an exhaustive list, and there are many other local roads which provide "rat-runs" between the roads listed, however these are considered the primary, or most likely, routes for the majority of people, and certainly for those not familiar with urban Kihikihi.

1.2.2 Crash History

The NZTA Crash Analysis System (CAS) was interrogated for the period 2009 to 2018 (inclusive) to provide crash data for the roads in the immediate vicinity of the development and roads thought to be key in the distribution of traffic away from and back to the development, but only to the next major intersection or urban boundary. Full CAS outputs can be found in Appendix A.

State Highway 3 was assessed from the St Leger Road intersection to the McAndrew Street intersection (inclusive) only to account for the major intersections utilised by the new development.

While every effort was made to weed out any double-counting, it is possible that, where two roads in the assessment intersect, a crash may have been counted twice.

Road Name	Number of Crashes	Non-injury	Minor Injury (M)	Death or Serious (DSI)	Crash Injury Rate	Years
State Highway 3	67	48	16	3	1.9	10x 2009 (4x M; 2x DSI)
						4x 2010 <i>(M)</i>
						1x 2011 <i>(1x M)</i>
						4x 2012 <i>(1x M)</i>
						2x 2013 <i>(1x M)</i>
						3x 2014
						11x 2015 <i>(3x M)</i>
						14x 2016 (1x M; 1x DSI)
						12x 2017 <i>(2x M)</i>
						6x 2018 <i>(3x M)</i>
St Leger	3	1	1	1	0.2	1x 2010
Road						1x 2012
						1x 2015
Golf Road	12	11	1	0	0.1	2x 2009
						2x 2010
						2x 2011 <i>(1x M)</i>
						1x 2012
						3x 2015
						1x 2017
						1x 2018

 Table 1.3:
 Historical Crash Numbers with Injury by Road

Road Name	Number of Crashes	Non-injury	Minor Injury (M)	Death or Serious (DSI)	Crash Injury Rate	Years
McGhie Road	1	1	0	0	0	2011
Herbert Street	12	9	3	0	0.3	2x 2009 1x 2010 2x 2011 <i>(1x M)</i> 3x 2012 2x 2016 2x 2017 <i>(M)</i>
Whitmore Street	21	15	5	1	0.6	1x 2009 1x 2010 (DSI) 2x 2011 3x 2012 1x 2013 (M) 3x 2014 3x 2016 (1x M) 4x 2017 (1x M) 3x 2018 (2x M)
Leslie Street	3	3	0	0	0	1x 2009 1x 2012 1x 2015
Ballance Street	4	4	0	0	0	1x 2010 1x 2014 1x 2015
McAndrew Street	2	2	0	0	0	1x 2009 1x 2016
Walmsley Street	0	0	0	0	0	n/a
Acacia Street	0	0	0	0	0	n/a
Haultain Street	1	1	0	0	0.1	2009
Brill Road	0	0	0	0	0	n/a

As would be expected being a major arterial, State Highway 3 has by far the most crashes for the period, closely followed by Whitmore Street, Herbert Street and Golf Road. While this number seems high, it is less than would be expected by modelling (refer Section 1.2.3 below). This road is also noted as being a medium risk road on NZTA's KiwiRAP (Kiwi Roads Assessment Programme) report in 2012 (the most recent report) and therefore on NZTA's radar of roads that require attention.

Golf Road is a defined as a Major Arterial and Whitmore Street a Minor Arterial, therefore the crash rates on these roads appear consistent with their status.

Herbert Street is considered to be a Local Road, however the accident data suggests that it carries more traffic than normally expected or this classification and may be acting more like a collector road used as a defacto bypass of central Te Awamutu and/or as an alternative route to Cambridge and rural businesses.

If this is the case, it will have significant impact on the use of Herbert Street and its intersection with State Highway 3, over what may have been designed for, and improvement of the intersection and road corridor may be required.

1.2.3 Crash Prediction Modelling

A high-level Crash Prediction Model was assessed for the existing situation using the methods and formulae found in NZTA's Crash Estimation Compendium (2016, Updated June 2018).

For the State Highway 3 analysis, specifically the section of the State Highway from the St Leger Road / Golf Road intersection to the McAndrew Street intersection (both inclusive), the following sections were modelled independently from one another and combined in a final summation as per section 2.1.1: Methodology by site and crash type, of the Crash Estimation Compendium:

- State Highway 3 'rural' zone (i.e.: 80 km/hr) mid-block model
- State Highway 3 'urban' zone (i.e.: 50 km/hr) mid-block model
- St Leger Road / Golf Road intersection model
- Herbert Street intersection model
- Leslie Street intersection model
- Whitmore Street intersection model
- Ballance Street / Church Street intersection model
- McAndrew Street intersection model

Those Waipa District Council roads considered to be the main thoroughfares and/or distributors both currently and in the future were assessed as mid-block only as the major intersections were accounted for in the State Highway assessment, and the mid-block modelling can be said to account for minor intersections and private accesses.

Table 1.4:	Crash Model	Results	(Existing)
------------	-------------	---------	------------

Road Name	Predicted Injury Crash Rate (existing)	Actual Injury Crash Rate	Differential: Predicted to Actual	Differential Rate
State Highway 3 (includes intersections)	3.10	1.90	-1.20	-38.7%
St Leger Road	0.30	0.20	-0.10	-33.3%
Golf Road	0.10	0.10	0.00	0%
Herbert Street	0.12	0.30	+0.18	+50%
Leslie Street	0.06	0.00	-0.06	-100%
Whitmore Street	0.06	0.60	+0.54	+900%
Ballance Street	0.02	0.00	-0.02	-100%
McAndrew Street	0.02	0.00	-0.02	-100%

Most of the road corridors, including State Highway 3, are currently experiencing lower injury crash rates than the assessed prediction model estimates, with notable exceptions for Herbert Street and Whitmore Street.

The assumption regarding Herbert Street's collector road status also seems to be supported by the data, and Whitmore Street has a higher crash rate than would normally be expected, which could indicate it is in need of further detailed analysis to understand why this may be occurring.

It is important to note that, being high-level, no detailed analysis of individual crashes was undertaken; as such, it is possible that the actual injury crashes may have been assigned incorrectly.

1.2.4 Road Safety

The existing road network is that of a rural town, some is urbanised in facilities such as footpaths etc., and other areas have no footpaths or kerb and channel. Generally the local road network has some provision for pedestrians, as indicated in Table 1.1, however on the roads to the western side of State Highway 3 which will connect directly to this growth area the facilities are spotty, with some roads having partially complete paths on at least one side, and others having nothing. Dedicated cyclist facilities are none existent.

The State Highway, whilst having standard-width footpaths on both sides for most of the study length, is also lacking in dedicated cyclist facilities.

Crossing facilities beyond a drop-kerb in the footpath appear to be confined to the immediate town centre, and then a single Zebra-type crossing facility across the State Highway is the only formal arrangement.

In the crash data (refer Appendix A) there are three accidents which involve pedestrians, all associated with the State Highway; two of these resulted in vehicle to vehicle conflict due to attempts to avoid or slow down for the pedestrians in question. There are no accidents stated to involve cyclists.

One accident involved hitting a pedestrian, resulting in a minor injury, and was caused by the vehicle swerving to avoid 'another party.'

It's also important to note that these accidents were spread quite evenly over the study period, with only one non-injury crash involving a pedestrian in the last five years (in 2015).

This indicates the relative risk for pedestrians and cyclists in Kihikihi appears to be low, however it should be noted that the reason for this is unknown, for example it may be that there are very few pedestrians at all.

1.2.5 Travel Patterns

No traffic survey has been undertaken, however using best-practise and existing data from the Road Assessment and Maintenance Management database (RAMM) we can infer likely peak travel patterns.

This data was extracted from Mobileroad.org, which is populated using Road Controlling Authority (RCA) RAMM data. This data is maintained by the RCA (in this case NZTA for State Highway 3, and Waipa District Council for all other roads) for tracking and forecasting maintenance activities on their respective networks; it was noted that while the State Highway traffic data appeared to be based on recent counts, the Waipa District Council roads were all identified as estimates from 2016 and so we are unsure as to the accuracy of the data for that part of the network.

The key RAMM data used in this assessment can be found in Table 1.5 below.

Road Name	Average Daily Traffic (ADT) (veh/day)	Date of Count / Estimate	Heavy Vehicles (%)
Acacia Avenue	155	1/12/2016	Unknown
Ballance Street	600	1/12/2016	Unknown
Brill Road	230	1/12/2016	Unknown
Brill Road Stub	162	1/12/2016	Unknown
Church Street	1,160	1/12/2016	Unknown
Golf Road	1,580	1/12/2016	Unknown
Haultain Street	80	1/12/2016	Unknown
Havelock Street	30	1/12/2016	Unknown
Herbert Street	1,020	1/12/2016	Unknown
Leslie Street	610	1/12/2016	Unknown
McAndrew Street	250	1/12/2016	Unknown
McGhie Road	220	1/12/2016	Unknown
SH3 (Kihikihi Road) North of St Leger/Golf Int.	12,030	25/12/2017	8%
SH3 (Kihikihi Road) South of St Leger/Golf Int.	11,861	25/12/2017	11%
SH3 (Lyon Street) Herbert to Whitmore	11,861	25/12/2017	11%
SH3 (Lyon Street) Whitmore South	8,670	25/12/2017	19%
St Leger Road Brill Road to Bruce Road	355	1/12/2016	Unknown
St Leger Road Bruce Road to Linehan Road	410	1/12/2016	Unknown
St Leger Road Lawbrooke to SH3 / Golf	1,110	1/12/2016	Unknown
St Leger Road Leger Grove to Lawbrooke	920	1/12/2016	Unknown
St Leger Road Linehan Road to Leger Grove	545	1/12/2016	Unknown
St Leger Road Stub	57	1/12/2016	Unknown
Walmsley Street	130	1/12/2016	Unknown
Whitmore Street SH3 to Church	2,350	1/12/2016	Unknown
Whitmore Street East of Church	2,740	1/12/2016	Unknown

Table 1.5: RAMM Data

Note: All data obtained from MobileRoad.org, all 2-way traffic.

8

The attractors for determining travel patterns are considered to be as follows:

Attractor Name	Approximate Distance from T6	Attractor Type	Attractions
Kihikihi Centre	700 m	Local Primary Attractor	 Local shops (food, postal services, etc.)
Hamilton	32 km	Primary Attractor	 Largest population centre within 0.5hrs travel Large employment area
			 Large retail bases, including niche shops and large supermarkets
			Recreational facilities
Te Awamutu	3 km	Secondary Attractor	 Closest large shopping area, including Supermarkets
			Employment
Cambridge	23 km	Secondary Attractor	 Large shopping area, including Supermarkets
			Employment
Local Rural	3 km plus	Secondary Attractor	Employment
Areas			Outdoor Recreation
Otorohanga	25 km plus	Tertiary Attractor	Employment
(and South)			Recreation

Table 1.6:	Attractors and Type
10010 2101	

From these assumptions we can reasonably determine that the majority of traffic will travel east (Kihikihi Centre, Cambridge, and some rural areas) and north (Hamilton, Te Awamutu, and methods for getting to rural areas north, east and west), with the rest travelling south; and return from those same directions in similar proportions.

Westbound traffic moving away from this area are forced to head either north or south first as no method of direct connection in that direction exists.

1.2.6 Public Transport

State Highway 3 is currently serviced by the number 24 "Te Awamutu" bus connecting Te Awamutu and Kihikihi with Ohaupo and Hamilton City according to the "Busit.co.nz" website, and only to Kihikihi on Tuesdays and Thursdays.

No other public transport options are currently available for this area. Engagement with Waikato Regional Council is recommended to look at future public transport options in the lead up to the next LTP development in 2021.

1.2.7 Other Modes

Document Set ID: 10411011 Version: 2, Version Date: 29/06/2020

For local trips to Kihikihi centre, and possibly Te Awamutu, it is likely cycling and walking will be used by children, the elderly, those with no access to a private vehicle, and those of a health or environmentally friendly mind-set; some of these same groups will use the bus to Te Awamutu and further to Hamilton. Realistically, however, the majority of trips in this area are still likely to be private vehicle based regardless of the distance to travel.

1.3 Proposed Situation

Figure 1.2: Proposed T6 Structure Plan road network

The proposed development area is intended to be a mixture of various lot sizes of residential and compact residential, ranging from 1,000 m^2 , to 5,000 m^2 and over.

Based on the current Structure Plan at the time of writing, this results in an estimated lot yield of around 250-300.

1.3.1 Proposed Road Network

1.3.1.1 Overview

The proposed road network is designed to provide good connectivity both to and within the land parcel, providing good traffic amenity as well as retaining the potential for future in-fill subdivision from low density to medium density without the need for additional public roading infrastructure.

The links to the existing road network occur at two points on St Leger Road (including the intersection with Brill Road to the south), given it runs through the proposed plan area, and Ballance Street.

St Leger Road provides a good primary connection to State Highway 3 to the north for those living in the south, and parts of the central, plan area, as well as providing a reasonable local road link to State Highway 3 to the south via Brill Road and McAndrew Street.

Belle Amie Drive, leading out to St Leger Road in the northern part of the growth cell is a recently constructed road that appears to be of sufficient standard to join on to the 20 m collector road shown on the Structure Plan. It is likely that this will form the main point of entry for vehicles accessing from the north.

Ballance Street provides a good link from the centre of the plan area to Kihikihi town centre, providing an alternative link to State Highway 3 for those in the northern and central part of the plan area, saving a (comparatively) lengthy travel south.

It is anticipated that vehicles will use the Ballance Street intersection with State Highway 3 sparingly, unless they intend to use Whitmore Street to head out into the rural area, with Leslie and Walmsley Streets providing the primary north and southbound connections to the State Highway respectively.

1.3.1.2 Road Upgrades

The following roads, critical to the growth area, are currently estimated to be deficient (based on the desktop exercise) when assessed against the Waipa District Council standards (Regional Infrastructure Technical Specifications, Appendix T4: Criteria for Public and Private Roads) and may require upgrading to meet these standards:

- St Leger Road (some sections of)
- Brill Road
- Haultain Street
- McAndrew Street
- Golf Road (rural section)
- McGhie Road (if desired to include as an alternative route east)

Predominantly this relates to total seal widths, which may be exacerbated by a lack of markings, leading to drivers taking a more central position than they otherwise would do.

Upgrading the intersection of St Leger Road and Brill Road could provide a significant enhancement to safety and efficiency as the current crossroads alignment is narrow with highly constrained sight distance which is considered to be a considerable risk now, which will deteriorate in the future should traffic flows increase, although the medium term estimate is that this is unlikely given the increased ease of connectivity along other roads within the development.

We consider it necessary to undertake a review of these roads prior to the growth area coming online, in conjunction with any hierarchy changes (see below).

1.3.1.3 Road Hierarchy Changes

As part of this development, it is expected that certain local roads function, and therefore where it sits in the regional hierarchy, will change.

The table below indicates which roads are expected to change hierarchy as the development in the T6 growth area increases:

Road Name	Current Zone / Hierarchy	Predicted Zone / Hierarchy
St Leger Road	Rural & Large Lot Residential / Local	Large Lot Residential / Collector
Herbert Street	Residential / Local	Residential / Collector
Ballance Street	Residential / Local	Residential / Collector
Church Street	Residential / Local	Residential / Collector

Table 1.7: Predicted Road Hierarchy Changes

These predictions are based on a combination of function and traffic numbers, and even if T6 does not support the numbers based in this report, the roads listed are likely to function on this basis as a minimum.

If this prediction follows, then it is likely these roads will require some level of upgrade, as per the District Plan minimum standards, to function in this manner safely and efficiently. District Plan Road widths are reproduced in the table below.

Table 1.8: District Plan Residential Zone Road Widths

Class	Road Reserve Width (m)	Carriageway Width (m)	Lane Width (m)	Cycleway Width (m)	Footpath Width (m)
Collector	25	15	2 @ 3.5	Both sides @ 1.5	2 @ 1.5
Local	11	11	2@3	Shared environment	2 @ 1.5

1.3.2 Proposed Alternative Mode Links

Shared pedestrian / cycle facilities have been proposed in the Structure Plan (the pink lines in Figure 1.2) which follow most of the proposed road links to the existing network, as well as providing some amenity linkage through proposed green spaces.

The majority of the roads connecting to these facilities currently have little to no pedestrian and cyclist facilities provided, and what is there is generally considered to be poorly inter-connected. We recommend that WDC consider addressing this in the next LTP by reviewing Kihikihi active mode transport facilities against the Waipa District Cycling Trails Strategic Framework to proposing projects, such as:

- Provision of shared cycle/footway path links to key destinations away from roads.
- Traffic Calming on local roads to reduce vehicle speeds and make a safer environment.
- Localised widening especially on corners to improve visibility and provide safe passing of cyclists.
- Construction of footpaths and berms wherever possible.

1.4 Modelling Assessments

1.4.1 Trip Distribution

Trip distribution has been assessed at a conceptual level using a simplified form of gravity modelling, a high-level method of determining likely travel patterns based on existing known data.

Using the attractors as a guide, at any one intersection the traffic flow in any direction currently on that road is proportionally split based on the most popular routes and likely destinations, informing the flows between, and therefore at, intersections through to the end of the study area.

The flows undergo a "balancing" exercise where the proportions turning in any one direction are gradually amended until the approximate ADT for each direction and road are arrived at.

This method is a cost effective way of estimating traffic patterns and turning flows without reliance on turning counts and origin destination surveys. The results are used to inform the indicative intersection models and give an indication as to whether intersections are currently functioning as intended, and whether they will continue to do so if more vehicles are added.

1.4.1.1 Base Year

The gravity modelling for the existing situation is based on the assumed travel patterns and traffic data identified in section 1.2.3 above.

The ADT data was pro-rated to a Base Year of 2018 using a 2% per annum average, and also to a Projected Year of 2035 using the same average; 2035 was chosen as this is the latest year this growth area is expected to be fully developed by.

These numbers were then placed into a spreadsheet-based "Wireframe Model" designed to look at the daily peaks using the following further assumptions:

- The average daily peaks will be 10% of the ADT.
- The flows on any one road are split 70/30 for direction based on the time of day and direction of attractors (i.e.: 70% AM towards attractors, 70% PM away from attractors).
- Where Heavy Traffic is 'Unknown' it will be assumed to be 1%

Turning estimates, by percentage of vehicles, were then used to try and balance the vehicles flowing into the study area with the vehicles flowing from the study area along key routes.

Using these turning estimates as a starting point, the 2035 base model was then also created.

1.4.1.2 Model Limitations

It is important to note that, no counts or observation verification was conducted at any of the key intersections and the model is entirely derived from the "most likely" routing based on the assumptions used for trip distribution.

Another issue with using ADT data over such a long section of State Highway is the "stepping" which occurs in the data between two count locations, which is difficult to reconcile within the assumptions and method mentioned above.

1.4.1.3 Development Figures

The future development of T6 has been assumed to be additional to the standard 2% traffic growth in this area; this is not strictly correct, as the traffic has to come from somewhere and this type of residential growth tends to be what supports it, however retaining this assumption does provide for a conservative model.

Two development scenarios over and above a standard 2% growth were considered:

- 1 Low Development: A scenario whereby the lot yield as presented in the Structure Plan was used to determine additional traffic flow.
- 2 High Development: A scenario whereby the lot yield was doubled when compared to that in the structure plan, to account for a worst case scenario of smaller lot types and future in-fill development.

The daily traffic per lot was assumed to be 10veh/day, with all other traffic assumptions matching that for the base models. This results in the following additional traffic figures:

- 1 Low Development = 2,400 veh/day
- 2 High Development = 4,800 veh/day

1.4.2 Intersection Modelling

The following intersections were modelled in Sidra Intersection 8.0 for levels of service, all based on the Gravity Model calculated flows and turning percentages:

- State Highway 3 / Golf Road / St Leger Road
- State Highway 3 / Herbert Street / Leslie Street / Nixon Street
- State Highway 3 / Whitmore Street / Church Street / Ballance Street
- State Highway 3 / McAndrew Street

These intersections were considered high priority intersections as they are collector roads or higher and/or currently manage or are expected to manage a significant amount of the traffic from both the existing developed areas of Kihikihi and the T6 growth area.

The Level of Service for any lane is directly related to the average delay anticipated for a vehicle in that lane, as follows:

Level of Service (LoS) for $v/c \le 1.0 (v/c > 1.0 = LoS F)$	Average Delay per Vehicle in seconds (d)
А	d ≤ 10
В	10 < d ≤ 15
С	15 < d ≤ 25
D	25 < d ≤ 35
E	35 < d ≤ 50
F	50 < d

Table 1.9: Level of Service (LoS): Sidra 8 Sign Control

The following assumptions, in addition to those mentioned for the Gravity Model, were used:

- No gradients are known, so all gradients for all approaches were set at 0%.
- All measurements possible were taken from aerial views on Google Earth.
- If a median was present it was assumed to act as a Right Turn Bay in lieu of an actual Right Turn Bay.
- If present, shoulders were considered 'full' (of parked vehicles, for example) and so not considered as additional seal width.

Figure 1.3: Sidra Intersection Diagram – State Highway 3 / Golf Road / St Leger Road

This intersection was modelled for the following situations:

- 2018 base year AM and PM peaks
- 2018 plus Low Development (LD) AM and PM peaks
- 2018 plus High Development (HD) AM and PM peaks
- 2035 assumed natural growth of 2%pa only, AM and PM peaks
- 2035 2% growth plus Low Development (LD), AM and PM peaks
- 2035 2% growth plus High Development (HD), AM and PM peaks

The following tables summarise the LoS findings for each leg / lane by scenario for quick reference. Summaries of the modelling reports can be found in Appendix B.

	SH3 I	North	SH3 S	South		St Leger Road
Scenario	Through Lane	Right Turn Bay	Through Lane	Right Turn Bay	Golf Road	
2018	А	В	А	А	F	С
2018 + LD	А	В	А	А	F	С
2018 + HD	А	В	А	А	F	С
2035	А	В	А	А	F	F
2035 + LD	А	В	А	А	F	F
2035 + HD	А	В	А	А	F	F

Table 1.10: AM Peaks

Table 1.11: PM Peaks

	SH3 I	North	SH3 S	South		St Leger Road
Scenario	Through Lane	Right Turn Bay	Through Lane	Right Turn Bay	Golf Road	
2018	А	А	А	В	F	С
2018 + LD	А	А	А	В	F	С
2018 + HD	А	А	А	В	F	С
2035	А	А	А	С	F	F
2035 + LD	А	А	А	С	F	F
2035 + HD	А	А	А	С	F	F

These results indicate that, for both AM and PM peaks, the existing intersection requires an upgrade with current traffic levels.

It is likely that, given Golf Road's other connections to the east, the intersection will very rarely see these levels of delay as users will re-direct to Park or Cambridge Roads to bypass any issues; however by 2035, without the added development as additional demand, St Leger Road will also be experiencing delay outside of the desired Levels of Service, with the only option for users to travel south and join the State Highway 3 traffic heading north, therefore adding to the issues with exiting a side road at this intersection, and also potentially causing problems with those within Kihikihi.

Figure 1.4: Sidra Intersection Diagram – State Highway 3 / Herbert Street / Leslie Street

This intersection was modelled for the following situations:

- 2018 base year AM and PM peaks
- 2018 plus Low Development (LD) AM and PM peaks
- 2018 plus High Development (HD) AM and PM peaks
- 2035 assumed natural growth of 2%pa only, AM and PM peaks
- 2035 2% growth plus Low Development (LD), AM and PM peaks
- 2035 2% growth plus High Development (HD), AM and PM peaks

It is important to note that this intersection is staggered, and as such has been summarised as two separate intersections, however it was analysed as one model for the purposes of this report.

Document Set ID: 10411011 Version: 2, Version Date: 29/06/2020 The following tables summarise the LoS findings for each leg / lane by scenario for quick reference. Summaries of the modelling reports can be found in Appendix B.

		SH3 South		Useda set	Nixon
Scenario	SH3 North	Through Lane	Right Turn Bay	Herbert Street	Street
2018	А	А	А	D	С
2018 + LD	А	А	А	D	С
2018 + HD	А	А	А	E	С
2035	А	А	А	F	F
2035 + LD	А	А	А	F	F
2035 + HD	А	А	А	F	F

Table 1.12: AM Peaks – Herbert Street

Table 1.13: AM Peaks – Leslie Street

	SH3 I	North		Leslie	
Scenario	Through Lane	Right Turn Bay	SH3 South	Street	
2018	А	А	А	В	
2018 + LD	А	А	А	В	
2018 + HD	А	А	А	В	
2035	А	В	А	С	
2035 + LD	А	В	А	С	
2035 + HD	А	В	А	С	

Table 1.14: PM Peaks – Herbert Street

			South	Herbert	Nixon
Scenario	SH3 North	Through Lane	Right Turn Bay	Street	Street
2018	А	А	А	E	С
2018 + LD	А	А	А	F	D
2018 + HD	А	А	А	F	D
2035	А	А	С	F	F
2035 + LD	А	А	С	F	F
2035 + HD	А	А	С	F	F

Table 1.15: PM Peaks – Leslie Street

	SH3 I	orth		Leslie	
Scenario	Through Lane	Right Turn Bay	SH3 South	Street	
2018	А	А	А	А	
2018 + LD	А	А	А	А	
2018 + HD	А	А	А	А	
2035	А	А	А	В	
2035 + LD	А	А	А	А	
2035 + HD	А	А	А	А	

These results indicate that the peak traffic is not currently a problem at either end of this staggered crossroads, however the PM peak becomes problematic with even low development of the T6 growth cell, and both AM and PM peaks are an issue by 2035 under a normal growth scenario.

It is likely that, given Herbert Street's other connections to the east, the intersection will rarely see these levels of delay as users will re-direct to Park or Cambridge Roads to bypass any issues, and users of Nixon Street will turn left and follow the same bypass routes if as those on Herbert; however this of course is potentially passing the problem on to other high-use intersections along the State Highway 3 corridor, which would be undesirable.

This intersection was modelled for the following situations:

- 2018 base year AM and PM peaks
- 2018 plus Low Development (LD) AM and PM peaks
- 2018 plus High Development (HD) AM and PM peaks
- 2035 assumed natural growth of 2%pa only, AM and PM peaks

- 2035 2% growth plus Low Development (LD), AM and PM peaks
- 2035 2% growth plus High Development (HD), AM and PM peaks

It is important to note that this assessment is two intersections being treated as one due to proximity. It has been summarised as two separate intersections for clarity, however it was analysed as one model for the purposes of this report.

The following tables summarise the LoS findings for each leg / lane by scenario for quick reference. Summaries of the modelling reports can be found in Appendix B.

 Table 1.16: AM Peaks – Whitmore Street

Scenario	SH3 North	SH3 South	Whitmore Street
2018	А	А	D
2018 + LD	А	А	D
2018 + HD	А	А	D
2035	А	А	F
2035 + LD	А	А	F
2035 + HD	А	А	F

Table 1.17: AM Peaks – Ballance Street

Scenario	SH3 North	SH3 South	Church Street	Ballance Street
2018	А	А	А	В
2018 + LD	А	А	А	В
2018 + HD	А	А	А	В
2035	А	А	В	В
2035 + LD	А	А	В	С
2035 + HD	А	А	В	С

Table 1.18: PM Peaks – Whitmore Street

Scenario	SH3 North	SH3 South	Whitmore Street
2018	А	А	С
2018 + LD	А	А	С
2018 + HD	А	А	D
2035	А	В	F
2035 + LD	А	В	F
2035 + HD	А	В	F

Scenario	SH3 North	SH3 South	Church Street	Ballance Street
2018	А	А	В	В
2018 + LD	А	А	В	В
2018 + HD	А	А	В	В
2035	А	А	С	В
2035 + LD	А	А	С	В
2035 + HD	А	А	С	В

Table 1.19: PM Peaks – Ballance Street

These results indicate that the peak traffic at the two intersections analysed is currently not a problem, and would still be meeting the required Levels of Service under both T6 growth scenarios.

However, by 2035 under normal a normal growth scenario, without the added development as additional demand, the Whitmore Street intersection falls below the minimum Level of Service and so may require upgrading.

Figure 1.6: Sidra Intersection Diagram – State Highway 3 / McAndrew Street

This intersection was modelled for the following situations:

- 2018 base year AM and PM peaks
- 2018 plus Low Development (LD) AM and PM peaks
- 2018 plus High Development (HD) AM and PM peaks
- 2035 assumed natural growth of 2%pa only, AM and PM peaks
- 2035 2% growth plus Low Development (LD), AM and PM peaks
- 2035 2% growth plus High Development (HD), AM and PM peaks

Document Set ID: 10411011 Version: 2, Version Date: 29/06/2020 The following tables summarise the LoS findings for each leg / lane by scenario for quick reference. Summaries of the modelling reports can be found in Appendix B.

Scenario	SH3 North	SH3 South	McAndrew Street
2018	А	А	В
2018 + LD	А	А	В
2018 + HD	А	А	В
2035	А	А	С
2035 + LD	А	А	С
2035 + HD	А	А	С

Table 1.20: AM Peaks

Table 1.21: PM Peaks

Scenario	SH3 North	SH3 South	McAndrew Street
2018	А	А	А
2018 + LD	А	А	А
2018 + HD	А	А	А
2035	А	А	В
2035 + LD	А	А	В
2035 + HD	А	А	В

These results indicate that the McAndrew Street intersection is both currently operating well within the Levels of Service, and continues to do so with development now and to 2035.

1.4.3 Access 4 – Belle Amie Drive

Belle Amie Drive, being positioned in the north-western section of the proposed growth area, potentially significantly alters the flow of traffic within this area as the assumptions currently assume most users want to travel north, and most of those users from the northern part of the development will therefore use the Ballance Street exit.

Access 4 would therefore draw traffic away from Ballance Street and place more traffic on the St Leger Road intersection with State Highway 3.

This would not significantly affect the modelling results, as the St Leger Road intersection is need of a more detailed investigation and more traffic would not change this, and Ballance Street (and the other assessed connections to the State Highway in this area) are expected to operate without significant problems up to the extreme case of 2035 traffic plus higher development in the growth area, which would only improve with traffic diverting away.

The connection of Access 4 to St Leger Road, therefore, is not considered a problem and could in fact reduce traffic in Kihikihi town centre if an upgrade to the State Highway 3 / St Leger Road / Golf Road intersection is implemented and works efficiently.

1.4.4 Crash Prediction Modelling

Using the additional vehicles assumed to be using the road corridors in a 2035 plus High Development worst-case scenario, as assigned in the Gravity Modelling above, the Crash Prediction Modelling was updated assuming the road corridors were not otherwise altered by the developments.

Road Name	Predicted Injury Crash Rate (existing)	Predicted Injury Crash Rate (2035 + HD)
State Highway 3 (includes intersections)	3.10	4.36
St Leger Road	0.30	0.49
Golf Road	0.10	0.13
Herbert Street	0.12	0.15
Leslie Street	0.06	0.10
Whitmore Street	0.06	0.08
Ballance Street	0.02	0.04
McAndrew Street	0.02	0.04

Table 1.22: Crash Model Results (Combined)

If the differential from Table 1.4 Crash Model Results (Existing) were applied to Herbert and Whitmore Streets, therefore assuming their current unexpected crash trends continued, they would produce a prediction of 0.23 and 0.72 crashes per year respectively.

This shows an increase in expected crashes as development increases, which is not unexpected, however with further investigation and option assessments for upgrading the various roads and intersections so they are better able to cope with expected traffic growth could help keep this increase to a minimum.

1.5 Indicative Costs

Given that the majority of road construction costs will be borne by developers, only a high-level cost estimate has been produced for the structure plan area, and only includes the following:

- Existing road sections which require upgrade to become Collectors or higher (including parts of St Leger Road and Ballance Road).
- New road infrastructure designated Collector or higher, which Waipa DC may wish to implement ahead of developer involvement.

This cost estimate is on the following basis:

- The typical cross section used was based on a "Rural and Large Lot Zone" Collector type road from the Waipa District Plan, with an allowance for a separate pedestrian and cycle shared path.
- No attempt to assess mass-balance of the structure plan area has been made, as a result a nominal earthworks quantity was assumed based on the road following existing contours with no undercutting for poor ground conditions considered.
- No Land Costs have been considered.

- No landscaping, beautification or other enhancement from the stated cross-section in the first point has been assumed (i.e.: grassed berms only).
- No minor roads are included for upgrade or construction.
- Priority intersections are standard (i.e.: no Roundabouts or Traffic Signals).
- No State Highway intersection upgrades have been included, as these are generally high cost bespoke design items, and in the case of the St Leger/Golf Road intersection is already overdue for an upgrade.
- Professional fees associated with the design, consenting and construction observation has not been included.
- Preliminary and General is assumed at 30%
- Escalation costs are not included.

The indicative estimate is \$12,500,000, and is considered to be +/-50%.

1.6 Conclusion

There may be existing deficiencies in road width on several local roads including Golf Road (designated as arterial) in the rural area, and that existing crash statistics on Herbert Street and Whitmore Street are in excess of what would be expected using NZTA crash prediction modelling, suggesting that their usage is greater than current assumptions.

Modelling also suggests that normal traffic growth to 2035, without including additional demand for growth area T6, could result in the following three intersections having significant increase in delays:

- State Highway 3 / St Leger Road / Golf Road intersection
- State Highway 3 / Herbert Street / Nixon Street intersection
- State Highway 3 / Whitmore Street intersection

The additional demand placed on the network is estimated to be 2,400 vehicles per day in the proposed "Low Development" scenario, or 4,800 vehicles per day in the suggested conservative "High Development" scenario (assuming future sub-division of these lots).

These additional vehicles, whilst increasing pressure on the current network and compounding existing issues if they go unaddressed, are otherwise able to be accommodated within the assessed local roading network without significant detriment to safety and efficiency.

There is, however, insufficient pedestrian and cyclist facilities around T6 which. Whilst this is not currently a highlighted issue, the desire of Waipa District Council to incorporate these facilities in a growth area suggests there could be a lack of connectivity in the existing network.

In line with these conclusions we have made the following recommendations for work going forward to help address existing and future concerns.

1.7 Recommendations

We have prepared the below recommendations, based on the above analysis and discussion.

- 1 Existing Local Roads:
 - a The following council roads have higher than expected crash injury rates, and further investigation is required to determine why this is occurring:
 - i Herbert Street
 - ii Whitmore Street

- b The following council roads are currently considered to have too narrow a seal width for their future purpose, and it is recommended investigation into widening and marking them is undertaken:
 - i St Leger Road (some sections of)
 - ii Brill Road
 - iii Haultain Street
 - iv McAndrew Street
 - v Golf Road (rural section)
 - vi McGhie Road (if desired to include as an alternative route east)
- 2 Pedestrian and Cyclist Facilities:
 - a Pedestrian and cyclist facilities around the growth area are lacking for connections to the anticipated facilities within the growth area. It is recommended that Waipa District Council review the existing facilities and programme in providing new infrastructure as the growth area is developed. The key connections to focus on for these facilities are anticipated to be:
 - i St Leger Road from Brill Road to State Highway 3
 - ii Ballance Street from the growth area connection to State Highway 3
 - iii Leslie Street from 'Access 3' to State Highway 3
 - b There are currently no dedicated or shared cyclist facilities along State Highway 3. It is recommended that NZTA look into providing these in some form.
 - c The only existing crossing facility along State Highway 3 is in Kihikihi town centre. It is recommended that NZTA look into additional provision for pedestrian (and possibly cyclist, depending on the solution) safe crossing facilities in the residential areas to the north and south of the town centre.
- 3 Intersection traffic issues:
 - a The State Highway 3 / Golf Road / St Leger Road intersection is recommended for an immediate investigation for upgrading due to possible existing issues with vehicles trying to exit Golf Road.
 - b The State Highway 3 / Herbert Street / Nixon Street intersection is recommended for an upgrade investigation should growth area T6 be approved.
 - c The following intersections are recommended for an upgrade investigation before 2035 whether or not growth area T6 is approved for development:
 - i State Highway 3 / Whitmore Street
 - ii State Highway 3 / Herbert Street / Nixon Street

2 Te Awamutu: T11

2.1 Structure Plan Area

Figure 2.1: Approximate extents of T11 growth cell (image sourced from Google Earth).

The T11 growth cell lies south of Cambridge Road on the eastern extents of Te Awamutu, currently rural but zoned for future residential development.

2.2 Existing Situation

2.2.1 Existing Transport Environment

The only roads bordering growth cell T11 are Cambridge Road to the north, designated a Major Arterial in the Waipa District Plan; and Park Road to the south, designated a Collector.

There are no existing cycle facilities along this length of Cambridge Road, but there is a footpath on each side.

Cambridge Road is consistent with an urban environment.

Table 2.1:Road Details (Existing)

Road Name	Total Width (m)	Lanes	Shoulder	Cycle Facilities	Footpaths	Posted Speed (km/hr)
Cambridge Road	11.0	2 (+ median for right turn bay outside supermarket)	2, min. 1.0 m wide	None	1.5 m wide, both sides, full length	50 (70 to the east of Gleneagles Drive)
Park Road	8.0	2	2, approx. 1.0 m wide	None	1.5 m wide footpath extends from north- west to edge of T11	70

Note: Measurements are approximate only using Google Earth.

Park Road in the location of the structure plan area is consistent with a more rural environment, however there is no proposal at this stage to connect any roads through, and so has been disregarded for this assessment.

2.2.2 Crash History

The NZTA Crash Analysis System (CAS) was interrogated for the period 2009 to 2018 (inclusive) to provide crash data for the roads in the immediate vicinity of the development and roads thought to be key in the distribution of traffic away from and back to the development, but only to the next major intersection or urban boundary. Full CAS outputs can be found in Appendix C.

Table 2.2:	Historical Crash Numbers

Crash Injury Rate	Years
0.8	2x 2010 1x 2011 1x 2012 2x 2013 (1x M) 4x 2014 (2x M, 1x DSI) 1x 2016 (M) 3x 2017 (1x M)

2.2.3 Crash Prediction Modelling

A high-level Crash Prediction Model was put together for the existing situation on Cambridge Road using the methods and formulae found in NZTA's Crash Estimation Compendium (2016, Updated June 2018).

Cambridge Road was assessed under the mid-block only formula as this modelling can be said to account for minor intersections and private accesses, which is the most common type in front of growth cell T11.

Road Name	Predicted Injury Crash Rate (existing)	Actual Injury Crash Rate	Differential: Predicted to Actual	Differential Rate
Cambridge Road	0.18	0.80	+0.62	+344%

Table 2.3: Crash Model Results (Existing)

Cambridge Road is revealed to have a higher crash rate than would normally be expected, which could indicate it is in need of more detailed analysis to understand why this may be occurring.

2.2.4 Road Safety

The existing road network connecting to Cambridge Road is urban in nature. Generally the local road network has provision for pedestrians, however Cambridge Road only has one crossing facility, being a refuge island at the State Highway intersection some 700 m west.

2.2.5 Travel Patterns

No traffic survey has been undertaken, however using best-practise and existing data from the Road Assessment and Maintenance Management database (RAMM) we can infer likely peak travel patterns.

Although not intended to be assessed as part of this work due to the proximity and options for vehicles to re-direct prior, NZTA have requested that the effects on the State Highway 3 intersection some 730 m west be considered; because of this the data for each leg of this intersection has also been retrieved (highlighted blue).

This data was extracted from Mobileroad.org, which is populated using Road Controlling Authority (RCA) RAMM data. This data is maintained by the RCA (in this case NZTA for State Highway 3, and Waipa District Council for all other roads) for tracking and forecasting maintenance activities on their respective networks; it was noted that while the State Highway traffic data appeared to be based on recent counts, the Waipa District Council roads were all identified as estimates from 2016 and so we are unsure as to the accuracy of the data for that part of the network.

The key RAMM data used in this assessment is as follows:

Road Name	Average Daily Traffic (ADT) (veh/day)	Date of Count / Estimate	Heavy Vehicles (%)
Cambridge Road (outside T11)	4,240	1/12/2016	0%
Arawata Street	10,020	1/12/2016	0%
Cambridge Road (at intersection)	9,300	1/12/2016	Unknown
State Highway 3 North (Ohaupo Road)	12,623	25/12/2017	6%
State Highway 3 South (Albert Park Drive)	9,331	25/12/2017	6%

Table 2.4: RAMM Data

Note: All data obtained from MobileRoad.org, all 2-way traffic.

The attractors for determining travel patterns are considered to be as follows:

Attractor Name	Approximate Distance from T11	Attractor Type	Attractions
Te Awamutu Centre	1.2 km	Local Primary Attractor	 Closest shopping centre outside immediate area Employment
Hamilton	30 km	Primary Attractor	 Employment Largest population centre within 0.5hrs travel Large employment area Large retail bases, including niche shops and large supermarkets Recreational facilities
Cambridge	22 km	Secondary Attractor	 Large shopping area, including Supermarkets Employment
Local Rural Areas		Secondary Attractor	EmploymentOutdoor Recreation
Otorohanga (and South)	30 km plus	Tertiary Attractor	EmploymentRecreation

From these assumptions we can reasonably determine that the majority of traffic will travel west towards the State Highway intersection, distributing from there to Te Awamutu town centre, Hamilton and rural areas to the north and west, with the rest travelling east towards Cambridge, eastern rural areas, and as a Te Awamutu bypass route for travelling south; returning from those same directions in similar proportions.

2.2.6 Public Transport

There are no bus routes, or other method of public transport, servicing the Cambridge Road or Park Road areas according to the "Busit.co.nz" website.

2.2.7 Other Modes

For local trips to the nearby supermarket, and possibly Te Awamutu, it is likely cycling and walking will be used by children, the elderly, those without access to a private vehicle, and those of a health or environmentally friendly mind-set; some of these same groups may also use these modes in conjunction with the bus to get to Hamilton.

Realistically, however, the majority of trips in this area are still likely to be private vehicle based regardless of the distance to travel.

2.3 Feasibility Report

The Opus Transport Project Feasibility Report prepared in June 2018 for this growth area is necessarily conceptual in nature, given the broad nature of the plans for T11 at that point. It is also worth noting that some of the comments and recommendations are linked with another growth area, T8, which is outside the scope of this assessment.

Generally the current Structure Plan was developed with this concept as a basis, with the notable amendment of the reduction in size of the planned area for building construction due to flooding issues to the rear of the large-format retail development.

We have the following differences in observation to those presented in the Opus report:

• The sight distances listed as deficient for Access 2 and Access 3 appear, in our estimation, to be adequate, or at least significantly less deficient than presented, possibly due to a change in speed environment.

The following recommendations from this report are addressed as follows (as they relate to T11 only):

- <u>Reduce the number of accesses of growth cell T11 from three to two (i.e.: Remove Access 2)</u>
 This is a possibility, given the reduction in lot numbers for this growth area, however has been left in for now due to the likelihood of the growth area just south of T11 (T14) being developed more quickly than planned, and the lack of inter-connectivity with Access 1 due to the flood-prone land not being developed; these two things combined may put pressure on a single access, dependent on other road connections made as part of this further development. It would be preferred if some agreement could be arrived at with the owners of the service access immediately adjacent to the proposed Access 2, as we agree with the Opus conclusion that this is an undesirable arrangement even with the relatively low expected vehicle movements from the service lane.
- Undertake traffic capacity assessment/ traffic modelling at the following intersections:
 - Cambridge Rd/Albert Park Dr/Arawata St/Ohaupo Rd
 - Park Rd/Albert Park Dr
 - Vaile St/Sloane St/Albert Park Dr

The impact on the Cambridge Road-State Highway 3-Arawata Street intersection is discussed in the Modelling Assessment section below, the other two intersections appear to be more aligned with the T8 growth area and are not considered significantly affected by this proposal.

- <u>Traffic modelling at each of the proposed access locations to assist with intersection layouts</u> This has been conducted and is presented in the Modelling Assessment section below.
- <u>Undertake more detail assessment of speed management measures for Cambridge Road</u> This has not been considered as part of this assessment, and is considered to be future work to be conducted when the effects of all growth areas impacting Cambridge Road can be aggregated.
- <u>Undertake a review of pedestrian and cycling connectivity</u>
 Recommendations are made in this regard at the end of this assessment, however a specific detailed review of these facilities has not yet been undertaken.
- <u>Undertake a more detail assessment of internal road network, including midblock cross</u>
 <u>sections and intersection form</u>

This work has been conducted in conjunction with Boffa Miskell and is presented elsewhere.

• Detail assessment how to change the right of way at Cambridge Access 1 to be a public road This is deemed to be a landowner negotiation and legal issue, not covered by this report.

2.4 Proposed Situation

Figure 2.2: Proposed T11 Structure Plan road network

The proposed development area is intended to be a mixture of low and medium density urban residential.

Based on the current Structure Plan at the time of writing, which includes further land to the southeast, this results in an estimated lot yield of around 350. This was a late addition and so is not reflected in the modelling below, however experience suggests that this addition is not significant and the intersections will still be able to cope with this additional development area, though the models should be updated to be sure.

2.4.1 Proposed Road Network

The proposed road network is designed to provide good connectivity to Cambridge Road, as well as future connectivity to the T14 growth area, which also lies between Cambridge and Park road, but to the south of T11.

A significant section of this growth area has had to be left undeveloped due to potential flooding issues, which has also significantly affected how the roads will be laid out.

Because of this restriction, there is a small section to the west which is intended to have its own dedicated access to Cambridge Road down an existing access to the supermarket; the rest of the development, and eventually parts of T14, will share two further exit points to the east of the supermarket.

Once onto Cambridge Road, there are several local road options to help bypass the perceived main routes, however these all lead to either no exit roads or back to Cambridge Road to the east, so is considered to only really be useful for those with destinations along these roads rather than as true alternative or bypass routes that significant numbers will utilise.

33

2.4.2 Proposed Alternative Mode Links

Shared pedestrian / cycle facilities have been proposed in the Structure Plan which follow most of the proposed road links to the existing network, as well as providing some amenity linkage through proposed green spaces to Park Road.

Unfortunately, Cambridge and Park roads are both lacking in dedicated cyclist, or shared, facilities, and only Cambridge Road is fully serviced with pedestrian facilities in the immediate area of T11.

2.5 Modelling Assessments

2.5.1 Trip Distribution

Trip distribution has been assessed at a conceptual level using a simplified form of gravity modelling, a high-level method of determining likely travel patterns based on existing known data.

Using the attractors as a guide, at any one intersection the traffic flow in any direction currently on that road is proportionally split based on the most popular routes and likely destinations, informing the flows between, and therefore at, intersections through to the end of the study area.

The flows undergo a "balancing" exercise where the proportions turning in any one direction are gradually amended until the approximate ADT for each direction and road are arrived at.

This method is a cost effective way of estimating traffic patterns and turning flows without reliance on turning counts and origin destination surveys. The results are used to inform the indicative intersection models and give an indication as to whether intersections are currently functioning as intended, and whether they will continue to do so if more vehicles are added.

2.5.1.1 Modelling Basis

Given the relative simplicity of the internal road network and proposed connections, no specific gravity model has been produced for T11; the interaction with future growth cells will change this, and a holistic model of some kind will need to be considered prior to those areas coming on-line.

The following assumptions were used in calculating flows for intersection modelling:

- The ADT data was pro-rated to a Base Year of 2018 using a 2% per annum average.
- A Projected Year of 2035 using a 2% per annum average was also used; 2035 was chosen as this is the latest year this growth area is expected to be fully developed by.
- The average daily peaks will be 10% of the ADT.
- The flows on any one road are split 70/30 for direction based on the time of day and direction of attractors (i.e.: 70% AM towards attractors, 70% PM away from attractors).
- Where Heavy Traffic is 'Unknown' it will be assumed to be 1%.

2.5.1.2 Model Limitations

It is important to note that, due to cost constraints, no observation verification was conducted at any of the existing intersections and the model is entirely founded on the "most likely" routing based on attractor assumptions and anecdotal evidence.

2.5.1.3 Development Figures

The future development of T11 has been assumed to be additional to the standard 2% traffic growth in this area; this is not strictly correct, as the traffic has to come from somewhere and this type of residential growth tends to be what supports it, however retaining this assumption does provide for a conservative model.

Two development scenarios over and above a standard 2% growth were considered:

- 1 Low Development: A scenario whereby the lot yield as presented in the Structure Plan was used to determine additional traffic flow.
- 2 High Development: A scenario whereby the lot yield was doubled when compared to that in the structure plan, to account for a worst case scenario of smaller lot types and future in-fill development.

The daily traffic per lot was assumed to be 10veh/day, with all other traffic assumptions as per those in section 2.5.1.1 above.

2.5.2 Intersection Modelling

The following intersections were modelled in Sidra Intersection 8.0 for levels of service, all based on the logic stated in section 2.5.1 above:

- Access 1 / Cambridge Road
- Access 2 / Cambridge Road
- Access 3 / Cambridge Road
- Gleneagles Drive / Cambridge Road

The Level of Service for any lane is directly related to the average delay anticipated for a vehicle in that lane, as follows:

Table 2.6:	Level of Service (LoS): Sidra 8 Sign Control			
Level of Service (LoS)		Average Delay per Vehicle		

Level of Service (LoS) for v/c≤1.0 (v/c>1.0 = LoS F)	Average Delay per Vehicle in seconds (d)
А	d ≤ 10
В	10 < d ≤ 15
С	15 < d ≤ 25
D	25 < d ≤ 35
E	35 < d ≤ 50
F	50 < d

The following assumptions, in addition to those mentioned for the Gravity Model, were used:

- No gradients are known, so all gradients for all approaches were set at 0%.
- All measurements possible were taken from aerial views on Google Earth.
- If a median was present it was assumed to act as a Right Turn Bay in lieu of an actual Right Turn Bay.
- If present, shoulders were considered 'full' (of parked vehicles for example) and so not considered as additional seal width.

2.5.2.1 Access 1 / Cambridge Road

Cambridge Road - West

Figure 2.3: Sidra Intersection Diagram – Access 1

This intersection was modelled for the following situations:

- 2018 plus Low Development (LD) AM and PM peaks.
- 2035 2% growth plus High Development (HD), AM and PM peaks.

This intersections is too new to have existing traffic flow data as of the inception of this growth area, and existing traffic appears to be restricted to delivery traffic and a relatively small proportion of the carpark, so no base years for 2018 and 2035 were modelled. To account for the 'existing traffic' a peak movement of 10 vehicles (or 100 veh/day, equivalent to 10 houses) was added to the calculated figures for this part of the development.

Initially only the current proposed situation, and the forecast extreme situation indicated above were modelled to check the extreme ends of the development impact; given the results, no further modelling was deemed to be necessary.

The following tables summarise the LoS findings for each leg / lane by scenario for quick reference. Summaries of the modelling reports can be found in Appendix D.

	Cambridge Road West		Combridge	
Scenario	Through Lane	Right Turn Bay	Cambridge Road East	Access 1
2018 + LD				
2035 + HD				

Table 2.7: AM Peaks

August 2019

Table 2.8: PM Peaks

	Cambridge Road West		Combridge	
Scenario	Through Lane	Right Turn Bay	Cambridge It Turn Road East	Access 1
2018 + LD				
2035 + HD				

The results indicate that the intersection should operate well during peak hours at all levels of development to 2035.

2.5.2.2 Access 2 / Cambridge Road

Cambridge Road - West

Figure 2.4: Sidra Intersection Diagram – Access 2

This intersection was modelled for the following situations:

- 2018 plus Low Development (LD) AM and PM peaks.
- 2035 2% growth plus High Development (HD), AM and PM peaks.

This intersection is brand new as of the inception of this growth area, so no base years for 2018 and 2035 were modelled.

Initially only the current proposed situation, and the forecast extreme situation indicated above were modelled to check the extreme ends of the development impact; given the results, no further modelling was deemed to be necessary.

The following tables summarise the LoS findings for each leg / lane by scenario for quick reference. Summaries of the modelling reports can be found in Appendix D.

37

Table 2.9: AM Peaks

	Cambridge Road West		Combuidae	
Scenario	Through Lane	Right Turn Bay	Cambridge Road East	Access 2
2018 + LD				
2035 + HD				

Table 2.10: PM Peaks

	Cambridge Road West		Combridge	
Scenario	Through Lane	Right Turn Bay	Cambridge Road East	Access 2
2018 + LD				
2035 + HD				

The results indicate that the intersection should operate well during peak hours at all levels of development to 2035.

2.5.2.3 Access 3 / Cambridge Road

Cambridge Road - West

Figure 2.5: Sidra Intersection Diagram – Access 3

This intersection was modelled for the following situations:

- 2018 plus Low Development (LD) AM and PM peaks.
- 2035 2% growth plus High Development (HD), AM and PM peaks.

This intersection is brand new as of the inception of this growth area, so no base years for 2018 and 2035 were modelled.

Initially only the current proposed situation, and the forecast extreme situation indicated above were modelled to check the extreme ends of the development impact; given the results, no further modelling was deemed to be necessary.

The following tables summarise the LoS findings for each leg / lane by scenario for quick reference. Summaries of the modelling reports can be found in Appendix D.

Table 2	.11: AN	1 Peaks
---------	---------	---------

	Cambridge Road West		Comphyidae	
Scenario	Through Lane	Right Turn Bay	Cambridge Road East	Access 3
2018 + LD				
2035 + HD				

Table 2.12: PM Peaks

	Cambridge Road West		Com buildes	
Scenario	O Through Lane	Right Turn Bay	Cambridge Road East	Access 3
2018 + LD				
2035 + HD				

The results indicate that the intersection should operate well during peak hours at all levels of development to 2035.

2.5.2.4 Gleneagles Drive / Cambridge Road

Cambridge Road - East

Figure 2.6: Sidra Intersection Diagram – Gleneagles Drive

Document Set ID: 10411011 Version: 2, Version Date: 29/06/2020 This intersection was modelled for the following situations:

- 2018 plus Low Development (LD) AM and PM peaks.
- 2035 2% growth plus High Development (HD), AM and PM peaks.

This intersection was modelled for the same situations as the three Accesses so that a Network model (see next section) could be built to check that the close proximity of this and the three other intersections wasn't having a detrimental effect on the operation of Cambridge Road.

Initially only the current proposed situation and the forecast extreme situation indicated above were modelled to check the extreme ends of the development impact; given the results, no further modelling was deemed to be necessary.

The following tables summarise the LoS findings for each leg / lane by scenario for quick reference. Summaries of the modelling reports can be found in Appendix D.

Table 2.13: AM Peaks

Scenario	Cambridge	Cambridge Road East		Gleneagles
	Road West	Through Lane	Right Turn Bay	Drive
2018 + LD				
2035 + HD				

Table 2.14: PM Peaks

	Cambridge	Cambridge	Road East	Gleneagles
Scenario	Road West	Through Lane	Right Turn Bay	Drive
2018 + LD				
2035 + HD				

The results indicate that the intersection should operate well during peak hours at all levels of development to 2035.

2.5.2.5 Network Assessment

These four intersections were then put together in network models to check the LoS "in-situ" as close as can be done.

The results were as per the individual intersection models with no obvious changes; below are the network diagrams for the 2035 2% growth plus High Development AM and PM:

Figure 2.7: Cambridge Road Network Model – 2035 2% growth plus HD, AM

Figure 2.8: Cambridge Road Network Model – 2035 2% growth plus HD, PM

2.5.2.6 State Highway 3 Considerations

NZTA have requested the impacts on the State Highway 3 intersection with Cambridge Road and Arawata Street be considered as part of this assessment.

It is noted that this intersection is over 700 m to the west of the nearest exit from the proposed growth area, however the arrangement of the local roads are not conducive to traffic being able to bypass this intersection if they wish to travel to Te Awamutu town centre, or north to Hamilton.

The existing two-way traffic through the intersection was over 40,000 veh/day as at the last State Highway count; this growth area proposes to add some 1,510 veh/day (two-way), with the potential to increase to 3020 veh/day (two-way) if infill development is catered for.

This amounts to an increase of less than 4% initially, with the potential for an increase of up to 7.5% in the future, not accounting for other increases in State Highway traffic over that time.

A high-level assessment was conducted as to the capacity of the intersection based on the same assumptions used for the Gravity and Intersection modelling above, and it appears that the intersection may be close to capacity with existing traffic volumes at peak times, with very little change in waiting times once the additional flows are added. This is considered to be a small increase on the demands already placed on the intersection, however further investigation by NZTA may be warranted given the apparent existing issues with capacity. It is recommended that a full traffic survey and modelling exercise is undertaken to determine actual use and capacity thresholds at the roundabout.

CAS data was also retrieved on this intersection, and in the ten years to the end of 2018 there were 36 crashes associated with this intersection, with 3 injury crashes (two minor injury crashes and one severe).

This is an injury crash rate of 0.3, which is considered better than would be expected by the prediction models used by NZTA, and so the safety risks are considered minimal.

2.5.3 Crash Prediction Modelling

Using the additional vehicles assumed to be using the Cambridge Road corridor in a 2035 plus High Development worst-case scenario, as assigned in the Gravity Modelling above, the Crash Prediction Modelling was updated assuming the road corridor was not otherwise altered by the developments.

Table 2.15: Crash Model Results (Combined)

Road Name	Predicted Injury Crash Rate (existing)	Predicted Injury Crash Rate (2035 + HD)
Cambridge Road	0.18	0.35

This shows an increase in expected injury crashes as development increases, which is not unexpected given the additional volume of traffic on Cambridge Road in addition to the new flows from the development, however the movement is from approximately one injury crash every 5 years to approximately one injury crash every 3 years on average, which is still considered reasonable for a Major Arterial road.

However, if the injury crash differential rate from Table 2.3 is applied, therefore assuming the current unexpected crash trend continues, this would result in a new predicted injury crash rate of 1.19, or more than one per year on average, which could be considered less acceptable.

2.6 Indicative Costs

Given that the majority of road construction costs will be borne by developers, only a high-level cost estimate has been produced for the structure plan area, and only includes new road infrastructure designated Collector or higher, which Waipa DC may wish to implement ahead of developer involvement.

This cost estimate is on the following basis:

- The typical cross section used was based on a "Rural and Large Lot Zone" Collector type road from the Waipa District Plan, with an allowance for a separate pedestrian and cycle shared path.
- No attempt to assess mass-balance of the structure plan area has been made, as a result a nominal earthworks quantity was assumed based on the road following existing contours with no undercutting for poor ground conditions considered.
- No Land Costs have been considered.
- No landscaping, beautification or other enhancement from the stated cross-section in the first point has been assumed (i.e.: grassed berms only).
- No minor roads are included for upgrade or construction.
- Priority intersections are standard (i.e.: no Roundabouts or Traffic Signals).
- Professional fees associated with the design, consenting and construction observation has not been included.
- Preliminary and General is assumed at 30%
- Escalation costs are not included.

The indicative estimate is \$3,200,000, and is considered to be +/-50%.

2.7 Conclusion

The existing injury crash rate on Cambridge Road is higher than is predicted by NZTA modelling guidelines, which should be investigated further.

The State Highway 3 intersection with Cambridge Road and Arawata Street high level assessment suggests the intersection is near or at capacity with current traffic flows.

The further demand placed on the network is estimated to be 1,510 additional vehicles per day in the proposed "Low Development" scenario, or 3,020 vehicles per day in the suggested conservative "High Development" scenario (assuming future sub-division of these lots).

These additional vehicles, are able to be accommodated within the assessed network with no measureable detriment to safety or efficiency, even with further baseline traffic growth.

Dedicated cyclist facilities around T11 appear to be insufficient which, whilst arguably not currently a known issue, the desire of Waipa District Council to incorporate these facilities in the growth area means there could be a break in connectivity if not addressed in the existing network.

In line with these conclusions we have prepared some recommendations for work going forward to help address existing and future concerns.

2.8 Recommendations

We have prepared recommendations, based on the above analysis and discussion.

- 1 Pedestrian and Cyclist Facilities:
 - a Cyclist facilities down Cambridge Road are lacking for connections to the anticipated facilities within the growth area, although a shared path facility exists at the State Highway roundabout with Cambridge Road. It is recommended that Waipa District Council review the existing facilities and programme in providing / extending infrastructure as the growth area is developed.
 - b The only existing crossing facility along Cambridge Road is at the State Highway roundabout where there is a refuge island at the intersection. It is recommended that Waipa District Council look at a more formal facility near the supermarket, or at least another refuge island, to enable pedestrian traffic to more safely access local amenities.
- 2 The arrangement of Access 2 with the service lane for the shopping complex is considered to be a safety issue, and it is recommended discussions are held with the owner of that service lane to form an arrangement which is less problematic.

It is noted that there doesn't appear to be any delivery doors at the rear of the Mitre 10, so there remains the possibility of combining the two into an intersection, and providing an access off the new road.

3 The structure plan models should be updated to reflect the late change to the lot yield to ensure the intersections with Cambridge Road are not adversely affected, although experience suggest they will not be.

The following points are recommendations from the Opus Feasibility Report which we believe are still relevant:

- 1 Undertake a more detail assessment of speed management measures for Cambridge Road
- 2 Undertake a review of pedestrian and cycling connectivity
 - Recommendations have been made in this regard, however a specific detailed review of what facilities are warranted has not been undertaken and could be useful to Waipa District Council in targeting funds.

43

3 Detailed assessment of how to change the right of way at Cambridge Road Access 1 to be a public road.

3 Applicability

This report has been prepared by Tonkin & Taylor Limited (T+T) for Boffa Miskell Ltd pursuant to the terms of engagement (Contract) between T+T and Boffa Miskell Ltd in relation to the T6/T11 Structure Plan project. T+T agrees this report may also be used by Waipa District Council (WDC) for the purposes set out in, or able to be reasonably inferred from, the Contract, on the basis that the aggregate liability of T+T to Boffa Miskell Ltd and WDC in respect of any such use or reliance is subject to the limitations and exclusions of liability set out in the Contract. This report may not be relied upon in other contexts or for any other purpose, or by any person other than Boffa Miskell Ltd and WDC, without T+T's prior written agreement.

Tonkin & Taylor Ltd

Report prepared by:

Authorised for Tonkin & Taylor Ltd by:

TREE

Cha Michloon

.....

Timothy Broadhead Civil Engineer

.....

Glen Nicholson Project Director

Reviewed by:

thing

Alan Gregory Principal Transport Planner

.....

TIBR p:\1008305\1008305.1000\issueddocuments\190823 final reports\190823.T6 T11 Transportation Assessment.rpt.docx

Appendix A: T6 CAS Outputs

CAS outputs for the following roads included:

- Ballance Street
- Golf Road
- Haultain Street
- Herbert Street
- Leslie Street
- McAndrew Street
- McGhie Road
- State Highway 3
- St Leger Road
- Walmsley Street
- Whitmore Street

Saved sites

Leslie Street

Crash year

2009 - 2019

Plain English report

5 results from your query.

1-5 of 5

<u>Crash road</u>	• <u>Distance</u>	<u>Direction</u>	<u>Side</u> road	ID	<u>Date</u>	<u>Day of</u> <u>week</u>	<u>Time</u>	Description of events	Crash factors	<u>Surface</u> condition	<u>Natural</u> light	<u>Weather</u>	Junction	<u>Control</u>	<u>Crash</u> <u>count</u> fatal	<u>Crash</u> <u>count</u> <u>severe</u>	<u>Crash</u> <u>count</u> <u>minor</u>
BALLANCE ST		I	LESLIE ST	<u>201545879</u>	18/09/2015	Fri	22:23	Car/Wagon1 EDB on BALLANCE ST lost control but did not leave the road, Car/Wagon1 hit fences	CAR/WAGON1, alcohol suspected, speed on straight	Dry	Dark	Fine	T Junction	Give way	0	0	0
BALLANCE ST		I	LESLIE ST	<u>201549561</u>	24/10/2015	Sat	03:00	Car/Wagon1 SDB on BALLANCE ST missed intersection or end of road, Car/Wagon1 hit fences	CAR/WAGON1, alcohol test above limit or test refused, lost control under braking, speed entering corner/curve, ENV: slippery road due to rain	Wet	Dark	Light rain	T Junction	Give way	0	0	0
LESLIE ST	0m			<u>2931333</u>	05/02/2009	Thu	12:10	Car/Wagon1 SDB on LESLIE ST hit Car/Wagon2 crossing at right angle from right, Car/Wagon1 hit kerbing	CAR/WAGON2, did not check/notice another party from other dirn	Dry	Bright sun	Fine	Crossroads	Nil	0	0	0
LESLIE ST	0m			<u>201230631</u>	20/03/2012	Tue		Car/Wagon1 NDB on LESLIE ST hit Car/Wagon2 merging from the right	CAR/WAGON2, other failed to give way	Dry	Bright sun	Fine	Crossroads	Nil	0	0	0
LESLIE ST	160m	S	SH 3	<u>201537993</u>	19/06/2015	Fri	14:48	Motorcycle1 SDB on LESLIE ST hit Car/Wagon2 U-turning from same direction of travel	CAR/WAGON2, did not check/notice another party behind	Dry	Bright sun	Fine	Nil (Default)	Nil	0	0	0

1-5 of 5

Saved sites

McAndrew Street

Crash year

2009 - 2019

Plain English report

9 results from your query.

1-9 of 9

Crash road	• <u>Distance</u>	Direction	Side road	<u>ID</u>	<u>Date</u>	<u>Day of</u> week	<u>Time</u>	Description of events	Crash factors	<u>Surface</u> condition	<u>Natural</u> light	<u>Weather</u>	Junction	<u>Control</u>	<u>Crash</u> count fatal	<u>Crash</u> <u>count</u> severe	<u>Crash</u> count minor
LYON STREET		I	MCANDREW STREET	<u>201951142</u>	17/02/2019	Sun	02:00	Car/Wagon1 SDB on LYON STREET, KIHIKIHI, WAIPA lost control; went off road to right	CAR/WAGON1, alcohol test above limit or test refused, interferred with driver, too far right	Dry	Dark	Fine	T Junction	Give way	0	0	1
MCANDREW ST	10m	S	SH 3	<u>201656195</u>	25/12/2016	Sun	19:46	Car/Wagon1 NDB on State Highway 3 lost control; went off road to left, Car/Wagon1 hit fences	CAR/WAGON1, alcohol test above limit or test refused, too far left	Dry	Bright sun	Fine	T Junction	Give way	0	0	0
MCANDREW ST	20m	W	WALMSLEY ST	<u>2935118</u>	22/05/2009	Fri	20:58	Car/Wagon1 WDB on MCANDREW ST hit SUV2 doing driveway manoeuvre	CAR/WAGON1, alcohol test above limit or test refused SUV2, failed to give way entering roadway from driveway, misjudged intentions of another party, ENV: entering or leaving private house / farm	Wet	Dark	Mist or Fog	Driveway	Nil	0	0	0
SH 3		I	MCANDREW ST	<u>201435418</u>	02/05/2014	Fri	13:05	Other1 NDB on SH 3 lost control; went off road to left, Other1 hit fences	OTHER1, too far left	Dry	Bright sun	Fine	T Junction	Give way	0	0	0
SH 3		I	MCANDREW ST	<u>201630915</u>	02/01/2016	Sat	11:35	Car/Wagon1 SDB on SH 3 lost control turning right, Car/Wagon1 hit fences	CAR/WAGON1, inappropriate speed for road conditions, lost control under braking, ENV: slippery road due to rain	Wet	Overcast	Light rain	T Junction	Nil	0	0	0
SH 3		I	MCANDREW ST	<u>2902856</u>	24/04/2009	Fri	14:25	Car/Wagon1 SDB on SH 3 sideswiped by Truck2 SDB on SH 3 turning left	CAR/WAGON1, failed to notice indication of vehicle in front, overtaking on left without due care, ENV: entering or leaving other commercial	Dry	Overcast	Fine	Driveway	Give way	0	0	1

Crash Analysis System (CAS) | NZTA

<u>Crash road</u>	• <u>D</u>	istance	<u>Direction</u>	Side road	<u>ID</u>	Date	<u>Day of</u> week	Time	Description of events	Crash factors	<u>Surface</u> condition	<u>Natural</u> light	<u>Weather</u>	Junction	<u>Control</u>	<u>Crash</u> count fatal	<u>Crash</u> <u>count</u> severe	<u>Crash</u> <u>count</u> <u>minor</u>
SH 3			I	MCANDREW ST	<u>201104651</u>	06/11/2011	Sun	12:20	Car/Wagon1 SDB on SH 3 hit rear of Car/Wagon2 SDB on SH 3 turning right from centre line	CAR/WAGON1, attention diverted by passengers, failed to notice car slowing, stopping/stationary, ENV: slippery road due to rain	Wet	Overcast	Light rain	T Junction	Give way	0	0	2
SH 3	5	m	S	MCANDREW ST	<u>201303945</u>	06/09/2013	Fri	15:20	Car/Wagon1 SDB on SH 3 hit rear of left turning Car/Wagon2 SDB on SH 3	CAR/WAGON1, attn diverted by scenery/persons outside vehicle, failed to notice indication of vehicle in front, ENV: entering or leaving private house / farm	Dry	Bright sun	Fine	Driveway	Give way	0	0	1
SH 3			I	MCANDREW ST	<u>201810849</u>	21/01/2018	Sun	21:05	Car/Wagon1 SDB on Lyon Street hit rear of Car/Wagon2 SDB on Lyon Street turning right from centre line	CAR/WAGON1, alcohol test below limit, misjudged another vehicle CAR/WAGON2, alcohol test below limit	Dry	Dark	Fine	T Junction	Give way	0	0	1

1-9 of 9

2902856 M

Saved sites

McGhie Road

Crash year

2009 - 2019

Plain English report

1 results from your query.

1-1 of 1

Crash road	• <u>Distance</u>	Direction	<u>Side</u> road	ID	<u>Date</u>	<u>Day of</u> week	<u>Time</u>	Description of events	Crash factors	<u>Surface</u> condition	<u>Natural</u> light	<u>Weather</u>	Junction	<u>Control</u>	<u>Crash</u> <u>count</u> fatal	<u>Crash</u> <u>count</u> severe	<u>Crash</u> <u>count</u> <u>minor</u>
FLAT ROAD	20m	S	MCGHIE ROAD	<u>201132034</u>	19/03/2011	Sat	15:56	Car/Wagon1 NDB on FLAT ROAD lost control; went off road to left	CAR/WAGON1, attention diverted by food, cigarettes, beverages, speed at temporary speed limit, too far left	Dry	Bright sun	Fine	Nil (Default)	Unknown	0	0	0

1-1 of 1

Document Set ID: 10411011 Version: 2, Version Date: 29/06/2020

Crash year

2009 - 2019

Saved sites

SH3 - St Leger to McAndrew

Plain English report

69 results from your query.

1-69 of 69

Crash Crash Crash Surface Day of Natural <u>count</u> <u>count</u> <u>count</u> Crash road Distance Direction Side road ID Date week Time **Description of events** Crash factors condition light Weather Junction Control fatal severe minor LYON STREET MCANDREW 201951142 17/02/2019 Sun 02:00 Car/Wagon1 SDB on LYON CAR/WAGON1, alcohol test above Dry Dark Fine T Junction Give way 0 0 1 STREET STREET, KIHIKIHI, WAIPA lost limit or test refused, interferred control; went off road to right with driver, too far right SHEEHAN 201950632 CAR/WAGON1, alcohol 003-0016 30/01/2019 Wed 23:45 Car/Wagon1 SDB on Lyon Street, Dry Dark Fine T Junction Nil 0 0 1 ST Kihikihi lost control turning left; suspected, lost control when went off road to left, Car/Wagon1 turning, speed entering hit cliffs corner/curve GOLF ROAD SH 3 2931945 14:30 Truck1 NDB on GOLF ROAD lost Т 13/03/2009 Fri TRUCK1, lost control when Dry Overcast Fine Crossroads Stop 0 0 0 control turning right turning, speed entering corner/curve HERBERT ST SH 3 CAR/WAGON1, speed entering Fine 2939001 17:17 Car/Wagon1 SDB on HERBERT ST Dry Т 05/08/2009 Wed Bright T Junction Give way 0 0 0 lost control turning left, corner/curve sun Car/Wagon1 hit fences MCANDREW ST 10m S SH 3 201656195 25/12/2016 19:46 Car/Wagon1 NDB on State CAR/WAGON1, alcohol test above Dry Bright Fine T Junction 0 0 Sun Give way 0 limit or test refused, too far left Highway 3 lost control; went off sun road to left, Car/Wagon1 hit fences SH 3 40m S BALLANCE 201653711 17/11/2016 Thu 15:10 Car/Wagon1 SDB on State CAR/WAGON1, did not Drv Fine Nil Unknown 0 0 0 Overcast ST check/notice another party from (Default) highway changing lanes/overtaking to right hit other dirn SUV2 SH 3 T BALLANCE 201744193 05/07/2017 13:50 Van1 NDB on SH 3 hit rear of VAN1, swerved to avoid Null Wed Dry Bright T Junction Give way 0 0 0 ST Van2 NDB on SH 3 turning right pedestrian sun from centre line SH 3 1 BALLANCE 201530499 26/01/2015 Mon 21:25 Car/Wagon1 NDB on SH 3 lost CAR/WAGON1, speed entering Dry Dark Fine T Junction Stop 0 0 0 ST control turning left, Car/Wagon1 corner/curve, wrong pedal/foot hit fences slipped

Showing 20 100 results at once.

5/20/2019

<u>Crash road</u>	• <u>Dista</u>	nce D	Direction	Side road	ID	Date	<u>Day of</u> week	<u>Time</u>	Description of events	Crash factors	Surface condition	<u>Natural</u> light	Weather	Junction	<u>Control</u>	<u>Crash</u> count fatal	<u>Crash</u> <u>count</u> <u>severe</u>	<u>Crash</u> count minor
SH 3	60m	S	5	CHURCH ST	<u>201005983</u>	21/12/2010	Tue	08:24	Car/Wagon1 SDB on SH 3 hit rear of Car/Wagon2 SDB on SH 3 turning right from centre line	CAR/WAGON1, failed to notice car slowing, stopping/stationary, ENV: entering or leaving other commercial	Dry	Overcast	Fine	Driveway	Nil	0	0	1
SH 3	100n	n S	5	CHURCH ST	<u>201752046</u>	05/10/2017	Thu	17:30	Truck1 NDB on Sh 3 kihikihi hit obstruction, Truck1 hit poles	TRUCK1, misjudged own vehicle	Dry	Bright sun	Fine	Nil (Default)	Unknown	0	0	0
SH 3	15m	S	5	CHURCH ST	<u>201040752</u>	02/10/2010	Sat	15:00	Car/Wagon1 SDB on SH 3 hit Van2 U-turning from same direction of travel	VAN2, did not check/notice another party behind	Dry	Bright sun	Fine	Nil (Default)	Unknown	0	0	0
SH 3	70m	N	1	GALLOWAY ST	<u>201235953</u>	03/08/2012	Fri	16:00	Car/Wagon1 SDB on SH 3 lost control; went off road to left, Car/Wagon1 hit fences, kerbing	CAR/WAGON1, medical illness (not sudden)	Dry	Bright sun	Fine	Nil (Default)	Unknown	0	0	0
SH 3	10m	S	5	GALLOWAY ST	<u>201516715</u>	26/08/2015	Wed	17:00	Car/Wagon1 SDB on SH 3 hit Pedestrian2 (Age 35)	CAR/WAGON1, lost control avoiding another party, swerved to avoid vehicle	Dry	Twilight	Fine	T Junction	Give way	0	0	1
SH 3	20m	S	5	GALLOWAY ST	<u>201655874</u>	22/11/2016	Tue	09:30	Car/Wagon1 NDB on Lyon street hit turning Car/Wagon2	CAR/WAGON2, did not check/notice another party from other dirn, failed to give way entering roadway from driveway	Dry	Bright sun	Fine	Driveway	Nil	0	0	0
SH 3		I		GALLOWAY ST	<u>201549085</u>	11/10/2015	Sun	15:30	Car/Wagon1 SDB on SH 3 lost control; went off road to right	CAR/WAGON1, fatigue due to lack of sleep, medical illness (not sudden), too far left	Dry	Bright sun	Fine	T Junction	Give way	0	0	0
SH 3	50m	S	5	GALLOWAY ST	<u>2931485</u>	04/03/2009	Wed	10:40	Car/Wagon1 NDB on SH 3 hit rear end of Car/Wagon2 stop/slow for PEDESTRIAN	CAR/WAGON1, failed to notice car slowing, stopping/stationary, other attention diverted	Dry	Bright sun	Fine	Nil (Default)	Unknown	0	0	0
SH 3		I		GALLOWAY ST	<u>201752686</u>	13/10/2017	Fri	15:35	Car/Wagon1 NDB on Lyon st hit Van2 merging from the right	VAN2, did not check/notice another party from other dirn, failed to give way at priority traffic control	Dry	Overcast	Fine	T Junction	Give way	0	0	0
SH 3	50m	S	5	GALLOWAY ST	<u>201203965</u>	24/08/2012	Fri	08:30	Car/Wagon1 NDB on SH 3 hit rear end of Car/Wagon2 stop/slow for PEDESTRIAN	CAR/WAGON1, attention diverted by passengers, failed to notice car slowing, stopping/stationary	Dry	Bright sun	Fine	Nil (Default)	Unknown	0	0	1
SH 3	120n	n N	1	GALLOWAY ST	<u>201657073</u>	29/12/2016	Thu	18:44	Truck1 NDB on Lyon street hit Car/Wagon2 manoeuvring	CAR/WAGON2, emotionally upset/road rage, too far right	Dry	Bright sun	Fine	Nil (Default)	Unknown	0	0	0
SH 3	90m	S	5	GALLOWAY ST	201646597	02/08/2016	Tue	19:40	parked Van1 NDB on SH 3 ran away, Van1 hit parked vehicle	VAN1, parking brake failed/defective	Dry	Dark	Fine	Nil (Default)	Unknown	0	0	0
SH 3	60m	N	4	GALLOWAY ST	<u>201737274</u>	20/04/2017	Thu	16:00	parked Truck1 NDB on Lyon street ran away, Truck1 hit fences	TRUCK1, other brakes	Dry	Bright sun	Fine	Nil (Default)	Unknown	0	0	0
SH 3		I		GOLF ROAD	<u>201513311</u>	15/05/2015	Fri	09:30	Van1 NDB on SH 3 hit Car/Wagon2 turning right onto AXROAD from the left	CAR/WAGON2, did not check/notice another party from other dirn, failed to give way at priority traffic control	Wet	Overcast	Heavy rain	Crossroads	Stop	0	0	1

5/20/2019

<u>Crash road</u>	Distance	Direction	Side road	<u>ID</u>	Date	<u>Day of</u> <u>week</u>	<u>Time</u>	Description of events	Crash factors	<u>Surface</u> condition	<u>Natural</u> light	Weather	Junction	<u>Control</u>	<u>Crash</u> count fatal	<u>Crash</u> count severe	<u>Crash</u> count minor
SH 3	400m	S	GOLF ROAD	<u>201530244</u>	21/01/2015	Wed	11:07	Car/Wagon1 NDB on SH 3 hit Car/Wagon2 U-turning from same direction of travel	CAR/WAGON2, attention diverted fiding intersection, house, etc, did not check/notice another party behind	Dry	Bright sun	Fine	Nil (Default)	Unknown	0	0	0
SH 3		I	GOLF ROAD	<u>201031270</u>	10/03/2010	Wed	15:08	Other2 turning right hit by oncoming Van1 SDB on SH 3	OTHER2, didnt look/notice other party - visibility obstruc, failed to give way turning to non-turning traffic, overseas/migrant driver fail to adjust to nz roads	Dry	Bright sun	Fine	Crossroads	Stop	0	0	0
SH 3		I	GOLF ROAD	<u>201533807</u>	04/04/2015	Sat	13:00	Car/Wagon1 WDB on SH 3 hit rear end of Car/Wagon2 stop/slow for cross traffic	CAR/WAGON1, following too closely	Dry	Bright sun	Fine	Crossroads	Stop	0	0	0
SH 3	250m	S	GOLF ROAD	<u>201543677</u>	18/07/2015	Sat	14:45	SUV1 SDB on SH 3 lost control turning right, SUV1 hit trees	SUV1, lost control when turning, other attention diverted	Wet	Overcast	Fine	Nil (Default)	Unknown	0	0	0
SH 3		I	GOLF ROAD	<u>201632838</u>	28/01/2016	Thu	09:40	Car/Wagon2 turning right hit by oncoming Van1 SDB on SH 3	CAR/WAGON2, did not check/notice another party from other dirn, failed to give way turning to non-turning traffic	Dry	Bright sun	Fine	Crossroads	Stop	0	0	0
SH 3	330m	S	GOLF ROAD	<u>201652407</u>	12/11/2016	Sat	03:15	Car/Wagon1 SDB on SH 3 swinging wide hit Truck2 head on, Car/Wagon1 hit ditches	CAR/WAGON1, wrong way in one way street, motorway or roundabou TRUCK2, swerved to avoid vehicle, ENV: heavy rain	Wet	Dark	Heavy rain	Nil (Default)	Unknown	0	0	0
SH 3	90m	S	GOLF ROAD	<u>201710582</u>	03/02/2017	Fri	03:58	Car/Wagon1 SDB on Sh 3 otorohanga lost control turning left, Car/Wagon1 hit embankments	CAR/WAGON1, lost control when turning	Wet	Dark	Light rain	Nil (Default)	Unknown	0	0	1
SH 3		I	GOLF ROAD	<u>201740606</u>	02/06/2017	Fri	14:50	SUV1 EDB on Kihikihi Road hit Car/Wagon2 merging from the left	CAR/WAGON2, failed to give way at priority traffic control, other inexperience	Dry	Overcast	Fine	Crossroads	Stop	0	0	0
SH 3	200m	S	GOLF ROAD	<u>201611805</u>	01/03/2016	Tue	03:30	SUV1 NDB on SH 3 lost control; went off road to right	SUV1, fatige due to long day (working/recreation), fatigue due to lack of sleep	Wet	Dark	Light rain	Nil (Default)	Unknown	0	1	0
SH 3		I	GOLF ROAD	<u>201748709</u>	07/09/2017	Thu	14:45	Car/Wagon1 EDB on State highway 3 hit Van2 turning right onto AXROAD from the left	VAN2, did not check/notice another party from other dirn, failed to give way at priority traffic control	Dry	Overcast	Fine	Crossroads	Stop	0	0	0
SH 3	50m	N	HAVELOCK ST	<u>201445661</u>	01/10/2014	Wed	21:50	Car/Wagon1 SDB on SH 3 lost control turning right, Car/Wagon1 hit other	CAR/WAGON1, other fatigue	Dry	Dark	Fine	Nil (Default)	Unknown	0	0	0
SH 3	5m	S	HAVELOCK ST	<u>2901756</u>	02/02/2009	Mon	14:48	Car/Wagon1 NDB on SH 3 swinging wide hit Truck2 head on	CAR/WAGON1, lost control when turning	Dry	Bright sun	Fine	T Junction	Give way	0	1	0
SH 3	30m	S	HAVELOCK ST	<u>201831252</u>	13/01/2018	Sat	22:15	Car/Wagon1 NDB on Lyon st hit obstruction, Car/Wagon1 hit animals	CAR/WAGON1, alcohol test below limit, ENV: household pet rushed out or playing	Dry	Dark	Fine	Nil (Default)	Unknown	0	0	0

<u>Crash road</u>	Distance	Direction	Side road	<u>ID</u>	<u>Date</u>	<u>Day of</u> week	<u>Time</u>	Description of events	Crash factors	<u>Surface</u> condition	<u>Natural</u> light	Weather	Junction	<u>Control</u>	<u>Crash</u> count fatal	<u>Crash</u> count severe	<u>Crash</u> count minor
SH 3		I	HERBERT ST	<u>201542699</u>	12/07/2015	Sun	22:00	Car/Wagon1 SDB on SH 3 lost control turning right, Car/Wagon1 hit other	CAR/WAGON1, fatigue due to lack of sleep, lost control when turning	Dry	Dark	Fine	T Junction	Give way	0	0	0
SH 3		1	HERBERT ST	<u>201241235</u>	28/12/2012	Fri	13:41	Car/Wagon1 NDB on SH 3 hit rear of Car/Wagon2 NDB on SH 3 turning right from centre line	CAR/WAGON1, failed to notice indication of vehicle in front, other attention diverted, ENV: fog or mist	Wet	Overcast	Mist or Fog	T Junction	Give way	0	0	0
SH 3	50m	S	HERBERT ST	<u>201336670</u>	06/08/2013	Tue	15:02	Car/Wagon1 SDB on SH 3 hit Car/Wagon2 U-turning from same direction of travel	CAR/WAGON2, did not check/notice another party behind	Dry	Bright sun	Fine	Nil (Default)	Unknown	0	0	0
SH 3		I	LESLIE ST	<u>201646455</u>	12/08/2016	Fri	08:30	SUV1 EDB on SH 3 hit rear of Car/Wagon2 EDB on SH 3 turning right from centre line	SUV1, failed to notice car slowing, stopping/stationary	Null	Unknown	Null	T Junction	Give way	0	0	0
SH 3	20m	W	LESLIE ST	<u>201839628</u>	11/05/2018	Fri	17:45	SUV1 SDB on LYON STREET, KIHIKIHI, WAIPA hit rear end of Car/Wagon2 stop/slow for queue	SUV1, alcohol test below limit, failed to notice car slowing, stopping/stationary VAN3, alcohol test below limit	Wet	Dark	Light rain	T Junction	Give way	0	0	0
SH 3		I	LESLIE ST	<u>201632343</u>	17/01/2016	Sun	22:47	SUV1 EDB on SH 3 lost control turning right, SUV1 hit trees	SUV1, fatige due to long day (working/recreation), new driver/under instruction, too far left	Dry	Dark	Fine	T Junction	Nil	0	0	0
SH 3	100m	E	LESLIE ST	<u>201735845</u>	07/04/2017	Fri	08:26	Car/Wagon1 SDB on Lyon St hit rear of left turning Van2 SDB on Lyon St , Van2 hit houses	CAR/WAGON1, failed to notice car slowing, stopping/stationary, other attention diverted	Dry	Bright sun	Fine	Driveway	Nil	0	0	0
SH 3		I	LESLIE ST	<u>201813985</u>	14/05/2018	Mon	10:16	Van1 EDB on LYON STREET, KIHIKIHI, WAIPA hit rear of Car/Wagon2 EDB on LYON STREET, KIHIKIHI, WAIPA turning right from centre line	CAR/WAGON2, alcohol test below limit VAN1, alcohol test below limit, failed to notice car slowing, stopping/stationary	Dry	Bright sun	Fine	T Junction	Give way	0	0	1
SH 3	50m	S	LESLIE ST	<u>2901711</u>	20/02/2009	Fri	00:15	Car/Wagon1 SDB on SH 3 lost control turning right, Car/Wagon1 hit street furniture, other	CAR/WAGON1, other fatigue	Dry	Dark	Fine	Nil (Default)	Unknown	0	0	1
SH 3	10m	Ν	LESLIE ST	<u>2931323</u>	30/01/2009	Fri	16:30	SUV1 SDB on SH 3 lost control on curve and hit Truck2 head on	SUV1, lost control when turning, other fatigue	Dry	Bright sun	Fine	T Junction	Nil	0	0	0
SH 3	30m	S	LESLIE ST	<u>201033073</u>	13/03/2010	Sat	07:36	SUV1 SDB on SH 3 lost control; went off road to right, SUV1 hit trees	SUV1, sudden illness	Dry	Bright sun	Fine	Nil (Default)	Unknown	0	0	0
SH 3	30m	S	MCANDREW ST	<u>201610570</u>	01/01/2016	Fri	17:08	Car/Wagon1 NDB on SH 3 lost control turning right, Car/Wagon1 hit fences	CAR/WAGON1, fatigue due to lack of sleep, too far left	Wet	Overcast	Light rain	Nil (Default)	Unknown	0	0	1
SH 3		I	MCANDREW ST	<u>201435418</u>	02/05/2014	Fri	13:05	Other1 NDB on SH 3 lost control; went off road to left, Other1 hit fences	OTHER1, too far left	Dry	Bright sun	Fine	T Junction	Give way	0	0	0

5/20/2019

Crash road	Distance	Direction	Side road	<u>ID</u>	Date	<u>Day of</u> week	<u>Time</u>	Description of events	Crash factors	Surface condition	<u>Natural</u> light	Weather	Junction	<u>Control</u>	<u>Crash</u> count fatal	<u>Crash</u> count severe	<u>Crash</u> count minor
SH 3		I	MCANDREW ST	<u>201630915</u>	02/01/2016	Sat	11:35	Car/Wagon1 SDB on SH 3 lost control turning right, Car/Wagon1 hit fences	CAR/WAGON1, inappropriate speed for road conditions, lost control under braking, ENV: slippery road due to rain	Wet	Overcast	Light rain	T Junction	Nil	0	0	0
SH 3		I	MCANDREW ST	<u>201104651</u>	06/11/2011	Sun	12:20	Car/Wagon1 SDB on SH 3 hit rear of Car/Wagon2 SDB on SH 3 turning right from centre line	CAR/WAGON1, attention diverted by passengers, failed to notice car slowing, stopping/stationary, ENV: slippery road due to rain	Wet	Overcast	Light rain	T Junction	Give way	0	0	2
SH 3		I	MCANDREW ST	<u>2902856</u>	24/04/2009	Fri	14:25	Car/Wagon1 SDB on SH 3 sideswiped by Truck2 SDB on SH 3 turning left	CAR/WAGON1, failed to notice indication of vehicle in front, overtaking on left without due care, ENV: entering or leaving other commercial	Dry	Overcast	Fine	Driveway	Give way	0	0	1
SH 3	20m	S	MCANDREW ST	<u>201516710</u>	21/09/2015	Mon	12:39	Van1 NDB on SH 3 lost control; went off road to left	VAN1, other fatigue, too far left	Dry	Overcast	Fine	T Junction	Give way	0	0	1
SH 3	90m	Ν	MCANDREW ST	<u>201551169</u>	18/11/2015	Wed	10:22	Truck1 SDB on SH 3 sideswiped by Car/Wagon2 SDB on SH 3 turning left	TRUCK1, misjudged intentions of another party CAR/WAGON2, attention diverted by passengers, failed to signal in time	Dry	Overcast	Fine	Driveway	Nil	0	0	0
SH 3	5m	S	MCANDREW ST	<u>201303945</u>	06/09/2013	Fri	15:20	Car/Wagon1 SDB on SH 3 hit rear of left turning Car/Wagon2 SDB on SH 3	CAR/WAGON1, attn diverted by scenery/persons outside vehicle, failed to notice indication of vehicle in front, ENV: entering or leaving private house / farm	Dry	Bright sun	Fine	Driveway	Give way	0	0	1
SH 3		I	MCANDREW ST	<u>201810849</u>	21/01/2018	Sun	21:05	Car/Wagon1 SDB on Lyon Street hit rear of Car/Wagon2 SDB on Lyon Street turning right from centre line	CAR/WAGON1, alcohol test below limit, misjudged another vehicle CAR/WAGON2, alcohol test below limit	Dry	Dark	Fine	T Junction	Give way	0	0	1
SH 3	60m	S	MCANDREW ST	<u>201812253</u>	24/03/2018	Sat	15:30	Car/Wagon1 NDB on Lyon street lost control; went off road to left, Car/Wagon1 hit poles	CAR/WAGON1, alcohol test below limit, lost control - road conditions, ENV: heavy rain	Wet	Overcast	Heavy rain	Nil (Default)	Unknown	0	0	1
SH 3	410m	Ν	MCGHIE ROAD	<u>201439807</u>	30/06/2014	Mon	14:56	load or trailer from Van1 NDB on SH 3 hit VEHB, Van1 hit kerbing	VAN1, inadequate tow coupling, load not well secured or load moved, lost control when turning, ENV: heavy rain	Wet	Overcast	Heavy rain	Nil (Default)	Unknown	0	0	0
SH 3	280m	Ν	MCGHIE ROAD	<u>2901266</u>	09/01/2009	Fri	22:27	Car/Wagon1 SDB on SH 3 lost control turning right, Car/Wagon1 hit fences, trees	CAR/WAGON1, alcohol test above limit or test refused, lost control when turning	Dry	Dark	Fine	Nil (Default)	Unknown	0	1	2
SH 3	60m	S	MCGHIE ROAD	<u>2905082</u>	14/11/2009	Sat	22:00	Car/Wagon1 SDB on SH 3 changing lanes/overtaking to right hit Car/Wagon2	CAR/WAGON1, did not check/notice another party behind	Dry	Dark	Fine	Nil (Default)	Nil	0	0	1
SH 3	30m	W	NIXON ST	<u>201632922</u>	09/02/2016	Tue	19:00	Car/Wagon1 WDB on SH 3 hit Van2 headon on straight	VAN2, alcohol test below limit CAR/WAGON1, alcohol test below limit, fatigue due to lack of sleep, too far right	Dry	Bright sun	Fine	Nil (Default)	Unknown	0	0	0

<u>Crash road</u>	• Distance	Direction	Side road	<u>ID</u>	<u>Date</u>	<u>Day of</u> week	<u>Time</u>	Description of events	Crash factors	<u>Surface</u> condition	<u>Natural</u> light	Weather	Junction	<u>Control</u>	<u>Crash</u> <u>count</u> fatal	<u>Crash</u> <u>count</u> severe	<u>Crash</u> <u>count</u> minor
SH 3	130m	W	NIXON ST	<u>201747606</u>	08/08/2017	Tue	10:50	Car/Wagon1 NDB on Kihikihi road hit rear end of Van2 stop/slow for queue	CAR/WAGON1, failed to notice car slowing, stopping/stationary	Wet	Overcast	Fine	Nil (Default)	Unknown	0	0	0
SH 3	50m	E	NIXON ST	<u>201745930</u>	18/07/2017	Tue	13:06	Car/Wagon1 EDB on Herbert st lost control; went off road to right, Car/Wagon1 hit fences, poles	CAR/WAGON1, lost control when turning	Wet	Overcast	Light rain	Nil (Default)	Unknown	0	0	0
SH 3	60m	S	SHEEHAN ST	<u>201847529</u>	31/08/2018	Fri	00:29	Van1 SDB on LYON STREET, KIHIKIHI, WAIPA lost control while overtaking	VAN1, drugs suspected, other lost control, overtaking in the face of oncoming traffic, speed on straight	Wet	Dark	Light rain	Nil (Default)	Unknown	0	0	0
SH 3	15m	N	ST LEGER ROAD	<u>2933430</u>	08/04/2009	Wed	18:30	Car/Wagon1 NDB on SH 3 hit rear end of Car/Wagon2 stopped/moving slowly	CAR/WAGON1, other visibility limited CAR/WAGON2, following too closely, suddenly braked CAR/WAGON3, attention diverted fiding intersection, house, etc, ENV: visibility limited by crest or dip	Wet	Dark	Fine	Nil (Default)	Unknown	0	0	0
SH 3	40m	Ν	WHITMORE ST	<u>201232618</u>	22/05/2012	Tue	07:55	Truck1 SDB on SH 3 hit Car/Wagon2 manoeuvring, Truck1 hit parked vehicle	TRUCK1, misjudged own vehicle	Dry	Bright sun	Fine	Nil (Default)	Unknown	0	0	0
SH 3		I	WHITMORE ST	201552292	19/10/2015	Mon	19:06	Car/Wagon1 SDB on SH 3 lost control turning left, Car/Wagon1 hit fences	CAR/WAGON1, lost control when turning, new driver/under instruction, speed entering corner/curve	Dry	Bright sun	Fine	T Junction	Stop	0	0	0
SH 3		I	WHITMORE ST	<u>201713430</u>	02/05/2017	Tue	14:45	Car/Wagon1 SDB on Lyon hit rear of left turning Car/Wagon2 SDB on Lyon	CAR/WAGON1, wrong pedal/foot slipped	Dry	Bright sun	Fine	T Junction	Stop	0	0	2
SH 3		1	WHITMORE ST	<u>201738969</u>	19/04/2017	Wed	19:30	Car/Wagon1 NDB on Statehighway Three hit Car/Wagon2 merging from the right	CAR/WAGON2, did not stop at stop sign	Dry	Dark	Fine	T Junction	Stop	0	0	0
SH 3		I	WHITMORE ST	<u>201633688</u>	26/02/2016	Fri	15:30	Van1 SDB on SH 3 hit SUV2 turning right onto AXROAD from the left	SUV2, did not check/notice another party from other dirn, failed to give way at priority traffic control	Dry	Bright sun	Fine	T Junction	Stop	0	0	0

1-69 of 69

2939001 💿🌣

Saved sites

St Leger Road

Crash year

2009 - 2019

Plain English report

11 results from your query.

1-11 of 11

<u>Crash road</u>	• <u>Distance</u>	Direction	<u>Side</u> road	<u>ID</u>	Date	<u>Day of</u> week	<u>Time</u>	Description of events	Crash factors	<u>Surface</u> condition	<u>Natural</u> light	<u>Weather</u>	Junction	<u>Control</u>	<u>Crash</u> count fatal	<u>Crash</u> <u>count</u> <u>severe</u>	<u>Crash</u> count minor
GOLF ROAD		I	SH 3	<u>2931945</u>	13/03/2009	Fri	14:30	Truck1 NDB on GOLF ROAD lost control turning right	TRUCK1, lost control when turning, speed entering corner/curve	Dry	Overcast	Fine	Crossroads	Stop	0	0	0
SH 3		I	GOLF ROAD	<u>201748709</u>	07/09/2017	Thu	14:45	Car/Wagon1 EDB on State highway 3 hit Van2 turning right onto AXROAD from the left	VAN2, did not check/notice another party from other dirn, failed to give way at priority traffic control	Dry	Overcast	Fine	Crossroads	Stop	0	0	0
SH 3		I	GOLF ROAD	<u>201740606</u>	02/06/2017	Fri	14:50	SUV1 EDB on Kihikihi Road hit Car/Wagon2 merging from the left	CAR/WAGON2, failed to give way at priority traffic control, other inexperience	Dry	Overcast	Fine	Crossroads	Stop	0	0	0
SH 3		I	GOLF ROAD	<u>201513311</u>	15/05/2015	Fri	09:30	Van1 NDB on SH 3 hit Car/Wagon2 turning right onto AXROAD from the left	CAR/WAGON2, did not check/notice another party from other dirn, failed to give way at priority traffic control	Wet	Overcast	Heavy rain	Crossroads	Stop	0	0	1
SH 3		I	GOLF ROAD	<u>201031270</u>	10/03/2010	Wed	15:08	Other2 turning right hit by oncoming Van1 SDB on SH 3	OTHER2, didnt look/notice other party - visibility obstruc, failed to give way turning to non-turning traffic, overseas/migrant driver fail to adjust to nz roads	Dry	Bright sun	Fine	Crossroads	Stop	0	0	0
SH 3		I	GOLF ROAD	<u>201533807</u>	04/04/2015	Sat	13:00	Car/Wagon1 WDB on SH 3 hit rear end of Car/Wagon2 stop/slow for cross traffic	CAR/WAGON1, following too closely	Dry	Bright sun	Fine	Crossroads	Stop	0	0	0
SH 3		I	GOLF ROAD	<u>201632838</u>	28/01/2016	Thu	09:40	Car/Wagon2 turning right hit by oncoming Van1 SDB on SH 3	CAR/WAGON2, did not check/notice another party from other dirn, failed to give way turning to non-turning traffic	Dry	Bright sun	Fine	Crossroads	Stop	0	0	0

Crash Analysis System (CAS) | NZTA

<u>Crash road</u>	•	Distance	<u>Direction</u>	<u>Side</u> road	<u>ID</u>	Date	<u>Day of</u> <u>week</u>	<u>Time</u>	Description of events	Crash factors	<u>Surface</u> condition	<u>Natural</u> lig <u>ht</u>	<u>Weather</u>	Junction	<u>Control</u>	<u>Crash</u> count fatal	<u>Crash</u> <u>count</u> <u>severe</u>	<u>Crash</u> <u>count</u> <u>minor</u>
ST LEGER RD		70m	Ν	BRUCE ROAD	<u>201955814</u>	09/02/2019	Sat	19:57	Car/Wagon1 NDB on ST LEGER ROAD lost control; went off road to right, Car/Wagon1 hit cliffs	CAR/WAGON1, alcohol test below limit, lost control avoiding another party, swerved to avoid animal, ENV: loose material on seal	Dry	Bright sun	Fine	Nil (Default)	Unknown	0	0	0
ST LEGER ROAD		100m	Ν	BRILL ROAD	<u>201534949</u>	22/02/2015	Sun	00:05	Car/Wagon1 SDB on ST LEGER ROAD hit Car/Wagon2 headon on straight	CAR/WAGON1, headlights fail suddenly, inadequate/no headlights, too far left	Dry	Dark	Fine	Nil (Default)	Nil	0	0	0
ST LEGER ROAD		90m	S	BRUCE ROAD	<u>201204889</u>	16/11/2012	Fri	18:07	Motorcycle1 SDB on ST LEGER ROAD lost control while overtaking	MOTORCYCLE1, lost control - road conditions, ENV: loose material on seal	Dry	Bright sun	Fine	Nil (Default)	Unknown	0	1	0
ST LEGER ROAD		150m	S	BRUCE ROAD	<u>201001600</u>	05/02/2010	Fri	20:00	Car/Wagon1 SDB on ST LEGER ROAD lost control turning left, Car/Wagon1 hit cliffs	CAR/WAGON1, alcohol test above limit or test refused, attention diverted by passengers, lost control when turning	Dry	Bright sun	Fine	Nil (Default)	Nil	0	0	1

1-11 of 11

201533807 🔕 🔆

201740606 🔘 🛆

Saved sites

Walmsley Street

Crash year

2009 - 2019

Plain English report

1 results from your query.

1-1 of 1

<u>Crash road</u>	 <u>Distance</u> 	Direction	Side road	<u>ID</u>	<u>Date</u>	<u>Day of</u> week	<u>Time</u>	Description of events	Crash factors	<u>Surface</u> condition	<u>Natural</u> light	<u>Weather</u>	Junction	<u>Control</u>	<u>Crash</u> <u>count</u> <u>fatal</u>	<u>Crash</u> <u>count</u> <u>severe</u>	<u>Crash</u> <u>count</u> <u>minor</u>
BALLANCE ST		I	WALMSLEY ST	<u>201033074</u>	13/03/2010	Sat	03:55	Car/Wagon1 NDB on BALLANCE ST missed intersection or end of road, Car/Wagon1 hit houses	CAR/WAGON1, alcohol test above limit or test refused, other fatigue	Dry	Dark	Fine	T Junction	Give way	0	0	0

1-1 of 1

Document Set ID: 10411011 Version: 2, Version Date: 29/06/2020

Crash year

2009 - 2019

Saved sites

Whitmore Street

Plain English report

25 results from your query.

1-25 of 25

<u>Crash road</u>	• Distanc	e <u>Direction</u>	Side road	ID	<u>Date</u>	<u>Day of</u> week	Time	Description of events	Crash factors	Surface condition	<u>Natural</u> light	<u>Weather</u>	Junction	<u>Control</u>	<u>Crash</u> <u>count</u> fatal	<u>Crash</u> <u>count</u> <u>severe</u>	<u>Crash</u> <u>count</u> <u>minor</u>
ARAPUNI ROAD	160m	W	KIMBERLEY ROAD	<u>201742178</u>	19/06/2017	Mon	02:45	Car/Wagon1 EDB on Arapuni Rd lost control turning right, Car/Wagon1 hit fences, ditches	CAR/WAGON1, alcohol test below limit, other fatigue, other lost control	Dry	Dark	Fine	Nil (Default)	Unknown	0	0	0
ARAPUNI ROAD	170m	W	KIMBERLEY ROAD	<u>201810980</u>	31/01/2018	Wed	18:36	Van1 WDB on Arapuni road lost control turning right, Van1 hit trees	VAN1, alcohol test below limit, drugs suspected, fatigue due to lack of sleep, too far left	Dry	Bright sun	Fine	Nil (Default)	Unknown	0	0	1
ARAPUNI ROAD	320m	E	WHITMORE ST	<u>201043693</u>	26/11/2010	Fri	18:54	Car/Wagon1 WDB on ARAPUNI ROAD lost control turning right, Car/Wagon1 hit ditches	CAR/WAGON1, lost control under braking	Wet	Overcast	Heavy rain	Nil (Default)	Nil	0	0	0
CHURCH ST		I	WHITMORE ST	<u>201818251</u>	06/10/2018	Sat	09:00	Car/Wagon1 NDB on CHURCH STREET, KIHIKIHI, WAIPA hit Van2 crossing at right angle from right	VAN2, alcohol test below limit CAR/WAGON1, alcohol test below limit, failed to give way at priority traffic control, overseas/migrant driver fail to adjust to nz roads	Dry	Bright sun	Fine	Crossroads	Give way	0	0	3
MOULE ST		I	WHITMORE ST	<u>201239395</u>	06/10/2012	Sat		Car/Wagon1 EDB on MOULE ST lost control turning left, Car/Wagon1 hit parked vehicle, traffic sign	CAR/WAGON1, alcohol test above limit or test refused, lost control when turning, speed entering corner/curve	Wet	Overcast	Light rain	T Junction	Give way	0	0	0
ROLLESTON ST		I	WHITMORE ST	<u>201000109</u>	31/07/2010	Sat	19:02	Car/Wagon1 WDB on ROLLESTON ST hit Car/Wagon2 crossing at right angle from right, Car/Wagon1 hit fences	CAR/WAGON2, alcohol test above limit or test refused, failed to give way at priority traffic control, failed to notice control, speed approaching a traffic control	Dry	Dark	Fine	Crossroads	Give way	2	3	1
ROLLESTON ST		I	WHITMORE ST	<u>201614399</u>	25/05/2016	Wed	11:42	SUV1 WDB on ROLLESTON ST hit Car/Wagon2 crossing at right angle from right	CAR/WAGON2, failed to give way at priority traffic control, overseas/migrant driver fail to adjust to nz roads	Wet	Overcast	Light rain	Crossroads	Give way	0	0	1

Showing <u>20</u> 100 results at once.

<u>Crash road</u>	Distance	Direction	Side road	<u>ID</u>	<u>Date</u>	<u>Day of</u> week	<u>Time</u>	Description of events	Crash factors	<u>Surface</u> condition	<u>Natural</u> light	<u>Weather</u>	Junction	<u>Control</u>	<u>Crash</u> count fatal	<u>Crash</u> <u>count</u> severe	<u>Crash</u> count minor
WHITMORE ST	40m	W	CAREY ST	<u>201648246</u>	05/09/2016	Mon	17:10	parked Car/Wagon1 EDB on Whitmore street, kihikihi ran away, Car/Wagon1 hit poles	CAR/WAGON1, parking brake not fully applied	Wet	Overcast	Fine	Nil (Default)	Unknown	0	0	0
WHITMORE ST	50m	E	CAREY ST	<u>201734936</u>	31/01/2017	Tue	16:59	Car/Wagon1 EDB on Whitmore st sideswiped by Van2 EDB on Whitmore st turning left	CAR/WAGON1, misjudged intentions of another party	Dry	Bright sun	Fine	Driveway	Nil	0	0	0
WHITMORE ST		I	CHURCH ST	<u>2930474</u>	15/01/2009	Thu	15:53	Car/Wagon1 NDB on WHITMORE ST hit SUV2 crossing at right angle from right	CAR/WAGON1, didnt look/notice other party - visibility obstruc, failed to give way at priority traffic control, ENV: visibility limited by parked vehicle	Dry	Bright sun	Fine	Crossroads	Give way	0	0	0
WHITMORE ST		I	CHURCH ST	<u>201230037</u>	16/01/2012	Mon	14:20	Car/Wagon1 WDB on WHITMORE ST hit Motorcycle2 turning right onto AXROAD from the left	MOTORCYCLE2, did not check/notice another party from other dirn, failed to give way at priority traffic control, failed to notice control	Dry	Bright sun	Fine	Crossroads	Give way	0	0	0
WHITMORE ST		I	CHURCH ST	<u>201845827</u>	03/08/2018	Fri	18:00	Van1 EDB on WHITMORE STREET, KIHIKIHI, WAIPA hit Car/Wagon2 merging from the right	CAR/WAGON2, alcohol test below limit, did not check/notice another party from other dirn, failed to give way turning to non- turning traffic VAN1, alcohol test below limit	Dry	Dark	Fine	Crossroads	Give way	0	0	0
WHITMORE ST		I	CHURCH ST	<u>201437937</u>	17/06/2014	Tue	14:40	SUV1 EDB on WHITMORE ST hit Car/Wagon2 crossing at right angle from right	CAR/WAGON2, failed to give way at priority traffic control, other attention diverted, other inattentive	Dry	Overcast	Fine	Crossroads	Give way	0	0	0
WHITMORE ST		I	CHURCH ST	<u>201136569</u>	18/07/2011	Mon	09:00	Van1 EDB on WHITMORE ST hit Car/Wagon2 merging from the right	CAR/WAGON2, failed to give way at priority traffic control, ENV: dazzling sun	Dry	Bright sun	Fine	Crossroads	Give way	0	0	0
WHITMORE ST	50m	W	CHURCH ST	<u>201954029</u>	13/01/2019	Sun	17:15	Car/Wagon1 EDB on WHITMORE STREET, KIHIKIHI, WAIPA lost control; went off road to right, Car/Wagon1 hit fences	CAR/WAGON1, alcohol test below limit, other lost control	Wet	Overcast	Fine	Nil (Default)	Unknown	0	0	0
WHITMORE ST	90m	W	DICK ST	<u>201436016</u>	31/03/2014	Mon	09:47	Bus1 EDB on WHITMORE ST hit Truck2 U-turning from same direction of travel	TRUCK2, did not check/notice another party behind	Dry	Bright sun	Fine	Nil (Default)	Nil	0	0	0
WHITMORE ST	50m	S	OLIVER ST	<u>201638078</u>	14/05/2016	Sat	05:53	Car/Wagon1 SDB on WHITMORE ST lost control; went off road to left, Car/Wagon1 hit poles	CAR/WAGON1, fatigue due to lack of sleep	Wet	Dark	Light rain	Nil (Default)	Unknown	0	0	0
WHITMORE ST		I	OLIVER ST	<u>201744665</u>	28/04/2017	Fri	16:30	Car/Wagon2 turning right hit by oncoming Car/Wagon1 WDB on Arapuni rd, Car/Wagon1 hit traffic sign	CAR/WAGON2, attention diverted by cell phone, attention diverted by passengers, emotionally upset/road rage	Dry	Bright sun	Fine	Crossroads	Give way	0	0	0

5/20/2019

Crash Analysis System (CAS) | NZTA

<u>Crash road</u>	• <u>Distance</u>	Direction	Side road	<u>ID</u>	<u>Date</u>	<u>Day of</u> week	Time	Description of events	Crash factors	<u>Surface</u> condition	<u>Natural</u> <u>light</u>	<u>Weather</u>	Junction	<u>Control</u>	<u>Crash</u> <u>count</u> <u>fatal</u>	<u>Crash</u> <u>count</u> severe	<u>Crash</u> count minor
WHITMORE ST	150m	E	OLIVER ST	<u>201430721</u>	15/01/2014	Wed	18:00	Car/Wagon1 EDB on WHITMORE ST hit Car/Wagon2 headon on straight	CAR/WAGON1, too far right	Dry	Bright sun	Fine	Nil (Default)	Nil	0	0	0
WHITMORE ST		I	ROLLESTON ST	<u>201138254</u>	21/10/2011	Fri	19:10	Van1 WDB on WHITMORE ST hit Car/Wagon2 crossing at right angle from right	CAR/WAGON2, alcohol test above limit or test refused, did not check/notice another party from other dirn, failed to give way at priority traffic control	Dry	Twilight	Fine	Crossroads	Give way	0	0	0
WHITMORE ST		1	ROLLESTON ST	<u>201711676</u>	14/03/2017	Tue	14:13	Car/Wagon1 EDB on Whitmore hit Car/Wagon2 crossing at right angle from right	CAR/WAGON2, failed to give way at priority traffic control, overseas/migrant driver fail to adjust to nz roads	Dry	Bright sun	Fine	Crossroads	Give way	0	0	2
WHITMORE ST		I	ROLLESTON ST	<u>201742808</u>	17/04/2017	Mon	14:15	Van1 EDB on Whitmore street hit Car/Wagon2 turning right onto AXROAD from the left	CAR/WAGON2, did not check/notice another party from other dirn	Dry	Overcast	Fine	Crossroads	Give way	0	0	0
WHITMORE ST		I	ROLLESTON ST	<u>201818956</u>	14/10/2018	Sun	12:39	Van1 EDB on WHITMORE STREET, KIHIKIHI, WAIPA hit Car/Wagon2 crossing at right angle from right	VAN1, alcohol test below limit CAR/WAGON2, alcohol test below limit, did not check/notice another party from other dirn, failed to give way at priority traffic control CAR/WAGON3, alcohol test below limit	Dry	Bright sun	Fine	Crossroads	Give way	0	0	1
WHITMORE ST	15m	E	SH 3 LYON	<u>201304411</u>	07/09/2013	Sat	12:10	Van1 EDB on WHITMORE ST hit obstruction, Van1 hit stationary vehicle	VAN1, emotionally upset/road rage, intentional collision CAR/WAGON2, emotionally upset/road rage	Dry	Bright sun	Fine	Nil (Default)	Unknown	0	0	2
WHITMORE ST	10m	S	WHITAKER ST	201230962	12/04/2012	Thu	12:45	Car/Wagon1 WDB on WHITMORE ST lost control; went off road to right, Car/Wagon1 hit poles	CAR/WAGON1, sudden illness, ENV: heavy rain	Wet	Overcast	Heavy rain	Crossroads	Give way	0	0	0

1-25 of 25

Untitled query

Saved sites

Ballance Street

Crash year

2009 - 2019

Plain English report

6 results from your query.

1-6 of 6

<u>Crash road</u>	• <u>Distance</u>	Direction	Side road	<u>ID</u>	Date	<u>Day of</u> <u>week</u>	<u>Time</u>	Description of events	Crash factors	<u>Surface</u> condition	<u>Natural</u> light	Weather	Junction	<u>Control</u>	<u>Crash</u> count fatal	<u>Crash</u> <u>count</u> <u>severe</u>	<u>Crash</u> <u>count</u> <u>minor</u>
BALLANCE ST		I	LESLIE ST	<u>201545879</u>	18/09/2015	Fri	22:23	Car/Wagon1 EDB on BALLANCE ST lost control but did not leave the road, Car/Wagon1 hit fences	CAR/WAGON1, alcohol suspected, speed on straight	Dry	Dark	Fine	T Junction	Give way	0	0	0
BALLANCE ST		I	LESLIE ST	<u>201549561</u>	24/10/2015	Sat	03:00	Car/Wagon1 SDB on BALLANCE ST missed intersection or end of road, Car/Wagon1 hit fences	CAR/WAGON1, alcohol test above limit or test refused, lost control under braking, speed entering corner/curve, ENV: slippery road due to rain	Wet	Dark	Light rain	T Junction	Give way	0	0	0
BALLANCE ST		I	WALMSLEY ST	<u>201033074</u>	13/03/2010	Sat	03:55	Car/Wagon1 NDB on BALLANCE ST missed intersection or end of road, Car/Wagon1 hit houses	CAR/WAGON1, alcohol test above limit or test refused, other fatigue	Dry	Dark	Fine	T Junction	Give way	0	0	0
BALLANCE ST	100m	W	WALMSLEY ST	<u>201434249</u>	04/02/2014	Tue	22:43	parked Car/Wagon1 EDB on BALLANCE ST ran away, Car/Wagon1 hit houses	CAR/WAGON1, other attention diverted, parking brake not fully applied, ENV: entering or leaving private house / farm	Dry	Dark	Fine	Driveway	Unknown	0	0	0
SH 3		I	BALLANCE ST	<u>201744193</u>	05/07/2017	Wed	13:50	Van1 NDB on SH 3 hit rear of Van2 NDB on SH 3 turning right from centre line	VAN1, swerved to avoid pedestrian	Dry	Bright sun	Null	T Junction	Give way	0	0	0
SH 3		I	BALLANCE ST	<u>201530499</u>	26/01/2015	Mon	21:25	Car/Wagon1 NDB on SH 3 lost control turning left, Car/Wagon1 hit fences	CAR/WAGON1, speed entering corner/curve, wrong pedal/foot slipped	Dry	Dark	Fine	T Junction	Stop	0	0	0

1-6 of 6

Untitled query

Saved sites

Golf Road

Crash year

2009 - 2019

Plain English report

14 results from your query.

1-14 of 14

Crash road	<u>Distance</u>	Direction	<u>Side</u> road	<u>ID</u>	Date	<u>Day of</u> week	<u>Time</u>	Description of events	Crash factors	<u>Surface</u> condition	<u>Natural</u> light	Weather	Junction	<u>Control</u>	<u>Crash</u> <u>count</u> fatal	<u>Crash</u> <u>count</u> severe	<u>Crash</u> <u>count</u> minor
FLAT ROAD		I	GOLF ROAD	<u>201632898</u>	03/02/2016	Wed	21:51	Car/Wagon1 NDB on FLAT ROAD lost control; went off road to right, Car/Wagon1 hit fences, traffic islands	CAR/WAGON1, alcohol test above limit or test refused, other lost control, too far right	Dry	Dark	Fine	T Junction	Give way	0	0	0
FLAT ROAD		I	GOLF ROAD	<u>201337372</u>	27/08/2013	Tue	15:00	Van1 NDB on FLAT ROAD hit Car/Wagon2 reversing along road	CAR/WAGON2, did not check/notice another party behind	Dry	Overcast	Fine	T Junction	Give way	0	0	0
GOLF ROAD		I	FLAT ROAD	<u>201239836</u>	03/10/2012	Wed	17:30	Car/Wagon1 WDB on GOLF ROAD hit Car/Wagon2 turning right onto AXROAD from the left	CAR/WAGON2, did not check/notice another party from other dirn, failed to give way at priority traffic control	Dry	Bright sun	Fine	T Junction	Give way	0	0	0
GOLF ROAD		I	FLAT ROAD	<u>201830773</u>	05/01/2018	Fri	18:00	Car/Wagon1 EDB on Golf rd lost control turning right, Car/Wagon1 hit guide/guard rails	CAR/WAGON1, alcohol test below limit, lost control when turning, too far left, ENV: loose material on seal	Dry	Bright sun	Fine	T Junction	Give way	0	0	0
GOLF ROAD		I	FLAT ROAD	<u>201532214</u>	18/02/2015	Wed	06:32	Car/Wagon1 NDB on GOLF ROAD missed intersection or end of road, Car/Wagon1 hit fences, poles, traffic sign	CAR/WAGON1, failed to notice control, other lost control, speed on straight, ENV: fog or mist	Dry	Overcast	Mist or Fog	T Junction	Stop	0	0	0
GOLF ROAD		I	PARK ROAD	<u>201131478</u>	14/03/2011	Mon	22:40	SUV1 SDB on GOLF ROAD missed intersection or end of road, SUV1 hit fences, traffic sign, ditches, other	SUV1, lost control under braking, speed on straight	Dry	Dark	Fine	T Junction	Give way	0	0	0
GOLF ROAD		I	PARK ROAD	<u>201037280</u>	18/07/2010	Sun	03:45	SUV1 SDB on GOLF ROAD missed intersection or end of road	SUV1, alcohol test above limit or test refused	Dry	Dark	Fine	T Junction	Give way	0	0	0
GOLF ROAD	50m	W	PARK ROAD	<u>201043679</u>	13/12/2010	Mon	19:18	Car/Wagon1 WDB on GOLF ROAD lost control; went off road to right, Car/Wagon1 hit ditches	CAR/WAGON1, lost control - road conditions, ENV: loose material on seal	Dry	Overcast	Fine	Nil (Default)	Nil	0	0	0

<u>Crash road</u>	Distance	Direction	<u>Side</u> road	<u>ID</u>	Date	<u>Day of</u> week	<u>Time</u>	Description of events	Crash factors	Surface condition	<u>Natural</u> light	<u>Weather</u>	Junction	<u>Control</u>	<u>Crash</u> count fatal	<u>Crash</u> count severe	<u>Crash</u> count minor
GOLF ROAD	440m	W	PARK ROAD	<u>201744948</u>	20/07/2017	Thu	19:40	Car/Wagon1 EDB on Golf lost control; went off road to left, Car/Wagon1 hit ditches	CAR/WAGON1, alcohol test below limit, new driver/under instruction, too far left	Wet	Dark	Heavy rain	Nil (Default)	Unknown	0	0	0
GOLF ROAD		I	PARK ROAD	<u>2939631</u>	11/07/2009	Sat	19:10	Car/Wagon1 SDB on GOLF ROAD missed intersection or end of road, Car/Wagon1 hit fences	CAR/WAGON1, alcohol test above limit or test refused, failed to notice control	Wet	Dark	Fine	T Junction	Give way	0	0	0
GOLF ROAD	50m	W	PARK ROAD	<u>2937059</u>	01/06/2009	Mon	13:15	Car/Wagon1 WDB on GOLF ROAD hit SUV2 U-turning from same direction of travel, Car/Wagon1 hit fences	SUV2, did not check/notice another party behind	Dry	Bright sun	Fine	Nil (Default)	Unknown	0	0	0
GOLF ROAD		I	PARK ROAD	<u>201532828</u>	07/03/2015	Sat	20:39	Car/Wagon1 SDB on GOLF ROAD lost control turning left, Car/Wagon1 hit street furniture, ditches	CAR/WAGON1, lost control when turning, new driver/under instruction, wheelspins/wheelies/doughnuts/drifting	Wet	Dark	Heavy rain	T Junction	Give way	0	0	0
PARK ROAD		I	GOLF ROAD	<u>201102984</u>	06/06/2011	Mon	21:54	Car/Wagon1 SDB on PARK ROAD missed intersection or end of road, Car/Wagon1 hit fences, traffic islands, traffic sign, trees	CAR/WAGON1, attention diverted by cell phone, failed to notice control, worn tread on tyre, ENV: fog or mist	Wet	Dark	Mist or Fog	T Junction	Give way	0	0	1
PARK ROAD		I	GOLF ROAD	<u>201553434</u>	24/12/2015	Thu	11:13	Car/Wagon1 SDB on PARK ROAD lost control turning right	CAR/WAGON1, load interferes with driver, towed vehicle or trailer too heavy or incompatible	Dry	Overcast	Fine	T Junction	Give way	0	0	0

1-14 of 14

Document Set ID: 10411011 Version: 2, Version Date: 29/06/2020

Untitled query

Saved sites

Haultain Street

Crash year

2009 - 2019

Plain English report

1 results from your query.

1-1 of 1

Crash road	 <u>Distance</u> 	<u>Direction</u>	<u>Side road</u>	<u>ID</u>	<u>Date</u>	<u>Day of</u> week	<u>Time</u>	Description of events	Crash factors	<u>Surface</u> condition	<u>Natural</u> light	<u>Weather</u>	Junction	<u>Control</u>	<u>Crash</u> <u>count</u> <u>fatal</u>	<u>Crash</u> <u>count</u> severe	<u>Crash</u> <u>count</u> <u>minor</u>
HAULTAIN ST		I	MCANDREW ST	<u>2939637</u>	30/07/2009	Thu	19:00	Car/Wagon1 WDB on HAULTAIN ST lost control turning right, Car/Wagon1 hit fences	CAR/WAGON1, lost control when turning, new driver/under instruction, speed entering corner/curve	Wet	Twilight	Mist or Fog	T Junction	Nil	0	0	0

1-1 of 1

Document Set ID: 10411011 Version: 2, Version Date: 29/06/2020

Untitled query

Saved sites

Herbert Street

Crash year

2009 - 2019

Plain English report

12 results from your query.

1-12 of 12

<u>Crash road</u>	Distance	Direction	Side road	<u>ID</u>	Date	<u>Day of</u> week	<u>Time</u>	Description of events	Crash factors	<u>Surface</u> condition	<u>Natural</u> light	<u>Weather</u>	Junction	<u>Control</u>	<u>Crash</u> <u>count</u> <u>fatal</u>	<u>Crash</u> <u>count</u> severe	<u>Crash</u> count minor
FLAT ROAD		I	HERBERT ST	<u>2931944</u>	14/03/2009	Sat	18:10	Truck1 NDB on FLAT ROAD hit Car/Wagon2 crossing at right angle from right	TRUCK1, did not check/notice another party from other dirn, failed to give way at priority traffic control	Dry	Overcast	Fine	Crossroads	Stop	0	0	0
FLAT ROAD		I	HERBERT ST	<u>201105664</u>	23/12/2011	Fri	12:27	Car/Wagon1 SDB on FLAT ROAD hit Car/Wagon2 crossing at right angle from right	CAR/WAGON2, did not check/notice another party from other dirn, failed to give way at priority traffic control	Dry	Bright sun	Fine	Crossroads	Stop	0	0	1
FLAT ROAD		I	HERBERT ST	<u>201716681</u>	24/07/2017	Mon	12:56	Car/Wagon1 EDB on Rolleston road hit Car/Wagon2 crossing at right angle from right	CAR/WAGON1, did not check/notice another party from other dirn, failed to give way at priority traffic control	Dry	Bright sun	Fine	Crossroads	Stop	0	0	1
HERBERT ST	140m	W	ATKINSON ST	<u>201642355</u>	22/06/2016	Wed	17:45	Car/Wagon1 EDB on HERBERT ST lost control; went off road to right, Car/Wagon1 hit poles	CAR/WAGON1, other lost control, other vehicle controls	Wet	Dark	Fine	Nil (Default)	Unknown	0	0	0
HERBERT ST		I	FLAT ROAD	<u>201130800</u>	03/02/2011	Thu	07:55	Car/Wagon1 SDB on HERBERT ST hit Car/Wagon2 crossing at right angle from right , Car/Wagon2 hit stationary vehicle	CAR/WAGON1, did not check/notice another party from other dirn, failed to give way at priority traffic control	Dry	Overcast	Fine	Crossroads	Stop	0	0	0
HERBERT ST		I	ROLLESTON ST	<u>201231073</u>	26/04/2012	Thu	15:50	Car/Wagon1 NDB on HERBERT ST hit Car/Wagon2 crossing at right angle from right	CAR/WAGON2, did not check/notice another party from other dirn, failed to give way at priority traffic control	Dry	Bright sun	Fine	Crossroads	Stop	0	0	0
HERBERT ST	120m	W	SH 3	<u>201231097</u>	03/04/2012	Tue	01:36	Car/Wagon1 EDB on HERBERT ST hit Car/Wagon2 manoeuvring, Car/Wagon1 hit stationary vehicle	CAR/WAGON1, evading enforcement, intentional collision	Dry	Dark	Fine	Nil (Default)	Unknown	0	0	0

Crash Analysis System (CAS) | NZTA

<u>Crash road</u>	• <u>Distance</u>	Direction	Side road	ID	Date	<u>Day of</u> week	Time	Description of events	Crash factors	<u>Surface</u> condition	<u>Natural</u> <u>light</u>	<u>Weather</u>	Junction	<u>Control</u>	<u>Crash</u> <u>count</u> <u>fatal</u>	<u>Crash</u> <u>count</u> severe	<u>Crash</u> <u>count</u> <u>minor</u>
HERBERT ST	25m	W	WHITAKER ST	<u>2935123</u>	14/05/2009	Thu	19:30	Car/Wagon1 WDB on HERBERT ST lost control; went off road to right, Car/Wagon1 hit fences	CAR/WAGON1, alcohol test above limit or test refused	Wet	Dark	Light rain	Nil (Default)	Nil	0	0	0
HERBERT ST	70m	E	WHITAKER ST	<u>201651706</u>	04/11/2016	Fri	12:55	Car/Wagon1 WDB on Herbert Road hit parked veh, Car/Wagon1 hit parked vehicle	CAR/WAGON1, too far left, wrong pedal/foot slipped	Dry	Bright sun	Fine	Nil (Default)	Unknown	0	0	0
ROLLESTON ST		Ι	HERBERT ST	<u>201039625</u>	01/09/2010	Wed	17:00	SUV1 WDB on ROLLESTON ST hit Car/Wagon2 crossing at right angle from right	CAR/WAGON2, attention diverted by passengers, failed to give way at priority traffic control, other visibility limited, ENV: other visibility limited	Dry	Bright sun	Fine	Crossroads	Stop	0	0	0
ROLLESTON ST		I	HERBERT ST	<u>201234403</u>	12/07/2012	Thu	08:00	Car/Wagon1 NDB on ROLLESTON ST hit Car/Wagon2 crossing at right angle from right	CAR/WAGON2, did not check/notice another party from other dirn, failed to give way at priority traffic control	Dry	Overcast	Fine	Crossroads	Stop	0	0	0
ROLLESTON ST		I	HERBERT ST	<u>201718709</u>	21/10/2017	Sat	07:32	Car/Wagon1 EDB on Herbert street, kihikihi hit Car/Wagon2 crossing at right angle from right	CAR/WAGON1, did not stop at stop sign, failed to give way at priority traffic control, speed entering corner/curve	Dry	Twilight	Fine	Crossroads	Stop	0	0	1

1-12 of 12

Appendix B: T6 Modelling Reports

Modelling outputs for the following intersections included:

- State Highway 3 / Golf Road / St Leger Road
- State Highway 3 / Herbert Street / Leslie Street / Nixon Street
- State Highway 3 / Whitmore Street / Church Street / Ballance Street
- State Highway 3 / McAndrew Street

Lane Level of Service for Network Sites

Network: N101 [2018_Existing_AM]

New Network Network Category: (None)

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F
Delay model	settings are s	pecified for in	dividual Sites	forming the N	Vetwork.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN & TAYLOR | Processed: Tuesday, 4 June 2019 10:17:24 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int & Leslie SH3 Int.sip8

會會 Network: N101 [2018_Existing_AM]

New Network Network Category: (None)

Network Performance - Hourly Values Performance Measure Vehicles Per Unit Distance Persons Network Level of Service (LOS) LOS B Travel Time Index 8.67 Speed Efficiency 0.88 Congestion Coefficient 1.14 Travel Speed (Average) 52.8 km/h 52.8 km/h Travel Distance (Total) 1330.2 veh-km/h 1596.3 pers-km/h 25.2 veh-h/h Travel Time (Total) 30.2 pers-h/h Desired Speed 60.0 km/h Demand Flows (Total for all Sites) 2452 veh/h 2942 pers/h Arrival Flows (Total for all Sites) 2452 veh/h 2942 pers/h Demand Flows (Entry Total) 1259 veh/h Midblock Inflows (Total) 7 veh/h Midblock Outflows (Total) -1 veh/h Percent Heavy Vehicles (Demand) 10.2 % Percent Heavy Vehicles (Arrival) 10.2 % Degree of Saturation 0.433 Control Delay (Total) 0.66 veh-h/h 0.80 pers-h/h Control Delay (Average) 1.0 sec 1.0 sec Control Delay (Worst Lane) 32.2 sec Control Delay (Worst Movement) 46.1 sec 46.1 sec 0.4 sec Geometric Delay (Average) Stop-Line Delay (Average) 0.6 sec Queue Storage Ratio (Worst Lane) 0.00 **Total Effective Stops** 146 veh/h 175 pers/h Effective Stop Rate 0.06 0.11 per km 0.06 **Proportion Queued** 0.04 0.04 29.0 Performance Index 29.0 628.37 \$/h 0.47 \$/km 628.37 \$/h Cost (Total) Fuel Consumption (Total) 115.6 L/h 86.9 mL/km Fuel Economy 8.7 L/100km Carbon Dioxide (Total) 278.8 kg/h 209.6 g/km Hydrocarbons (Total) 0.015 g/km 0.019 kg/h Carbon Monoxide (Total) 0.262 kg/h 0.197 g/km 0.724 kg/h NOx (Total) 0.545 g/km

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% 0.0% Network Level of Service (LOS) Method: SIDRA Speed Efficiency.

Software Setup used: Standard Left.

Network Performance - Annual Values											
Performance Measure	Vehicles	Persons									
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,176,758 veh/y 319 veh-h/y 69,844 veh/y 638,505 veh-km/y 12,091 veh-h/y	1,412,110 pers/y 383 pers-h/y 83,813 pers/y 766,206 pers-km/y 14,509 pers-h/y									
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide NOx	301,617 \$/y 55,503 L/y 133,811 kg/y 9 kg/y 126 kg/y 348 kg/y	301,617 \$/y									

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Tuesday, 4 June 2019 10:17:24 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int & Leslie SH3 Int.sip8

Lane Level of Service for Network Sites

New Network Network Category: (None)

LOS B LOS C LOS D LOS F LOS A LOS E Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Tuesday, 4 June 2019 10:17:27 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int & Leslie SH3 Int.sip8

₱₱ Network: N101 [2018_Existing_PM]

New Network Network Category: (None)

Network Performance - Hourly Values Performance Measure Vehicles Per Unit Distance Persons Network Level of Service (LOS) LOS B Travel Time Index 8.47 Speed Efficiency 0.86 Congestion Coefficient 1.16 Travel Speed (Average) 51.8 km/h 51.8 km/h Travel Distance (Total) 1350.9 veh-km/h 1621.1 pers-km/h Travel Time (Total) 26.1 veh-h/h 31.3 pers-h/h Desired Speed 60.0 km/h Demand Flows (Total for all Sites) 2445 veh/h 2934 pers/h Arrival Flows (Total for all Sites) 2445 veh/h 2934 pers/h Demand Flows (Entry Total) 1284 veh/h Midblock Inflows (Total) 1 veh/h Midblock Outflows (Total) -2 veh/h Percent Heavy Vehicles (Demand) 10.3 % Percent Heavy Vehicles (Arrival) 10.3 % Degree of Saturation 0.561 Control Delay (Total) 1.18 veh-h/h 1.42 pers-h/h Control Delay (Average) 1.7 sec 1.7 sec Control Delay (Worst Lane) 46.8 sec Control Delay (Worst Movement) 51.6 sec 51.6 sec Geometric Delay (Average) 0.3 sec Stop-Line Delay (Average) 1.4 sec Queue Storage Ratio (Worst Lane) 0.01 **Total Effective Stops** 140 veh/h 168 pers/h Effective Stop Rate 0.06 0.10 per km 0.06 **Proportion Queued** 0.04 0.04 32.5 Performance Index 32.5 685.94 \$/h 685.94 \$/h Cost (Total) 0.51 \$/km Fuel Consumption (Total) 118.8 L/h 88.0 mL/km Fuel Economy 8.8 L/100km Carbon Dioxide (Total) 286.3 kg/h 211.9 g/km Hydrocarbons (Total) 0.015 g/km 0.020 kg/h Carbon Monoxide (Total) 0.270 kg/h 0.200 g/km 0.548 g/km 0.740 kg/h NOx (Total)

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% 0.0% Network Level of Service (LOS) Method: SIDRA Speed Efficiency.

Software Setup used: Standard Left.

Network Performance - Annual Values											
Performance Measure	Vehicles	Persons									
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,173,726 veh/y 568 veh-h/y 67,213 veh/y 648,445 veh-km/y 12,528 veh-h/y	1,408,472 pers/y 682 pers-h/y 80,655 pers/y 778,134 pers-km/y 15,034 pers-h/y									
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide NOx	329,252 \$/y 57,032 L/y 137,430 kg/y 10 kg/y 130 kg/y 355 kg/y	329,252 \$/y									

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Tuesday, 4 June 2019 10:17:27 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int & Leslie SH3 Int.sip8

Lane Level of Service for Network Sites

Network: N101 [2018_Low Dev_AM]

New Network Network Category: (None)

LOS B LOS A LOS C LOS D LOS F LOS E Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Tuesday, 4 June 2019 10:17:29 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int & Leslie SH3 Int.sip8

Network: N101 [2018_Low Dev_AM]

New Network

Network Category: (None)

Network Performance - Hourly Va	lues		
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Travel Time Index Speed Efficiency Congestion Coefficient	LOS B 8.65 0.88 1.14		
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed	52.7 km/h 1370.0 veh-km/h 26.0 veh-h/h 60.0 km/h		52.7 km/h 1644.0 pers-km/h 31.2 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	2525 veh/h 2525 veh/h 1289 veh/h 20 veh/h 0 veh/h 10.2 % 10.2 % 0.441		3030 pers/h 3030 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	0.74 veh-h/h 1.0 sec 34.4 sec 49.8 sec 0.4 sec 0.7 sec		0.88 pers-h/h 1.0 sec 49.8 sec
Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.00 158 veh/h 0.06 0.04 30.1	0.12 per km	190 pers/h 0.06 0.04 30.1
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	647.16 \$/h 119.2 L/h 8.7 L/100km 287.3 kg/h 0.020 kg/h 0.270 kg/h 0.745 kg/h	0.47 \$/km 87.0 mL/km 209.7 g/km 0.015 g/km 0.197 g/km 0.543 g/km	647.16 \$/h

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% 0.0% Network Level of Service (LOS) Method: SIDRA Speed Efficiency.

Software Setup used: Standard Left.

Network Performance - Annual Values												
Performance Measure	Vehicles	Persons										
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,212,126 veh/y 353 veh-h/y 75,808 veh/y 657,587 veh-km/y 12,473 veh-h/y	1,454,552 pers/y 424 pers-h/y 90,969 pers/y 789,105 pers-km/y 14,968 pers-h/y										
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide NOx	310,636 \$/y 57,197 L/y 137,897 kg/y 10 kg/y 130 kg/y 357 kg/y	310,636 \$/y										

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Tuesday, 4 June 2019 10:17:29 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int & Leslie SH3 Int.sip8

Lane Level of Service for Network Sites

章章 Network: N101 [2018_Low Dev_PM]

New Network Network Category: (None)

LOS A LOS C LOS D LOS F LOS E Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Tuesday, 4 June 2019 10:17:31 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int & Leslie SH3 Int.sip8

New Network Network Category: (None)

Network Performance - Hourly Values Performance Measure Vehicles Per Unit Distance Persons Network Level of Service (LOS) LOS B Travel Time Index 8.36 Speed Efficiency 0.85 Congestion Coefficient 1.17 Travel Speed (Average) 51.2 km/h 51.2 km/h Travel Distance (Total) 1393.7 veh-km/h 1672.4 pers-km/h 27.2 veh-h/h Travel Time (Total) 32.7 pers-h/h Desired Speed 60.0 km/h Demand Flows (Total for all Sites) 2520 veh/h 3024 pers/h Arrival Flows (Total for all Sites) 2520 veh/h 3024 pers/h Demand Flows (Entry Total) 1322 veh/h Midblock Inflows (Total) 7 veh/h Midblock Outflows (Total) -2 veh/h Percent Heavy Vehicles (Demand) 10.3 % Percent Heavy Vehicles (Arrival) 10.3 % Degree of Saturation 0.661 Control Delay (Total) 1.53 veh-h/h 1.84 pers-h/h Control Delay (Average) 2.2 sec 2.2 sec Control Delay (Worst Lane) 56.4 sec Control Delay (Worst Movement) 62.7 sec 62.7 sec 0.4 sec Geometric Delay (Average) Stop-Line Delay (Average) 1.8 sec Queue Storage Ratio (Worst Lane) 0.02 **Total Effective Stops** 158 veh/h 189 pers/h Effective Stop Rate 0.06 0.11 per km 0.06 **Proportion Queued** 0.04 0.04 35.2 35.2 Performance Index 717.83 \$/h 0.52 \$/km 717.83 \$/h Cost (Total) Fuel Consumption (Total) 122.9 L/h 88.2 mL/km Fuel Economy 8.8 L/100km Carbon Dioxide (Total) 296.2 kg/h 212.5 g/km Hydrocarbons (Total) 0.021 kg/h 0.015 g/km Carbon Monoxide (Total) 0.279 kg/h 0.200 g/km

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% 0.0% Network Level of Service (LOS) Method: SIDRA Speed Efficiency.

0.761 kg/h

0.546 g/km

Software Setup used: Standard Left.

NOx (Total)

Network Performance - Annual Values			
Performance Measure	Vehicles	Persons	
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,209,600 veh/y 734 veh-h/y 75,636 veh/y 668,970 veh-km/y 13,078 veh-h/y	1,451,520 pers/y 881 pers-h/y 90,763 pers/y 802,764 pers-km/y 15,693 pers-h/y	
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide NOx	344,559 \$/y 59,006 L/y 142,170 kg/y 10 kg/y 134 kg/y 365 kg/y	344,559 \$/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Tuesday, 4 June 2019 10:17:31 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int & Leslie SH3 Int.sip8

Lane Level of Service for Network Sites

Network: N101 [2018_Hi Dev_AM]

New Network Network Category: (None)

LOS B LOS A LOS C LOS D LOS F LOS E Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Tuesday, 4 June 2019 10:17:33 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int & Leslie SH3 Int.sip8

Network: N101 [2018_Hi Dev_AM]

New Network

Network Category: (None)

Network Performance - Hourly Va	lues		
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Travel Time Index Speed Efficiency Congestion Coefficient	LOS B 8.61 0.88 1.14		
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed	52.5 km/h 1390.1 veh-km/h 26.5 veh-h/h 60.0 km/h		52.5 km/h 1668.1 pers-km/h 31.8 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	2562 veh/h 2562 veh/h 1307 veh/h 24 veh/h -2 veh/h 10.1 % 10.1 % 0.447		3075 pers/h 3075 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	0.81 veh-h/h 1.1 sec 38.9 sec 55.2 sec 0.4 sec 0.8 sec		0.98 pers-h/h 1.1 sec 55.2 sec
Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.01 167 veh/h 0.07 0.05 31.0	0.12 per km	200 pers/h 0.07 0.05 31.0
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	659.12 \$/h 121.0 L/h 8.7 L/100km 291.6 kg/h 0.020 kg/h 0.274 kg/h 0.754 kg/h	0.47 \$/km 87.0 mL/km 209.8 g/km 0.015 g/km 0.197 g/km 0.542 g/km	659.12 \$/h

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% 0.0%

Network Level of Service (LOS) Method: SIDRA Speed Efficiency. Software Setup used: Standard Left.

Network Performance - Annual Values			
Performance Measure	Vehicles	Persons	
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,229,811 veh/y 391 veh-h/y 80,086 veh/y 667,257 veh-km/y 12,708 veh-h/y	1,475,773 pers/y 469 pers-h/y 96,104 pers/y 800,708 pers-km/y 15,250 pers-h/y	
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide NOx	316,376 \$/y 58,060 L/y 139,976 kg/y 10 kg/y 131 kg/y 362 kg/y	316,376 \$/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Tuesday, 4 June 2019 10:17:33 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int & Leslie SH3 Int.sip8

Lane Level of Service for Network Sites

Network: N101 [2018_Hi Dev_PM]

New Network Network Category: (None)

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Tuesday, 4 June 2019 10:17:36 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int & Leslie SH3 Int.sip8

New Network

Network Category: (None)

Network Performance - Hourly Values			
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Travel Time Index Speed Efficiency Congestion Coefficient	LOS B 8.30 0.85 1.18		
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed	50.8 km/h 1422.1 veh-km/h 28.0 veh-h/h 60.0 km/h		50.8 km/h 1706.5 pers-km/h 33.6 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	2573 veh/h 2573 veh/h 1348 veh/h 9 veh/h -3 veh/h 10.3 % 10.3 % 0.711		3087 pers/h 3087 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	1.75 veh-h/h 2.5 sec 65.4 sec 72.3 sec 0.4 sec 2.1 sec		2.10 pers-h/h 2.5 sec 72.3 sec
Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.02 163 veh/h 0.06 0.04 36.7	0.11 per km	196 pers/h 0.06 0.04 36.7
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	738.53 \$/h 125.6 L/h 8.8 L/100km 302.7 kg/h 0.021 kg/h 0.285 kg/h 0.777 kg/h	0.52 \$/km 88.4 mL/km 212.9 g/km 0.015 g/km 0.200 g/km 0.546 g/km	738.53 \$/h

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% 0.0% Network Level of Service (LOS) Method: SIDRA Speed Efficiency.

Software Setup used: Standard Left.

Network Performance - Annual Values			
Performance Measure	Vehicles	Persons	
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,234,863 veh/y 840 veh-h/y 78,208 veh/y 682,611 veh-km/y 13,437 veh-h/y	1,481,836 pers/y 1,008 pers-h/y 93,850 pers/y 819,134 pers-km/y 16,124 pers-h/y	
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide NOx	354,496 \$/y 60,310 L/y 145,311 kg/y 10 kg/y 137 kg/y 373 kg/y	354,496 \$/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Tuesday, 4 June 2019 10:17:36 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int & Leslie SH3 Int.sip8

Lane Level of Service for Network Sites

Network: N101 [2035_No Dev_AM]

New Network Network Category: (None)

LOS B LOS A LOS C LOS D LOS F LOS E Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Tuesday, 4 June 2019 10:17:38 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int & Leslie SH3 Int.sip8

Network: N101 [2035_No Dev_AM]

New Network Network Category: (None)

Network Performance - Hourly Values Performance Measure Vehicles Per Unit Distance Persons Network Level of Service (LOS) LOS C Travel Time Index 7.70 Speed Efficiency 0.79 Congestion Coefficient 1.26 Travel Speed (Average) 47.6 km/h 47.6 km/h Travel Distance (Total) 1792.2 veh-km/h 2150.7 pers-km/h Travel Time (Total) 37.7 veh-h/h 45.2 pers-h/h Desired Speed 60.0 km/h Demand Flows (Total for all Sites) 3304 veh/h 3965 pers/h Arrival Flows (Total for all Sites) 3304 veh/h . 3965 pers/h Demand Flows (Entry Total) 1684 veh/h Midblock Inflows (Total) 31 veh/h Midblock Outflows (Total) -1 veh/h Percent Heavy Vehicles (Demand) 10.2 % Percent Heavy Vehicles (Arrival) 10.2 % Degree of Saturation 1.052 Control Delay (Total) 4.57 veh-h/h 5.48 pers-h/h Control Delay (Average) 5.0 sec 5.0 sec Control Delay (Worst Lane) 301.0 sec Control Delay (Worst Movement) 318.4 sec 318.4 sec Geometric Delay (Average) 0.3 sec Stop-Line Delay (Average) 4.6 sec Queue Storage Ratio (Worst Lane) 0.04 **Total Effective Stops** 231 veh/h 277 pers/h Effective Stop Rate 0.13 per km 0.07 0.07 **Proportion Queued** 0.05 0.05 Performance Index 56.7 56.7 970.62 \$/h 0.54 \$/km 970.62 \$/h Cost (Total) Fuel Consumption (Total) 160.4 L/h 89.5 mL/km Fuel Economy 9.0 L/100km Carbon Dioxide (Total) 386.6 kg/h 215.7 g/km Hydrocarbons (Total) 0.028 kg/h 0.015 g/km Carbon Monoxide (Total) 0.360 kg/h 0.201 g/km 0.982 kg/h 0.548 g/km NOx (Total)

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% 0.0% Network Level of Service (LOS) Method: SIDRA Speed Efficiency.

Software Setup used: Standard Left.

Network Performance - Annual Values				
Performance Measure	Vehicles	Persons		
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,586,021 veh/y 2,194 veh-h/y 110,813 veh/y 860,279 veh-km/y 18,078 veh-h/y	1,903,225 pers/y 2,633 pers-h/y 132,975 pers/y 1,032,335 pers-km/y 21,693 pers-h/y		
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide NOx	465,897 \$/y 77,014 L/y 185,571 kg/y 13 kg/y 173 kg/y 471 kg/y	465,897 \$/y		

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Tuesday, 4 June 2019 10:17:38 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int & Leslie SH3 Int.sip8

Lane Level of Service for Network Sites

Network: N101 [2035_No Dev_PM]

New Network Network Category: (None)

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Tuesday, 4 June 2019 10:17:40 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int & Leslie SH3 Int.sip8

New Network Network Category: (None)

Network Performance - Hourly Values Performance Measure Vehicles Per Unit Distance Persons LOS E Network Level of Service (LOS) Travel Time Index 272 Speed Efficiency 0.35 Congestion Coefficient 2.90 Travel Speed (Average) 20.7 km/h 20.7 km/h Travel Distance (Total) 1818.7 veh-km/h 2182.5 pers-km/h 87.8 veh-h/h Travel Time (Total) 105.4 pers-h/h Desired Speed 60.0 km/h Demand Flows (Total for all Sites) 3297 veh/h 3956 pers/h Arrival Flows (Total for all Sites) 3287 veh/h . 3944 pers/h Demand Flows (Entry Total) 1722 veh/h Midblock Inflows (Total) 20 veh/h Midblock Outflows (Total) 0 veh/h Percent Heavy Vehicles (Demand) 10.3 % Percent Heavy Vehicles (Arrival) 10.3 % Degree of Saturation 2.862 Control Delay (Total) 52.40 veh-h/h 62.88 pers-h/h Control Delay (Average) 57.4 sec 57.4 sec Control Delay (Worst Lane) 1760.3 sec Control Delay (Worst Movement) 1765.9 sec 1765.9 sec Geometric Delay (Average) 0.3 sec Stop-Line Delay (Average) 57.1 sec Queue Storage Ratio (Worst Lane) 0.29 **Total Effective Stops** 369 veh/h 443 pers/h

Effective Stop Rate	0.11	0.20 per km	0.11	
Proportion Queued	0.04		0.04	
Performance Index	212.8		212.8	
Cost (Total)	2718.08 \$/h	1.49 \$/km	2718.08 \$/h	
Fuel Consumption (Total)	224.3 L/h	123.3 mL/km		
Fuel Economy	12.3 L/100km			
Carbon Dioxide (Total)	536.8 kg/h	295.1 g/km		
Hydrocarbons (Total)	0.046 kg/h	0.026 g/km		
Carbon Monoxide (Total)	0.461 kg/h	0.253 g/km		
NOx (Total)	1.039 kg/h	0.572 g/km		

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% 0.0% Network Level of Service (LOS) Method: SIDRA Speed Efficiency.

Software Setup used: Standard Left.

Network Performance - Annual Values				
Performance Measure	Vehicles	Persons		
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,582,484 veh/y 25,152 veh-h/y 177,350 veh/y 872,996 veh-km/y 42,163 veh-h/y	1,898,981 pers/y 30,182 pers-h/y 212,820 pers/y 1,047,596 pers-km/y 50,595 pers-h/y		
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide NOx	1,304,680 \$/y 107,643 L/y 257,663 kg/y 22 kg/y 221 kg/y 499 kg/y	1,304,680 \$/y		

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Tuesday, 4 June 2019 10:17:40 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int & Leslie SH3 Int.sip8

Lane Level of Service for Network Sites

Network: N101 [2035_Low Dev_AM]

New Network Network Category: (None)

LOS B LOS C LOS A LOS D LOS E LOS F Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Tuesday, 4 June 2019 10:17:42 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int & Leslie SH3 Int.sip8

Network: N101 [2035_Low Dev_AM]

New Network Network Category: (None)

Network Performance - Hourly V	alues		
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Travel Time Index Speed Efficiency Congestion Coefficient	LOS C 7.39 0.76 1.31		
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed	45.9 km/h 1806.5 veh-km/h 39.4 veh-h/h 60.0 km/h		45.9 km/h 2167.8 pers-km/h 47.2 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	3331 veh/h 3329 veh/h 1708 veh/h 12 veh/h -3 veh/h 10.2 % 10.2 % 1.179		3997 pers/h 3995 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	5.84 veh-h/h 6.3 sec 392.5 sec 409.7 sec 0.4 sec 5.9 sec		7.00 pers-h/h 6.3 sec 409.7 sec
Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.05 251 veh/h 0.08 0.05 64.7	0.14 per km	301 pers/h 0.08 0.05 64.7
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	1028.07 \$/h 163.3 L/h 9.0 L/100km 393.4 kg/h 0.028 kg/h 0.365 kg/h 0.988 kg/h	0.57 \$/km 90.4 mL/km 217.7 g/km 0.016 g/km 0.202 g/km 0.547 g/km	1028.07 \$/h

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% 0.0% Network Level of Service (LOS) Method: SIDRA Speed Efficiency.

Software Setup used: Standard Left.

Network Performance - Annual Values					
Performance Measure	Vehicles	Persons			
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,598,653 veh/y 2,802 veh-h/y 120,599 veh/y 867,138 veh-km/y 18,894 veh-h/y	1,918,383 pers/y 3,362 pers-h/y 144,718 pers/y 1,040,566 pers-km/y 22,672 pers-h/y			
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide NOx	493,474 \$/y 78,386 L/y 188,808 kg/y 14 kg/y 175 kg/y 474 kg/y	493,474 \$/y			

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Tuesday, 4 June 2019 10:17:42 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int & Leslie SH3 Int.sip8

Lane Level of Service for Network Sites

韓韓 Network: N101 [2035_Low Dev_PM]

New Network Network Category: (None)

LOS B LOS A LOS C LOS D LOS F LOS E Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Tuesday, 4 June 2019 10:17:45 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int & Leslie SH3 Int.sip8

₽ Network: N101 [2035_Low Dev_PM]

New Network

Network Category: (None)

Network Performance - Hourly Va	lues		
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Travel Time Index Speed Efficiency Congestion Coefficient	LOS F 2.16 0.29 3.40		
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed	17.6 km/h 1857.0 veh-km/h 105.3 veh-h/h 60.0 km/h		17.6 km/h 2228.5 pers-km/h 126.3 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	3368 veh/h 3357 veh/h 1765 veh/h 11 veh/h -3 veh/h 10.3 % 10.3 % 3.464		4042 pers/h 4029 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	68.54 veh-h/h 73.5 sec 2305.2 sec 2310.6 sec 0.3 sec 73.2 sec		82.24 pers-h/h 73.5 sec 2310.6 sec
Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.32 357 veh/h 0.11 0.04 242.8	0.19 per km	429 pers/h 0.11 0.04 242.8
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	3306.27 \$/h 247.7 L/h 13.3 L/100km 592.2 kg/h 0.053 kg/h 0.499 kg/h 1.073 kg/h	1.78 \$/km 133.4 mL/km 318.9 g/km 0.029 g/km 0.269 g/km 0.578 g/km	3306.27 \$/h

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% 0.0% Network Level of Service (LOS) Method: SIDRA Speed Efficiency.

Software Setup used: Standard Left.

Network Performance - Annual Values					
Performance Measure	Vehicles	Persons			
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,616,842 veh/y 32,898 veh-h/y 171,544 veh/y 891,380 veh-km/y 50,526 veh-h/y	1,940,211 pers/y 39,478 pers-h/y 205,852 pers/y 1,069,656 pers-km/y 60,631 pers-h/y			
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide NOx	1,587,009 \$/y 118,901 L/y 284,235 kg/y 25 kg/y 239 kg/y 515 kg/y	1,587,009 \$/y			

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Tuesday, 4 June 2019 10:17:45 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int & Leslie SH3 Int.sip8

Lane Level of Service for Network Sites

Network: N101 [2035_Hi Dev_AM]

New Network Network Category: (None)

LOS B LOS A LOS C LOS D LOS F LOS E Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Tuesday, 4 June 2019 10:17:47 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int & Leslie SH3 Int.sip8

Network: N101 [2035_Hi Dev_AM]

New Network

Network Category: (None)

Network Performance - Hourly Va	lues		
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Travel Time Index Speed Efficiency Congestion Coefficient	LOS C 7.02 0.73 1.37		
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed	43.9 km/h 1837.5 veh-km/h 41.9 veh-h/h 60.0 km/h		43.9 km/h 2205.0 pers-km/h 50.2 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	3388 veh/h 3387 veh/h 1733 veh/h 23 veh/h -3 veh/h 10.2 % 10.2 % 1.342		4066 pers/h 4064 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	7.60 veh-h/h 8.1 sec 523.3 sec 540.2 sec 0.4 sec 7.7 sec		9.12 pers-h/h 8.1 sec 540.2 sec
Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.07 270 veh/h 0.08 0.05 74.4	0.15 per km	325 pers/h 0.08 0.05 74.4
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	1106.60 \$/h 168.3 L/h 9.2 L/100km 405.4 kg/h 0.029 kg/h 0.375 kg/h 1.005 kg/h	0.60 \$/km 91.6 mL/km 220.6 g/km 0.016 g/km 0.204 g/km 0.547 g/km	1106.60 \$/h

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% 0.0% Network Level of Service (LOS) Method: SIDRA Speed Efficiency. Software Setup used: Standard Left.

Network Performance - Annual Values					
Performance Measure	Vehicles	Persons			
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,626,442 veh/y 3,648 veh-h/y 129,835 veh/y 882,016 veh-km/y 20,097 veh-h/y	1,951,731 pers/y 4,378 pers-h/y 155,803 pers/y 1,058,419 pers-km/y 24,116 pers-h/y			
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide NOx	531,166 \$/y 80,800 L/y 194,571 kg/y 14 kg/y 180 kg/y 482 kg/y	531,166 \$/y			

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Tuesday, 4 June 2019 10:17:47 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int & Leslie SH3 Int.sip8

Lane Level of Service for Network Sites

中申 Network: N101 [2035_Hi Dev_PM]

New Network Network Category: (None)

LOS A LOS C LOS D LOS F LOS E Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Tuesday, 4 June 2019 10:17:49 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int & Leslie SH3 Int.sip8

₽ Network: N101 [2035_Hi Dev_PM]

New Network

Network Category: (None)

Network Performance - Hourly Va	lues		
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Travel Time Index Speed Efficiency Congestion Coefficient	LOS F 2.03 0.28 3.54		
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed	16.9 km/h 1875.2 veh-km/h 110.7 veh-h/h 60.0 km/h		16.9 km/h 2250.3 pers-km/h 132.9 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	3402 veh/h 3391 veh/h 1783 veh/h 9 veh/h -2 veh/h 10.3 % 10.3 % 3.649		4083 pers/h 4069 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	73.49 veh-h/h 78.0 sec 2471.9 sec 2477.4 sec 0.3 sec 77.7 sec		88.19 pers-h/h 78.0 sec 2477.4 sec
Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.33 358 veh/h 0.11 0.04 251.5	0.19 per km	429 pers/h 0.11 0.04 251.5
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	3489.16 \$/h 255.5 L/h 13.6 L/100km 610.5 kg/h 0.055 kg/h 0.512 kg/h 1.085 kg/h	1.86 \$/km 136.2 mL/km 325.5 g/km 0.029 g/km 0.273 g/km 0.579 g/km	3489.16 \$/h

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% 0.0% Network Level of Service (LOS) Method: SIDRA Speed Efficiency. Software Setup used: Standard Left.

Network Performance - Annual Values					
Performance Measure	Vehicles	Persons			
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,633,011 veh/y 35,275 veh-h/y 171,678 veh/y 900,115 veh-km/y 53,144 veh-h/y	1,959,613 pers/y 42,330 pers-h/y 206,014 pers/y 1,080,138 pers-km/y 63,773 pers-h/y			
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide NOx	1,674,799 \$/y 122,619 L/y 293,023 kg/y 27 kg/y 246 kg/y 521 kg/y	1,674,799 \$/y			

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Tuesday, 4 June 2019 10:17:49 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int & Leslie SH3 Int.sip8

Lane Level of Service for Network Sites

Participation of the second second

New Network Network Category: (None)

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 11:42:53 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int & Whitmore SH3 Int.sip8

₱₱ Network: N101 [2018_Existing_AM]

New Network

Network Category: (None)

Network Performance - Hourly Values			
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Travel Time Index Speed Efficiency Congestion Coefficient	LOS A ³ 11.02 1.09 0.92		
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed	54.6 km/h 1282.4 veh-km/h 23.5 veh-h/h 50.0 km/h		54.6 km/h 1538.9 pers-km/h 28.2 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	2295 veh/h 2295 veh/h 1292 veh/h 5 veh/h -4 veh/h 9.1 % 9.1 % 0.611		2754 pers/h 2754 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	1.95 veh-h/h 3.1 sec 26.2 sec 26.3 sec 1.2 sec 1.8 sec		2.34 pers-h/h 3.1 sec 26.3 sec
Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.06 375 veh/h 0.16 0.15 33.7	0.29 per km	450 pers/h 0.16 0.15 33.7
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	660.43 \$/h 119.5 L/h 9.3 L/100km 286.8 kg/h 0.022 kg/h 0.307 kg/h 0.704 kg/h	0.52 \$/km 93.2 mL/km 223.7 g/km 0.017 g/km 0.239 g/km 0.549 g/km	660.43 \$/h

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% Network Level of Service (LOS) Method: SIDRA Speed Efficiency.

Software Setup used: New Zealand.

3 Calculated Average Speed exceeds the specified Desired Speed.

Network Performance - Annual Values						
Performance Measure	Vehicles	Persons				
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,101,474 veh/y 937 veh-h/y 179,885 veh/y 615,543 veh-km/y 11,275 veh-h/y	1,321,768 pers/y 1,124 pers-h/y 215,863 pers/y 738,652 pers-km/y 13,530 pers-h/y				
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide	317,008 \$/y 57,353 L/y 137,678 kg/y 11 kg/y 147 kg/y	317,008 \$/y				

NOx

338 kg/y

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 11:42:53 AM Project: \\ttgroup.loca\\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int & Whitmore SH3 Int.sip8

Lane Level of Service for Network Sites

₱₱ Network: N101 [2018_Existing_PM]

New Network Network Category: (None)

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 11:42:56 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int & Whitmore SH3 Int.sip8

申章 Network: N101 [2018_Existing_PM]

New Network Network Category: (None)

Network Performance - Hourly Va		B 11 ' B' /	2
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS)	LOS A ³		
Travel Time Index	11.20		
Speed Efficiency	1.11		
Congestion Coefficient	0.90		
Travel Speed (Average)	55.4 km/h		55.4 km/h
Travel Distance (Total)	1291.2 veh-km/h		1549.4 pers-km/h
Travel Time (Total)	23.3 veh-h/h		28.0 pers-h/h
Desired Speed	50.0 km/h		
Demand Flows (Total for all Sites)	2302 veh/h		2763 pers/h
Arrival Flows (Total for all Sites)	2302 veh/h		2763 pers/h
Demand Flows (Entry Total)	1301 veh/h		
Midblock Inflows (Total)	9 veh/h		
Midblock Outflows (Total)	-9 veh/h		
Percent Heavy Vehicles (Demand)	9.1 %		
Percent Heavy Vehicles (Arrival)	9.1 %		
Degree of Saturation	0.466		
Control Delay (Total)	1.54 veh-h/h		1.85 pers-h/h
Control Delay (Average)	2.4 sec		2.4 sec
Control Delay (Worst Lane)	23.4 sec		2.1 000
Control Delay (Worst Movement)	23.5 sec		23.5 sec
Geometric Delay (Average)	1.2 sec		20.0 000
Stop-Line Delay (Average)	1.3 sec		
Queue Storage Ratio (Worst Lane)	0.03		00.4 "
Total Effective Stops	328 veh/h	0.05	394 pers/h
Effective Stop Rate	0.14	0.25 per km	0.14
Proportion Queued	0.13		0.13
Performance Index	31.1		31.1
Cost (Total)	669.99 \$/h	0.52 \$/km	669.99 \$/h
Fuel Consumption (Total)	120.4 L/h	93.2 mL/km	·
Fuel Economy	9.3 L/100km		
Carbon Dioxide (Total)	288.9 kg/h	223.8 g/km	
Hydrocarbons (Total)	0.022 kg/h	0.017 g/km	
Carbon Monoxide (Total)	0.309 kg/h	0.239 g/km	
NOx (Total)	0.717 kg/h	0.555 g/km	
	-	-	

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% 0.0% Network Level of Service (LOS) Method: SIDRA Speed Efficiency.

Software Setup used: New Zealand.

3 Calculated Average Speed exceeds the specified Desired Speed.

Network Performance - Annual Values						
Performance Measure	Vehicles	Persons				
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,105,011 veh/y 740 veh-h/y 157,557 veh/y 619,760 veh-km/y 11,187 veh-h/y	1,326,013 pers/y 888 pers-h/y 189,069 pers/y 743,712 pers-km/y 13,424 pers-h/y				
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide	321,596 \$/y 57,781 L/y 138,676 kg/y 11 kg/y 148 kg/y	321,596 \$/y				

NOx

344 kg/y

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 11:42:56 AM Project: \\ttgroup.loca\\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int & Whitmore SH3 Int.sip8

Lane Level of Service for Network Sites

Network: N101 [2018_Low Dev_AM]

New Network Network Category: (None)

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 11:42:58 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int & Whitmore SH3 Int.sip8

New Network Network Category: (None)

 Network Performance - Hourly Values

 Performance Measure
 Vehicles
 Per Unit Distance

 Network Level of Service (LOS)
 LOS A³
 Travel Time Index
 11.00

 Speed Efficiency
 1.09
 Congestion Coefficient
 0.92

 Travel Speed (Average)
 54.5 km/h
 Travel Distance (Total)
 1300.2 veh-km/h

 Travel Time (Total)
 23.9 veh-h/h
 Desired Speed
 50.0 km/h

54.5 km/h 1300.2 veh-km/h 23.9 veh-h/h 50.0 km/h		54.5 km/h 1560.2 pers-km/h 28.6 pers-h/h	
2325 veh/h 2325 veh/h 1307 veh/h 6 veh/h -4 veh/h 9.1 % 9.1 % 0.629		2790 pers/h 2790 pers/h	
2.03 veh-h/h 3.1 sec 27.3 sec 27.4 sec 1.2 sec 1.9 sec		2.44 pers-h/h 3.1 sec 27.4 sec	
0.07 381 veh/h 0.16 0.16 34.4	0.29 per km	457 pers/h 0.16 0.16 34.4	
671.47 \$/h 121.2 L/h 9.3 L/100km 291.0 kg/h 0.022 kg/h 0.311 kg/h 0.714 kg/h	0.52 \$/km 93.2 mL/km 223.8 g/km 0.017 g/km 0.239 g/km 0.549 g/km	671.47 \$/h	
	1300.2 veh-km/h 23.9 veh-h/h 50.0 km/h 2325 veh/h 2325 veh/h 1307 veh/h 6 veh/h -4 veh/h 9.1 % 9.1 % 0.629 2.03 veh-h/h 3.1 sec 27.3 sec 27.4 sec 1.2 sec 1.9 sec 0.07 381 veh/h 0.16 0.16 34.4 671.47 \$/h 121.2 L/h 9.3 L/100km 291.0 kg/h 0.022 kg/h 0.311 kg/h	1300.2 veh-km/h 23.9 veh-h/h 50.0 km/h 2325 veh/h 2325 veh/h 1307 veh/h 6 veh/h -4 veh/h 9.1 % 9.1 % 0.629 2.03 veh-h/h 3.1 sec 27.3 sec 27.4 sec 1.2 sec 1.9 sec 0.07 381 veh/h 0.16 0.29 per km 0.16 34.4 671.47 \$/h 0.52 \$/km 9.3 L/100km 291.0 kg/h 223.8 g/km 0.022 kg/h 0.17 g/km 0.239 g/km	1300.2 veh-km/h 1560.2 pers-km/h 23.9 veh-h/h 28.6 pers-h/h 2325 veh/h 28.6 pers-h/h 2325 veh/h 2790 pers/h 2325 veh/h 2790 pers/h 2325 veh/h 2790 pers/h 2325 veh/h 2790 pers/h 1307 veh/h 6 veh/h -4 veh/h 9.1 % 9.1 % 3.1 sec 27.3 sec 27.4 sec 27.4 sec 27.4 sec 1.2 sec 1.9 sec 0.07 381 veh/h 0.46 0.29 per km 0.16 0.29 per km 0.16 0.16 34.4 34.4 671.47 \$/h 9.52 \$/km 93.1 L/hokm 223.8 g/km 0.022 kg/h 0.017 g/km 0.311 kg/h 0.239 g/km

Persons

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% 0.0% Network Level of Service (LOS) Method: SIDRA Speed Efficiency.

Software Setup used: New Zealand.

3 Calculated Average Speed exceeds the specified Desired Speed.

Network Performance - Annual Values			
Performance Measure	Vehicles	Persons	
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,116,126 veh/y 976 veh-h/y 182,730 veh/y 624,079 veh-km/y 11,455 veh-h/y	1,339,352 pers/y 1,171 pers-h/y 219,276 pers/y 748,894 pers-km/y 13,745 pers-h/y	
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide	322,304 \$/y 58,194 L/y 139,699 kg/y 11 kg/y 149 kg/y	322,304 \$/y	

NOx

343 kg/y

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 11:42:58 AM Project: \\ttgroup.loca\\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int & Whitmore SH3 Int.sip8

Lane Level of Service for Network Sites

Network: N101 [2018_Low Dev_PM]

New Network Network Category: (None)

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 11:43:00 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int & Whitmore SH3 Int.sip8

New Network Network Category: (None)

Network Performance - Hourly Values Performance Measure Vehicles Per Unit Distance Persons LOS A³ Network Level of Service (LOS) 11.18 Travel Time Index Speed Efficiency 1.11 Congestion Coefficient 0.90 Travel Speed (Average) 55.3 km/h 55.3 km/h Travel Distance (Total) 1317.9 veh-km/h 1581.5 pers-km/h 23.8 veh-h/h Travel Time (Total) 28.6 pers-h/h Desired Speed 50.0 km/h Demand Flows (Total for all Sites) 2351 veh/h 2821 pers/h Arrival Flows (Total for all Sites) 2351 veh/h 2821 pers/h Demand Flows (Entry Total) 1327 veh/h Midblock Inflows (Total) 6 veh/h Midblock Outflows (Total) -9 veh/h Percent Heavy Vehicles (Demand) 9.1 % Percent Heavy Vehicles (Arrival) 9.1 % Degree of Saturation 0.476 Control Delay (Total) 1.61 veh-h/h 1.94 pers-h/h Control Delay (Average) 2.5 sec 2.5 sec Control Delay (Worst Lane) 24.6 sec Control Delay (Worst Movement) 24.8 sec 24.8 sec Geometric Delay (Average) 1.1 sec Stop-Line Delay (Average) 1.3 sec Queue Storage Ratio (Worst Lane) 0.03 **Total Effective Stops** 332 veh/h 399 pers/h 0.14 Effective Stop Rate 0.25 per km 0.14 **Proportion Queued** 0.13 0.13 Performance Index 32.0 32.0 685.98 \$/h 0.52 \$/km 685.98 \$/h Cost (Total) Fuel Consumption (Total) 123.0 L/h 93.4 mL/km Fuel Economy 9.3 L/100km 224.1 g/km 0.017 g/km Carbon Dioxide (Total) 295.3 kg/h Hydrocarbons (Total) 0.023 kg/h Carbon Monoxide (Total) 0.315 kg/h 0.239 g/km 0.558 g/km NOx (Total) 0.736 kg/h

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% 0.0% Network Level of Service (LOS) Method: SIDRA Speed Efficiency.

Software Setup used: New Zealand.

3 Calculated Average Speed exceeds the specified Desired Speed.

Network Performance - Annual Values			
Performance Measure	Vehicles	Persons	
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,128,253 veh/y 774 veh-h/y 159,483 veh/y 632,602 veh-km/y 11,435 veh-h/y	1,353,903 pers/y 929 pers-h/y 191,380 pers/y 759,122 pers-km/y 13,722 pers-h/y	
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide	329,268 \$/y 59,063 L/y 141,760 kg/y 11 kg/y 151 kg/y	329,268 \$/y	

NOx

353 kg/y

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 11:43:00 AM Project: \\ttgroup.loca\\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int & Whitmore SH3 Int.sip8

Lane Level of Service for Network Sites

Network: N101 [2018_Hi Dev_AM]

New Network Network Category: (None)

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 11:43:02 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int & Whitmore SH3 Int.sip8

₽ Network: N101 [2018_Hi Dev_AM]

New Network

Network Category: (None)

Network Performance - Hourly Va	lues		
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Travel Time Index Speed Efficiency Congestion Coefficient	LOS A ³ 10.96 1.09 0.92		
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed	54.3 km/h 1319.0 veh-km/h 24.3 veh-h/h 50.0 km/h		54.3 km/h 1582.8 pers-km/h 29.1 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	2357 veh/h 2357 veh/h 1323 veh/h 15 veh/h -4 veh/h 9.1 % 9.1 % 0.649		2828 pers/h 2828 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	2.14 veh-h/h 3.3 sec 28.5 sec 28.7 sec 1.3 sec 2.0 sec		2.57 pers-h/h 3.3 sec 28.7 sec
Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.07 392 veh/h 0.17 0.16 35.4	0.30 per km	470 pers/h 0.17 0.16 35.4
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	684.91 \$/h 123.3 L/h 9.3 L/100km 296.0 kg/h 0.023 kg/h 0.316 kg/h 0.726 kg/h	0.52 \$/km 93.5 mL/km 224.4 g/km 0.017 g/km 0.240 g/km 0.550 g/km	684.91 \$/h

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% Network Level of Service (LOS) Method: SIDRA Speed Efficiency.

Software Setup used: New Zealand.

3 Calculated Average Speed exceeds the specified Desired Speed.

Network Performance - Annual Values				
Performance Measure	Vehicles	Persons		
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,131,284 veh/y 1,030 veh-h/y 188,048 veh/y 633,113 veh-km/y 11,659 veh-h/y	1,357,541 pers/y 1,235 pers-h/y 225,658 pers/y 759,736 pers-km/y 13,990 pers-h/y		
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide	328,755 \$/y 59,190 L/y 142,081 kg/y 11 kg/y 152 kg/y	328,755 \$/y		

NOx

348 kg/y

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 11:43:02 AM Project: \\ttgroup.loca\\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int & Whitmore SH3 Int.sip8

Lane Level of Service for Network Sites

Network: N101 [2018_Hi Dev_PM]

New Network Network Category: (None)

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 11:43:05 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int & Whitmore SH3 Int.sip8

New Network

Network Category: (None)

Network Performance - Hourly Va	lues		
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Travel Time Index Speed Efficiency Congestion Coefficient	LOS A ³ 11.17 1.11 0.90		
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed	55.3 km/h 1345.5 veh-km/h 24.3 veh-h/h 50.0 km/h		55.3 km/h 1614.5 pers-km/h 29.2 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	2398 veh/h 2398 veh/h 1353 veh/h 5 veh/h -9 veh/h 9.2 % 9.2 % 0.487		2877 pers/h 2877 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	1.68 veh-h/h 2.5 sec 26.0 sec 26.1 sec 1.1 sec 1.4 sec		2.01 pers-h/h 2.5 sec 26.1 sec
Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.03 335 veh/h 0.14 0.13 32.9	0.25 per km	402 pers/h 0.14 0.13 32.9
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	700.41 \$/h 125.6 L/h 9.3 L/100km 301.4 kg/h 0.023 kg/h 0.322 kg/h 0.752 kg/h	0.52 \$/km 93.3 mL/km 224.0 g/km 0.017 g/km 0.239 g/km 0.559 g/km	700.41 \$/h

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% Network Level of Service (LOS) Method: SIDRA Speed Efficiency.

Software Setup used: New Zealand.

3 Calculated Average Speed exceeds the specified Desired Speed.

Network Performance - Annual Values				
Performance Measure	Vehicles	Persons		
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,150,990 veh/y 805 veh-h/y 160,996 veh/y 645,816 veh-km/y 11,685 veh-h/y	1,381,187 pers/y 966 pers-h/y 193,195 pers/y 774,980 pers-km/y 14,022 pers-h/y		
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide	336,195 \$/y 60,267 L/y 144,661 kg/y 11 kg/y 155 kg/y	336,195 \$/y		

NOx

361 kg/y

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 11:43:05 AM Project: \\ttgroup.loca\\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int & Whitmore SH3 Int.sip8

Lane Level of Service for Network Sites

Network: N101 [2035_No Dev_AM]

New Network Network Category: (None)

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 11:43:07 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int & Whitmore SH3 Int.sip8

Φ^Φ Network: N101 [2035_No Dev_AM]

New Network Network Category: (None)

Network Performance - Hourly Values Performance Measure Vehicles Per Unit Distance Persons Network Level of Service (LOS) LOS E Travel Time Index 3.71 Speed Efficiency 0.43 Congestion Coefficient 2.30 Travel Speed (Average) 21.7 km/h 21.7 km/h Travel Distance (Total) 1716.6 veh-km/h 2059.9 pers-km/h Travel Time (Total) 79.1 veh-h/h 94.9 pers-h/h Desired Speed 50.0 km/h Demand Flows (Total for all Sites) 3074 veh/h 3688 pers/h Arrival Flows (Total for all Sites) 3073 veh/h . 3687 pers/h Demand Flows (Entry Total) 1729 veh/h Midblock Inflows (Total) 7 veh/h Midblock Outflows (Total) -6 veh/h Percent Heavy Vehicles (Demand) 9.1 % Percent Heavy Vehicles (Arrival) 9.1 % Degree of Saturation 1.782 59.41 pers-h/h Control Delay (Total) 49.51 veh-h/h Control Delay (Average) 58.0 sec 58.0 sec Control Delay (Worst Lane) 742.4 sec Control Delay (Worst Movement) 742.5 sec 742.5 sec Geometric Delay (Average) 1.2 sec Stop-Line Delay (Average) 56.8 sec Queue Storage Ratio (Worst Lane) 1.59 **Total Effective Stops** 1260 veh/h 1512 pers/h Effective Stop Rate 0.73 per km 0.41 0.41 **Proportion Queued** 0.20 0.20 206.5 Performance Index 206.5 2533.61 \$/h 1.48 \$/km 2533.61 \$/h Cost (Total) Fuel Consumption (Total) 223.4 L/h 130.1 mL/km Fuel Economy 13.0 L/100km Carbon Dioxide (Total) 533.3 kg/h 310.7 g/km Hydrocarbons (Total) 0.028 g/km 0.048 kg/h Carbon Monoxide (Total) 0.509 kg/h 0.297 g/km 0.600 g/km 1.030 kg/h NOx (Total)

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% 0.0% Network Level of Service (LOS) Method: SIDRA Speed Efficiency.

Software Setup used: New Zealand.

Network Performance - Annual Values				
Performance Measure	Vehicles	Persons		
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,475,369 veh/y 23,765 veh-h/y 604,869 veh/y 823,948 veh-km/y 37,979 veh-h/y	1,770,442 pers/y 28,518 pers-h/y 725,842 pers/y 988,737 pers-km/y 45,575 pers-h/y		
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide NOx	1,216,134 \$/y 107,227 L/y 256,004 kg/y 23 kg/y 244 kg/y 494 kg/y	1,216,134 \$/y		

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 11:43:07 AM Project: \\ttgroup.loca\\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int & Whitmore SH3 Int.sip8

Lane Level of Service for Network Sites

Network: N101 [2035_No Dev_PM]

New Network Network Category: (None)

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 11:43:10 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int & Whitmore SH3 Int.sip8

New Network Network Category: (None)

Network Performance - Hourly Values Performance Measure Vehicles Per Unit Distance Persons Network Level of Service (LOS) LOS A Travel Time Index 8 97 Speed Efficiency 0.91 Congestion Coefficient 1.10 Travel Speed (Average) 45.3 km/h 45.3 km/h Travel Distance (Total) 1729.5 veh-km/h 2075.5 pers-km/h Travel Time (Total) 38.1 veh-h/h 45.8 pers-h/h Desired Speed 50.0 km/h Demand Flows (Total for all Sites) 3084 veh/h 3701 pers/h Arrival Flows (Total for all Sites) 3084 veh/h 3701 pers/h Demand Flows (Entry Total) 1743 veh/h Midblock Inflows (Total) 11 veh/h Midblock Outflows (Total) -12 veh/h Percent Heavy Vehicles (Demand) 9.1 % Percent Heavy Vehicles (Arrival) 9.1 % Degree of Saturation 1.121 Control Delay (Total) 8.90 veh-h/h 10.68 pers-h/h Control Delay (Average) 10.4 sec 10.4 sec Control Delay (Worst Lane) 214.2 sec Control Delay (Worst Movement) 214.4 sec 214.4 sec Geometric Delay (Average) 1.2 sec Stop-Line Delay (Average) 9.2 sec Queue Storage Ratio (Worst Lane) 0.28 **Total Effective Stops** 552 veh/h 662 pers/h 0.18 Effective Stop Rate 0.32 per km 0.18 **Proportion Queued** 0.19 0.19 Performance Index 73.5 73.5 1160.57 \$/h 0.67 \$/km 1160.57 \$/h Cost (Total) Fuel Consumption (Total) 175.7 L/h 101.6 mL/km Fuel Economy 10.2 L/100km Carbon Dioxide (Total) 421.2 kg/h 243.6 g/km Hydrocarbons (Total) 0.034 kg/h 0.019 g/km Carbon Monoxide (Total) 0.439 kg/h 0.254 g/km 0.602 g/km NOx (Total) 1.041 kg/h

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% 0.0% Network Level of Service (LOS) Method: SIDRA Speed Efficiency.

Software Setup used: New Zealand.

Network Performance - Annual Values				
Performance Measure	Vehicles	Persons		
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,480,421 veh/y 4,272 veh-h/y 264,730 veh/y 830,180 veh-km/y 18,307 veh-h/y	1,776,505 pers/y 5,127 pers-h/y 317,675 pers/y 996,216 pers-km/y 21,968 pers-h/y		
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide NOx	557,074 \$/y 84,349 L/y 202,194 kg/y 16 kg/y 211 kg/y 499 kg/y	557,074 \$/y		

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 11:43:10 AM Project: \\ttgroup.loca\\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int & Whitmore SH3 Int.sip8

Lane Level of Service for Network Sites

Network: N101 [2035_Low Dev_AM]

New Network Network Category: (None)

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 11:43:12 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int & Whitmore SH3 Int.sip8

NETWORK SUMMARY

Network: N101 [2035_Low Dev_AM]

New Network Network Category: (None)

 Network Performance - Hourly Values

 Performance Measure
 Vehicles
 Per Unit Distance

 Network Level of Service (LOS)
 LOS E
 350

Network Level of Service (LOS) Travel Time Index Speed Efficiency Congestion Coefficient	LOS E 3.50 0.41 2.41			
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed	20.7 km/h 1733.4 veh-km/h 83.6 veh-h/h 50.0 km/h		20.7 km/h 2080.1 pers-km/h 100.3 pers-h/h	
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	3104 veh/h 3103 veh/h 1745 veh/h 7 veh/h -6 veh/h 9.1 % 9.1 % 1.852		3725 pers/h 3724 pers/h	
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	53.64 veh-h/h 62.2 sec 805.3 sec 805.4 sec 1.2 sec 61.0 sec		64.37 pers-h/h 62.2 sec 805.4 sec	
Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	1.67 1274 veh/h 0.41 0.20 216.4	0.73 per km	1528 pers/h 0.41 0.20 216.4	
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	2685.57 \$/h 230.2 L/h 13.3 L/100km 549.5 kg/h 0.050 kg/h 0.521 kg/h 1.045 kg/h	1.55 \$/km 132.8 mL/km 317.0 g/km 0.029 g/km 0.301 g/km 0.603 g/km	2685.57 \$/h	

Persons

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% 0.0% Network Level of Service (LOS) Method: SIDRA Speed Efficiency.

Software Setup used: New Zealand.

Network Performance - Annual Values						
Performance Measure	Vehicles	Persons				
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,490,021 veh/y 25,746 veh-h/y 611,349 veh/y 832,031 veh-km/y 40,129 veh-h/y	1,788,025 pers/y 30,896 pers-h/y 733,619 pers/y 998,438 pers-km/y 48,155 pers-h/y				
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide NOx	1,289,075 \$/y 110,508 L/y 263,764 kg/y 24 kg/y 250 kg/y 501 kg/y	1,289,075 \$/y				

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 11:43:12 AM Project: \\ttgroup.loca\\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int & Whitmore SH3 Int.sip8

Lane Level of Service for Network Sites

Network: N101 [2035_Low Dev_PM]

New Network Network Category: (None)

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 11:43:14 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int & Whitmore SH3 Int.sip8

NETWORK SUMMARY

Network: N101 [2035 Low Dev PM]

New Network Network Category: (None)

Network Performance - Hourly Values Performance Measure Vehicles Per Unit Distance Persons Network Level of Service (LOS) LOS B Travel Time Index 8 4 2 Speed Efficiency 0.86 Congestion Coefficient 1.17 Travel Speed (Average) 42.9 km/h 42.9 km/h Travel Distance (Total) 1757.4 veh-km/h 2108.9 pers-km/h Travel Time (Total) 41.0 veh-h/h 49.1 pers-h/h Desired Speed 50.0 km/h Demand Flows (Total for all Sites) 3134 veh/h 3760 pers/h Arrival Flows (Total for all Sites) 3134 veh/h . 3760 pers/h Demand Flows (Entry Total) 1769 veh/h Midblock Inflows (Total) 10 veh/h Midblock Outflows (Total) -12 veh/h Percent Heavy Vehicles (Demand) 9.1 % Percent Heavy Vehicles (Arrival) 9.1 % Degree of Saturation 1.211 Control Delay (Total) 11.16 veh-h/h 13.39 pers-h/h Control Delay (Average) 12.8 sec 12.8 sec Control Delay (Worst Lane) 283.7 sec Control Delay (Worst Movement) 283.9 sec 283.9 sec Geometric Delay (Average) 1.1 sec Stop-Line Delay (Average) 11.7 sec Queue Storage Ratio (Worst Lane) 0.37 697 pers/h **Total Effective Stops** 581 veh/h 0.19 Effective Stop Rate 0.33 per km 0.19 **Proportion Queued** 0.19 0.19 Performance Index 83.8 83.8 1256.28 \$/h 0.71 \$/km 1256.28 \$/h Cost (Total) Fuel Consumption (Total) 181.7 L/h 103.4 mL/km Fuel Economy 10.3 L/100km Carbon Dioxide (Total) 435.4 kg/h 247.7 g/km Hydrocarbons (Total) 0.035 kg/h 0.020 g/km Carbon Monoxide (Total) 0.452 kg/h 0.257 g/km 0.606 g/km

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% 0.0% Network Level of Service (LOS) Method: SIDRA Speed Efficiency.

1.066 kg/h

Software Setup used: New Zealand.

NOx (Total)

Network Performance - Annual Values					
Performance Measure	Vehicles	Persons			
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,504,169 veh/y 5,356 veh-h/y 278,724 veh/y 843,568 veh-km/y 19,658 veh-h/y	1,805,002 pers/y 6,427 pers-h/y 334,469 pers/y 1,012,281 pers-km/y 23,590 pers-h/y			
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide NOx	603,016 \$/y 87,205 L/y 208,989 kg/y 17 kg/y 217 kg/y 511 kg/y	603,016 \$/y			

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 11:43:14 AM Project: \\ttgroup.loca\\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int & Whitmore SH3 Int.sip8

Lane Level of Service for Network Sites

Network: N101 [2035_Hi Dev_AM]

New Network Network Category: (None)

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 11:43:16 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int & Whitmore SH3 Int.sip8

NETWORK SUMMARY

幸幸 Network: N101 [2035_Hi Dev_AM]

New Network

Network Category: (None)

Network Performance - Hourly Va	lues		
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Travel Time Index Speed Efficiency Congestion Coefficient	LOS E 3.25 0.39 2.54		
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed	19.6 km/h 1752.6 veh-km/h 89.2 veh-h/h 50.0 km/h		19.6 km/h 2103.2 pers-km/h 107.0 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	3139 veh/h 3138 veh/h 1764 veh/h 6 veh/h -6 veh/h 9.1 % 9.1 % 1.940		3767 pers/h 3766 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	58.83 veh-h/h 67.5 sec 884.2 sec 884.4 sec 1.3 sec 66.2 sec		70.60 pers-h/h 67.5 sec 884.4 sec
Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	1.75 1288 veh/h 0.41 0.20 228.5	0.74 per km	1546 pers/h 0.41 0.20 228.5
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	2877.36 \$/h 238.9 L/h 13.6 L/100km 570.0 kg/h 0.053 kg/h 0.537 kg/h 1.064 kg/h	1.64 \$/km 136.3 mL/km 325.2 g/km 0.030 g/km 0.306 g/km 0.607 g/km	2877.36 \$/h

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% 0.0% Network Level of Service (LOS) Method: SIDRA Speed Efficiency. Software Setup used: New Zealand.

Network Performance - Annual Values						
Performance Measure	Vehicles	Persons				
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,506,695 veh/y 28,240 veh-h/y 618,479 veh/y 841,266 veh-km/y 42,820 veh-h/y	1,808,034 pers/y 33,888 pers-h/y 742,175 pers/y 1,009,519 pers-km/y 51,383 pers-h/y				
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide NOx	1,381,131 \$/y 114,667 L/y 273,593 kg/y 25 kg/y 258 kg/y 511 kg/y	1,381,131 \$/y				

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 11:43:16 AM Project: \\ttgroup.loca\\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int & Whitmore SH3 Int.sip8

Lane Level of Service for Network Sites

Network: N101 [2035_Hi Dev_PM]

New Network Network Category: (None)

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 11:43:18 AM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int & Whitmore SH3 Int.sip8

NETWORK SUMMARY

New Network

Network Category: (None)

Network Performance - Hourly Va	lues		
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Travel Time Index Speed Efficiency Congestion Coefficient	LOS C 7.70 0.79 1.26		
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed	39.6 km/h 1786.3 veh-km/h 45.1 veh-h/h 50.0 km/h		39.6 km/h 2143.6 pers-km/h 54.1 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	3186 veh/h 3186 veh/h 1801 veh/h 3 veh/h -13 veh/h 9.1 % 9.1 % 1.342		3824 pers/h 3823 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	14.67 veh-h/h 16.6 sec 393.2 sec 393.5 sec 1.1 sec 15.4 sec		17.60 pers-h/h 16.6 sec 393.5 sec
Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.49 620 veh/h 0.19 0.24 100.8	0.35 per km	744 pers/h 0.19 0.24 100.8
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	1420.00 \$/h 194.3 L/h 10.9 L/100km 465.5 kg/h 0.038 kg/h 0.476 kg/h 1.156 kg/h	0.79 \$/km 108.8 mL/km 260.6 g/km 0.021 g/km 0.266 g/km 0.647 g/km	1420.00 \$/h

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% 0.0%

Network Level of Service (LOS) Method: SIDRA Speed Efficiency. Software Setup used: New Zealand.

Network Performance - Annual Values						
Performance Measure	Vehicles	Persons				
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,529,432 veh/y 7,041 veh-h/y 297,633 veh/y 857,434 veh-km/y 21,637 veh-h/y	1,835,318 pers/y 8,449 pers-h/y 357,160 pers/y 1,028,921 pers-km/y 25,964 pers-h/y				
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide NOx	681,599 \$/y 93,283 L/y 223,421 kg/y 18 kg/y 229 kg/y 555 kg/y	681,599 \$/y				

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 11:43:18 AM Project: \\ttgroup.loca\\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int & Whitmore SH3 Int.sip8

INTERSECTION SUMMARY

Site: 101 [2018_Existing_AM]

New Site Site Category: (None) Stop (Two-Way)

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total)	59.6 km/h 1019.7 veh-km/h 17.1 veh-h/h	59.6 km/h 1223.6 pers-km/h 20.5 pers-h/h
Demand Flows (Total) Percent Heavy Vehicles (Demand) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	1009 veh/h 10.7 % 0.354 176.6 % 2849 veh/h	1211 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average)	0.10 veh-h/h 0.3 sec 10.6 sec 12.8 sec 0.2 sec 0.2 sec 0.1 sec	0.12 pers-h/h 0.3 sec 12.8 sec
Intersection Level of Service (LOS)	NA	
95% Back of Queue - Vehicles (Worst Lane) 95% Back of Queue - Distance (Worst Lane) Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.1 veh 1.0 m 0.00 22 veh/h 0.02 0.02 17.5	27 pers/h 0.02 0.02 17.5
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	396.54 \$/h 84.1 L/h 203.3 kg/h 0.014 kg/h 0.219 kg/h 0.549 kg/h	396.54 \$/h

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 70.4% 1.1% 0.0%

Performance Measure	Vehicles	Persons
Demand Flows (Total)	484,547 veh/y	581,457 pers/y
Delay	46 veh-h/y	56 pers-h/y
Effective Stops	10,789 veh/y	12,947 pers/y
Travel Distance	489,437 veh-km/y	587,325 pers-km/y
Travel Time	8,216 veh-h/y	9,860 pers-h/y
Coat	100 229 44	100 228 \$4
Cost	190,338 \$/y	190,338 \$/y
Fuel Consumption	40,365 L/y	
Carbon Dioxide	97,596 kg/y	
Hydrocarbons	7 kg/y	
Carbon Monoxide	105 kg/y	
NOx	263 kg/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Monday, 13 May 2019 4:44:57 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

Lane Level of Service

Wite: 101 [2018_Existing_AM]

New Site Site Category: (None) Stop (Two-Way)

Γ		Approaches			Intersection
L		South North West		Intersection	
	LOS	NA	NA	В	NA

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN & TAYLOR | Processed: Monday, 13 May 2019 4:44:57 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

INTERSECTION SUMMARY

Site: 101 [2018_Existing_PM]

New Site Site Category: (None) Stop (Two-Way)

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total)	59.5 km/h 1013.3 veh-km/h 17.0 veh-h/h	59.5 km/h 1215.9 pers-km/h 20.4 pers-h/h
Demand Flows (Total) Percent Heavy Vehicles (Demand) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	1003 veh/h 10.6 % 0.400 145.1 % 2509 veh/h	1204 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average)	0.09 veh-h/h 0.3 sec 9.6 sec 12.8 sec 0.2 sec 0.1 sec 0.0 sec	0.11 pers-h/h 0.3 sec 12.8 sec
Intersection Level of Service (LOS)	NA	
95% Back of Queue - Vehicles (Worst Lane) 95% Back of Queue - Distance (Worst Lane) Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.3 veh 2.2 m 0.00 23 veh/h 0.02 0.03 17.6	28 pers/h 0.02 0.03 17.6
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	399.56 \$/h 84.6 L/h 204.5 kg/h 0.015 kg/h 0.220 kg/h 0.556 kg/h	399.56 \$/h

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 68.0% 1.1% 0.0%

Performance Measure	Vehicles	Persons
Demand Flows (Total)	481,516 veh/y	577,819 pers/y
Delay	43 veh-h/y	52 pers-h/y
Effective Stops	11,062 veh/y	13,275 pers/y
Travel Distance	486,366 veh-km/y	583,639 pers-km/y
Travel Time	8,168 veh-h/y	9,802 pers-h/y
Cost	191,790 \$/y	191,790 \$/y
Fuel Consumption	40,618 L/y	- , + ,
Carbon Dioxide	98,175 kg/y	
Hydrocarbons	7 kg/y	
Carbon Monoxide	106 kg/y	
NOx	267 kg/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Monday, 13 May 2019 4:44:57 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

Lane Level of Service

Wite: 101 [2018_Existing_PM]

New Site Site Category: (None) Stop (Two-Way)

Γ	Approaches				Intersection
L		South North West		Intersection	
	LOS	NA	NA	А	NA

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN & TAYLOR | Processed: Monday, 13 May 2019 4:44:57 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

INTERSECTION SUMMARY

5ite: 101 [2018_Low Dev_AM]

New Site Site Category: (None) Stop (Two-Way)

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total)	59.5 km/h 1032.4 veh-km/h 17.3 veh-h/h	59.5 km/h 1238.9 pers-km/h 20.8 pers-h/h
Demand Flows (Total) Percent Heavy Vehicles (Demand) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	1022 veh/h 10.7 % 0.355 175.7 % 2875 veh/h	1227 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average)	0.11 veh-h/h 0.4 sec 10.5 sec 13.0 sec 0.2 sec 0.2 sec 0.1 sec	0.13 pers-h/h 0.4 sec 13.0 sec
Intersection Level of Service (LOS)	NA	
95% Back of Queue - Vehicles (Worst Lane) 95% Back of Queue - Distance (Worst Lane) Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.2 veh 1.2 m 0.00 26 veh/h 0.03 0.02 17.8	31 pers/h 0.03 0.02 17.8
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	402.28 \$/h 85.2 L/h 205.9 kg/h 0.015 kg/h 0.222 kg/h 0.554 kg/h	402.28 \$/h

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good

LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 70.0% 1.1% 0.0%

Performance Measure	Vehicles	Persons
Demand Flows (Total)	490,611 veh/y	588,733 pers/y
Delay	52 veh-h/y	63 pers-h/y
Effective Stops	12,441 veh/y	14,930 pers/y
Travel Distance	495,570 veh-km/y	594,683 pers-km/y
Travel Time	8,326 veh-h/y	9,991 pers-h/y
Cost	193,096 \$/y	193,096 \$/y
Fuel Consumption	40,880 L/y	
Carbon Dioxide	98,831 kg/y	
Hydrocarbons	7 kg/y	
Carbon Monoxide	106 kg/y	
NOx	266 kg/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 4:39:12 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

Lane Level of Service

Wite: 101 [2018_Low Dev_AM]

New Site Site Category: (None) Stop (Two-Way)

Γ		A	Intersection		
L		South	North	West	Intersection
	LOS	NA	NA	В	NA

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 4:39:12 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

INTERSECTION SUMMARY

5ite: 101 [2018_Low Dev_PM]

New Site Site Category: (None) Stop (Two-Way)

Vehicles 59.5 km/h	Persons
59.5 km/h	
	59.5 km/h
1034.6 veh-km/h	1241.5 pers-km/h
17.4 veh-h/h	20.9 pers-h/h
1024 veh/h	1229 pers/h
10.6 %	·
0.408	
140.2 %	
2511 veh/h	
0.10 yeb b/b	0.12 para h /
	0.12 pers-h/h 0.4 sec
	0.4 Sec
	13.2 sec
	13.2 Sec
NA	
0.3 veh	
2.3 m	
0.00	
26 veh/h	31 pers/h
0.03	0.03
0.03	0.03
18.0	18.0
408.65 \$/h	408.65 \$/h
+-	φ
5	
5	
	1024 veh/h 10.6 % 0.408 140.2 % 2511 veh/h 0.10 veh-h/h 0.4 sec 8.7 sec 13.2 sec 0.2 sec 0.1 sec 0.0 sec NA 0.3 veh 2.3 m 0.00 26 veh/h 0.03 0.03

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good

LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 61.8% 1.1% 0.0%

Performance Measure	Vehicles	Persons
Demand Flows (Total)	491,621 veh/y	589,945 pers/y
Delay	48 veh-h/y	58 pers-h/y
Effective Stops	12,541 veh/y	15,049 pers/y
Travel Distance	496,587 veh-km/y	595,905 pers-km/y
Travel Time	8,345 veh-h/y	10,014 pers-h/y
Cost	196,150 \$/y	196,150 \$/y
Fuel Consumption	41,476 L/y	,
Carbon Dioxide	100,239 kg/y	
Hydrocarbons	7 kg/y	
Carbon Monoxide	108 kg/y	
NOx	271 kg/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 4:40:10 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

Lane Level of Service

Wite: 101 [2018_Low Dev_PM]

New Site Site Category: (None) Stop (Two-Way)

	A	Intersection		
	South	North	West	Intersection
LOS	NA	NA	A	NA

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 4:40:10 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

INTERSECTION SUMMARY

🔤 Site: 101 [2018_Hi Dev_AM]

New Site Site Category: (None) Stop (Two-Way)

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average)	59.5 km/h	59.5 km/h
Travel Distance (Total)	1044.1 veh-km/h	1253.0 pers-km/h
Travel Time (Total)	17.6 veh-h/h	21.1 pers-h/h
Demand Flows (Total)	1034 veh/h	1240 pers/h
Percent Heavy Vehicles (Demand)	10.6 %	
Degree of Saturation	0.356	
Practical Spare Capacity	175.2 %	
Effective Intersection Capacity	2903 veh/h	
Control Delay (Total)	0.13 veh-h/h	0.15 pers-h/h
Control Delay (Average)	0.4 sec	0.4 sec
Control Delay (Worst Lane)	10.7 sec	0.4 360
Control Delay (Worst Movement)	13.1 sec	13.1 sec
Geometric Delay (Average)	0.2 sec	10.1 000
Stop-Line Delay (Average)	0.2 sec	
Idling Time (Average)	0.1 sec	
Intersection Level of Service (LOS)	NA	
95% Back of Queue - Vehicles (Worst Lane)	0.2 veh	
95% Back of Queue - Distance (Worst Lane)	1.4 m	
Queue Storage Ratio (Worst Lane)	0.00	
Total Effective Stops	30 veh/h	36 pers/h
Effective Stop Rate	0.03	0.03
Proportion Queued Performance Index	0.03 18.1	0.03 18.1
Performance index	10.1	16.1
Cost (Total)	408.35 \$/h	408.35 \$/h
Fuel Consumption (Total)	86.3 L/h	
Carbon Dioxide (Total)	208.5 kg/h	
Hydrocarbons (Total)	0.015 kg/h	
Carbon Monoxide (Total)	0.224 kg/h	
NOx (Total)	0.560 kg/h	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good

LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 70.5% 1.4% 0.0%

Performance Measure	Vehicles	Persons
Demand Flows (Total)	496,168 veh/y	595,402 pers/y
Delay	61 veh-h/y	74 pers-h/y
Effective Stops	14,518 veh/y	17,422 pers/y
Travel Distance	501,189 veh-km/y	601,426 pers-km/y
Travel Time	8,430 veh-h/y	10,116 pers-h/y
Cost	196,009 \$/y	196,009 \$/y
Fuel Consumption	41,401 L/y	
Carbon Dioxide	100,077 kg/y	
Hydrocarbons	7 kg/y	
Carbon Monoxide	108 kg/y	
NOx	269 kg/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 4:41:57 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

Lane Level of Service

Wite: 101 [2018_Hi Dev_AM]

New Site Site Category: (None) Stop (Two-Way)

		Approaches			Intersection	
		South	North	West	Intersection	
L	OS	NA	NA	В	NA	

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 4:41:57 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

INTERSECTION SUMMARY

🔤 Site: 101 [2018_Hi Dev_PM]

New Site Site Category: (None) Stop (Two-Way)

Performance Measure	Vehicles	Persons
ravel Speed (Average)	59.5 km/h	59.5 km/h
ravel Distance (Total)	1056.9 veh-km/h	1268.3 pers-km/h
ravel Time (Total)	17.8 veh-h/h	21.3 pers-h/h
Demand Flows (Total)	1046 veh/h	1256 pers/h
Percent Heavy Vehicles (Demand)	10.6 %	
Degree of Saturation	0.417	
Practical Spare Capacity	135.1 %	
ffective Intersection Capacity	2510 veh/h	
Control Delay (Total)	0.11 veh-h/h	0.14 pers-h/h
Control Delay (Average)	0.4 sec	0.14 pers-n/n 0.4 sec
Control Delay (Worst Lane)	9.1 sec	0.4 560
Control Delay (Worst Movement)	13.6 sec	13.6 sec
Geometric Delay (Average)	0.2 sec	10.0 300
Stop-Line Delay (Average)	0.1 sec	
dling Time (Average)	0.0 sec	
ntersection Level of Service (LOS)	NA	
5% Back of Queue - Vehicles (Worst Lane)	0.3 veh	
5% Back of Queue - Distance (Worst Lane)	2.5 m	
Queue Storage Ratio (Worst Lane)	0.00	
otal Effective Stops	29 veh/h	35 pers/h
Effective Stop Rate	0.03	0.03
Proportion Queued	0.04	0.04
Performance Index	18.5	18.5
Cost (Total)	418.40 \$/h	418.40 \$/h
Fuel Consumption (Total)	88.4 L/h	
Carbon Dioxide (Total)	213.5 kg/h	
lydrocarbons (Total)	0.015 kg/h	
Carbon Monoxide (Total)	0.230 kg/h	
NOx (Total)	0.577 kg/h	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 64.7% 1.1% 0.0%

Performance Measure	Vehicles	Persons			
Demand Flows (Total)	502,232 veh/y	602,678 pers/y			
Delay	54 veh-h/y	65 pers-h/y			
Effective Stops	13,886 veh/y	16,663 pers/y			
Travel Distance	507,310 veh-km/y	608,772 pers-km/y			
Travel Time	8,531 veh-h/y	10,237 pers-h/y			
Cost	200,834 \$/y	200,834 \$/y			
Fuel Consumption	42,409 L/y				
Carbon Dioxide	102,483 kg/y				
Hydrocarbons	7 kg/y				
Carbon Monoxide	110 kg/y				
NOx	277 kg/y				

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 4:43:48 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

Lane Level of Service

Wite: 101 [2018_Hi Dev_PM]

New Site Site Category: (None) Stop (Two-Way)

Γ		Approaches			Intersection	
L		South	North	West	Intersection	
	LOS	NA	NA	А	NA	

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 4:43:48 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

9 Site: 101 [2035_No Dev_AM]

New Site Site Category: (None) Stop (Two-Way)

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total)	59.4 km/h 1365.2 veh-km/h 23.0 veh-h/h	59.4 km/h 1638.3 pers-km/h 27.6 pers-h/h
Demand Flows (Total) Percent Heavy Vehicles (Demand) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	1352 veh/h 10.7 % 0.475 106.3 % 2845 veh/h	1622 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average)	0.20 veh-h/h 0.5 sec 15.9 sec 21.5 sec 0.2 sec	0.24 pers-h/h 0.5 sec 21.5 sec
Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	0.4 sec 0.2 sec NA	
95% Back of Queue - Vehicles (Worst Lane) 95% Back of Queue - Distance (Worst Lane) Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.3 veh 2.1 m 0.00 33 veh/h 0.02 0.03 23.8	40 pers/h 0.02 0.03 23.8
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	534.40 \$/h 112.9 L/h 273.0 kg/h 0.019 kg/h 0.293 kg/h 0.738 kg/h	534.40 \$/h

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 83.0% 2.1% 0.0%

Performance Measure	Vehicles	Persons
Demand Flows (Total)	648,758 veh/y	778,510 pers/y
Delay	96 veh-h/y	116 pers-h/y
Effective Stops	15,901 veh/y	19,081 pers/y
Travel Distance	655,304 veh-km/y	786,365 pers-km/y
Travel Time	11,039 veh-h/y	13,246 pers-h/y
Cost	256,514 \$/y	256,514 \$/y
Fuel Consumption	54,198 L/v	200,011 4.9
Carbon Dioxide	131,037 kg/y	
Hydrocarbons	9 kg/y	
Carbon Monoxide	141 kg/y	
NOx	354 kg/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Monday, 13 May 2019 4:44:59 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

Lane Level of Service

Weight Site: 101 [2035_No Dev_AM]

New Site Site Category: (None) Stop (Two-Way)

Γ	Approaches				Intersection
L		South	North	West	Intersection
	LOS	NA	NA	С	NA

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN & TAYLOR | Processed: Monday, 13 May 2019 4:44:59 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

5ite: 101 [2035_No Dev_PM]

New Site Site Category: (None) Stop (Two-Way)

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average)	59.4 km/h	59.4 km/h
Travel Distance (Total)	1359.9 veh-km/h	1631.9 pers-km/h
Travel Time (Total)	22.9 veh-h/h	27.5 pers-h/h
Demand Flows (Total)	1346 veh/h	1616 pers/h
Percent Heavy Vehicles (Demand)	10.6 %	toto pers/it
Degree of Saturation	0.538	
Practical Spare Capacity	82.0 %	
Effective Intersection Capacity	2500 veh/h	
Control Delay (Total)	0.18 veh-h/h	0.22 pers-h/h
Control Delay (Average)	0.5 sec	0.5 sec
Control Delay (Worst Lane)	11.9 sec	22.2
Control Delay (Worst Movement)	22.2 sec 0.2 sec	22.2 sec
Geometric Delay (Average) Stop-Line Delay (Average)	0.2 sec	
Idling Time (Average)	0.3 sec	
Intersection Level of Service (LOS)	NA	
	NA	
95% Back of Queue - Vehicles (Worst Lane)	0.7 veh	
95% Back of Queue - Distance (Worst Lane)	5.2 m	
Queue Storage Ratio (Worst Lane)	0.00	
Total Effective Stops	34 veh/h	41 pers/h
Effective Stop Rate	0.03	0.03
Proportion Queued	0.05	0.05
Performance Index	24.2	24.2
Cost (Total)	541.83 \$/h	541.83 \$/h
Fuel Consumption (Total)	114.4 L/h	000 4/
Carbon Dioxide (Total)	276.5 kg/h	
Hydrocarbons (Total)	0.020 kg/h	
Carbon Monoxide (Total)	0.297 kg/h	
NOx (Total)	0.754 kg/h	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 76.7% 1.5% 0.0%

Performance Measure	Vehicles	Persons
Demand Flows (Total)	646,232 veh/y	775,478 pers/y
Delay	87 veh-h/y	104 pers-h/y
Effective Stops	16,485 veh/y	19,781 pers/y
Travel Distance	652,757 veh-km/y	783,308 pers-km/y
Travel Time	10,987 veh-h/y	13,184 pers-h/y
Cost	260,080 \$/y	260,080 \$/y
Fuel Consumption	54,924 L/v	200,000 4,9
Carbon Dioxide	132,728 kg/y	
Hydrocarbons	10 kg/y	
Carbon Monoxide	143 kg/y	
NOx	362 kg/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Monday, 13 May 2019 4:44:59 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

Lane Level of Service

Wite: 101 [2035_No Dev_PM]

New Site Site Category: (None) Stop (Two-Way)

		Approaches			Intersection
		South	North	West	Intersection
L	OS	NA	NA	В	NA

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN & TAYLOR | Processed: Monday, 13 May 2019 4:44:59 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

5ite: 101 [2035_Low Dev_AM]

New Site Site Category: (None) Stop (Two-Way)

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average)	59.3 km/h	59.3 km/h
Travel Distance (Total)	1378.0 veh-km/h	1653.6 pers-km/h
Travel Time (Total)	23.2 veh-h/h	27.9 pers-h/h
Demand Flows (Total)	1364 veh/h	1637 pers/h
Percent Heavy Vehicles (Demand)	10.7 %	
Degree of Saturation	0.476	
Practical Spare Capacity	106.0 %	
Effective Intersection Capacity	2868 veh/h	
Control Delay (Total)	0.22 veh-h/h	0.27 pers-h/h
Control Delay (Average)	0.6 sec	0.6 sec
Control Delay (Worst Lane)	16.2 sec	
Control Delay (Worst Movement)	21.9 sec	21.9 sec
Geometric Delay (Average)	0.2 sec	
Stop-Line Delay (Average)	0.4 sec	
Idling Time (Average)	0.2 sec	
Intersection Level of Service (LOS)	NA	
95% Back of Queue - Vehicles (Worst Lane)	0.3 veh	
95% Back of Queue - Distance (Worst Lane)	2.5 m	
Queue Storage Ratio (Worst Lane)	0.00	
Total Effective Stops	37 veh/h	44 pers/h
Effective Stop Rate	0.03	0.03
Proportion Queued Performance Index	0.03 24.2	0.03 24.2
	24.2	24.2
Cost (Total)	540.49 \$/h	540.49 \$/h
Fuel Consumption (Total)	114.0 L/h	
Carbon Dioxide (Total)	275.6 kg/h	
Hydrocarbons (Total)	0.020 kg/h	
Carbon Monoxide (Total) NOx (Total)	0.296 kg/h 0.744 kg/h	
	0.1 TT N9/11	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good

LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 83.3% 2.1% 0.0%

Intersection Performance - Annual Values						
Performance Measure	Vehicles	Persons				
Demand Flows (Total)	654,821 veh/y	785,785 pers/y				
Delay	107 veh-h/y	128 pers-h/y				
Effective Stops	17,787 veh/y	21,345 pers/y				
Travel Distance	661,434 veh-km/y	793,721 pers-km/y				
Travel Time	11,152 veh-h/y	13,383 pers-h/y				
Cost	259,433 \$/y	259,433 \$/y				
Fuel Consumption	54,721 L/y					
Carbon Dioxide	132,291 kg/y					
Hydrocarbons	9 kg/y					
Carbon Monoxide	142 kg/y					
NOx	357 kg/y					

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 4:44:58 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

Lane Level of Service

Wite: 101 [2035_Low Dev_AM]

New Site Site Category: (None) Stop (Two-Way)

Γ		A	Intersection		
L		South	North	West	Intersection
Γ	LOS	NA	NA	С	NA

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 4:44:58 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

5ite: 101 [2035_Low Dev_PM]

New Site Site Category: (None) Stop (Two-Way)

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average)	59.4 km/h	59.4 km/h
Travel Distance (Total)	1380.1 veh-km/h	1656.1 pers-km/h
Travel Time (Total)	23.2 veh-h/h	27.9 pers-h/h
Demand Flows (Total)	1366 veh/h	1640 pers/h
Percent Heavy Vehicles (Demand)	10.6 %	1640 pers/fi
Degree of Saturation	0.547	
Practical Spare Capacity	79.3 %	
Effective Intersection Capacity	2499 veh/h	
	2.000 100.00	
Control Delay (Total)	0.19 veh-h/h	0.23 pers-h/h
Control Delay (Average)	0.5 sec	0.5 sec
Control Delay (Worst Lane)	13.0 sec	
Control Delay (Worst Movement)	23.2 sec	23.2 sec
Geometric Delay (Average)	0.2 sec	
Stop-Line Delay (Average)	0.3 sec	
Idling Time (Average)	0.1 sec	
Intersection Level of Service (LOS)	NA	
95% Back of Queue - Vehicles (Worst Lane)	0.7 veh	
95% Back of Queue - Distance (Worst Lane)	5.3 m	
Queue Storage Ratio (Worst Lane)	0.00	
Total Effective Stops	35 veh/h	42 pers/h
Effective Stop Rate	0.03	0.03
Proportion Queued	0.05	0.05
Performance Index	24.6	24.6
		550.00 ##
Cost (Total)	550.26 \$/h	550.26 \$/h
Fuel Consumption (Total)	116.1 L/h	
Carbon Dioxide (Total)	280.7 kg/h	
Hydrocarbons (Total) Carbon Monoxide (Total)	0.020 kg/h 0.301 kg/h	
NOx (Total)	0.301 kg/h	
	0.700 kg/m	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good

LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 79.2% 1.5% 0.0%

Intersection Performance - Annual Values					
Performance Measure	Vehicles	Persons			
Demand Flows (Total)	655,832 veh/y	786,998 pers/y			
Delay	92 veh-h/y	110 pers-h/y			
Effective Stops	16,975 veh/y	20,370 pers/y			
Travel Distance	662,452 veh-km/y	794,943 pers-km/y			
Travel Time	11,154 veh-h/y	13,385 pers-h/y			
Coat	004.400 \$4	2014 122 \$4			
Cost	264,123 \$/y	264,123 \$/y			
Fuel Consumption	55,752 L/y				
Carbon Dioxide	134,728 kg/y				
Hydrocarbons	10 kg/y				
Carbon Monoxide	145 kg/y				
NOx	367 kg/y				

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 4:46:21 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

Lane Level of Service

Wite: 101 [2035_Low Dev_PM]

New Site Site Category: (None) Stop (Two-Way)

Γ		A	Intersection		
L		South	North	West	Intersection
ſ	LOS	NA	NA	В	NA

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 4:46:21 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

🔤 Site: 101 [2035_Hi Dev_AM]

New Site Site Category: (None) Stop (Two-Way)

		-
Performance Measure	Vehicles	Persons
Travel Speed (Average)	59.2 km/h	59.2 km/h
Travel Distance (Total)	1390.8 veh-km/h	1668.9 pers-km/h
Travel Time (Total)	23.5 veh-h/h	28.2 pers-h/h
Demand Flows (Total)	1377 veh/h	1652 pers/h
Percent Heavy Vehicles (Demand)	10.6 %	1002 pers/11
Degree of Saturation	0.477	
Practical Spare Capacity	105.5 %	
	2888 veh/h	
Effective Intersection Capacity	2000 VEII/II	
Control Delay (Total)	0.25 veh-h/h	0.30 pers-h/h
Control Delay (Average)	0.7 sec	0.7 sec
Control Delay (Worst Lane)	16.1 sec	
Control Delay (Worst Movement)	22.3 sec	22.3 sec
Geometric Delay (Average)	0.2 sec	
Stop-Line Delay (Average)	0.5 sec	
Idling Time (Average)	0.3 sec	
Intersection Level of Service (LOS)	NA	
	ΝA	
95% Back of Queue - Vehicles (Worst Lane)	0.4 veh	
95% Back of Queue - Distance (Worst Lane)	2.7 m	
Queue Storage Ratio (Worst Lane)	0.00	
Total Effective Stops	42 veh/h	50 pers/h
Effective Stop Rate	0.03	0.03
Proportion Queued	0.03	0.03
Performance Index	24.6	24.6
Cost (Total)	547.62 \$/h	547.62 \$/h
Fuel Consumption (Total)	115.3 L/h	
Carbon Dioxide (Total)	278.6 kg/h	
Hydrocarbons (Total)	0.020 kg/h	
Carbon Monoxide (Total)	0.299 kg/h	
NOx (Total)	0.750 kg/h	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 83.2% 2.6% 0.0%

Performance Measure	Vehicles	Persons
Demand Flows (Total)	660,884 veh/y	793,061 pers/y
Delay	121 veh-h/y	145 pers-h/y
Effective Stops	19,980 veh/y	23,976 pers/y
Travel Distance	667,566 veh-km/y	801,080 pers-km/y
Travel Time	11,270 veh-h/y	13,524 pers-h/y
Cost	262,857 \$/y	262,857 \$/y
Fuel Consumption	55,321 L/y	-
Carbon Dioxide	133,726 kg/y	
Hydrocarbons	10 kg/y	
Carbon Monoxide	144 kg/y	
NOx	360 kg/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 4:47:34 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

Lane Level of Service

Wite: 101 [2035_Hi Dev_AM]

New Site Site Category: (None) Stop (Two-Way)

Γ		A	Intersection		
L		South No		West	Intersection
	LOS	NA	NA	С	NA

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 4:47:34 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

🔤 Site: 101 [2035_Hi Dev_PM]

New Site Site Category: (None) Stop (Two-Way)

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total)	59.3 km/h 1400.3 veh-km/h 23.6 veh-h/h	59.3 km/h 1680.4 pers-km/h 28.3 pers-h/h
Demand Flows (Total) Percent Heavy Vehicles (Demand) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	1386 veh/h 10.6 % 0.555 76.5 % 2497 veh/h	1664 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average)	0.21 veh-h/h 0.5 sec 14.5 sec 24.1 sec 0.2 sec 0.3 sec 0.1 sec	0.25 pers-h/h 0.5 sec 24.1 sec
Intersection Level of Service (LOS)	NA	
95% Back of Queue - Vehicles (Worst Lane) 95% Back of Queue - Distance (Worst Lane) Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.7 veh 5.7 m 0.00 38 veh/h 0.03 0.05 25.1	46 pers/h 0.03 0.05 25.1
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	559.70 \$/h 118.0 L/h 285.1 kg/h 0.020 kg/h 0.306 kg/h 0.776 kg/h	559.70 \$/h

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good

LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 82.2% 1.6% 0.0%

Performance Measure	Vehicles	Persons
Demand Flows (Total)	665,432 veh/y	798,518 pers/y
Delay	101 veh-h/y	122 pers-h/y
Effective Stops	18,443 veh/y	22,132 pers/y
Travel Distance	672,155 veh-km/y	806,585 pers-km/y
Travel Time	11,326 veh-h/y	13,591 pers-h/y
Cost	268,655 \$/y	268,655 \$/y
Fuel Consumption	56,631 L/y	
Carbon Dioxide	136,842 kg/y	
Hydrocarbons	10 kg/y	
Carbon Monoxide	147 kg/y	
NOx	373 kg/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 4:48:55 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

Lane Level of Service

Wite: 101 [2035_Hi Dev_PM]

New Site Site Category: (None) Stop (Two-Way)

	Approaches				Intersection
		South N		West	Intersection
L	OS	NA	NA	В	NA

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN & TAYLOR | Processed: Friday, 24 May 2019 4:48:55 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

Appendix C: T11 CAS Outputs

CAS outputs for the following roads included:

• Cambridge Road

Also included as reference for the high-level assessment of State Highway 3:

• State Highway 3 / Cambridge Road / Arawata Street intersection

Untitled query

Saved sites

Cambridge Road

Crash year

2009 - 2019

Plain English report

17 results from your query.

1-17 of 17

<u>Crash road</u>	Distance	Direction	Side road	<u>ID</u>	Date	<u>Day of</u> week	<u>Time</u>	Description of events	Crash factors	<u>Surface</u> condition	<u>Natural</u> light	<u>Weather</u>	Junction	<u>Control</u>	<u>Crash</u> count fatal	<u>Crash</u> <u>count</u> <u>severe</u>	<u>Crash</u> <u>count</u> minor
CAMBRIDGE ROAD	200m	E	GLENEAGLES DRIVE	<u>201410731</u>	22/03/2014	Sat	15:58	Car/Wagon1 WDB on CAMBRIDGE ROAD overtaking Motorcycle2	MOTORCYCLE2, misjudged another vehicle, other overtaking CAR/WAGON1, misjudged another vehicle, other overtaking	Dry	Bright sun	Fine	Nil (Default)	Nil	0	0	1
CAMBRIDGE ROAD	200m	W	GLENEAGLES DRIVE	<u>201417293</u>	04/11/2014	Tue	16:20	Car/Wagon1 entering/leaving driveway hit Wheeled pedestrian (wheelchairs, mobility scooters, etc)&CR&LF2 (Age 83) walking on footpath	CAR/WAGON1, did not check/notice another party behind, other visibility limited, WHEELED PEDESTRIAN (WHEELCHAIRS, MOBILITY SCOOTERS2, other did not see or look for other party, ENV: entering or leaving private house / farm, visibility limited by hedge or fence	Dry	Bright sun	Fine	Driveway	Unknown	0	0	1
CAMBRIDGE ROAD	210m	E	GLENEAGLES DRIVE	<u>201848679</u>	04/09/2018	Tue	17:42	Car/Wagon1 EDB on CAMBRIDGE ROAD changing lanes to left hit Car/Wagon2	CAR/WAGON1, alcohol suspected, cut in after overtaking, emotionally upset/road rage	Wet	Overcast	Light rain	Nil (Default)	Unknown	0	0	0
CAMBRIDGE ROAD	300m	w	GLENEAGLES DRIVE	<u>201618865</u>	17/12/2016	Sat	16:10	Car/Wagon1 WDB on Cambridge hit rear of left turning Car/Wagon2 WDB on Cambridge	CAR/WAGON1, following too closely	Dry	Bright sun	Fine	Driveway	Nil	0	0	1
CAMBRIDGE ROAD	400m	w	MCLARNON ROAD	<u>201043676</u>	14/12/2010	Tue	18:45	Car/Wagon1 NDB on CAMBRIDGE ROAD lost control turning right, Car/Wagon1 hit fences	CAR/WAGON1, lost control when turning, speed entering corner/curve, ENV: heavy rain, slippery road due to rain	Wet	Overcast	Heavy rain	Nil (Default)	Nil	0	0	0
CAMBRIDGE ROAD	140m	W	PEKERAU CRESCENT	<u>201233052</u>	01/06/2012	Fri	12:05	Car/Wagon1 EDB on CAMBRIDGE ROAD sideswiped by Car/Wagon2 EDB on CAMBRIDGE ROAD turning left	CAR/WAGON2, turned from incorrect position on road CAR/WAGON1, misjudged intentions of another party, ENV: entering or leaving private house / farm	Dry	Bright sun	Fine	Driveway	Unknown	0	0	0
CAMBRIDGE ROAD	220m	E	PEKERAU CRESCENT	<u>201303100</u>	13/06/2013	Thu	05:57	Car/Wagon2 turning right hit by oncoming Cycle1 WDB on CAMBRIDGE ROAD	CAR/WAGON2, did not check/notice another party from other dirn, failed to give way turning to non-turning traffic, ENV: entering or leaving shopping complex	Dry	Dark	Fine	Driveway	Unknown	0	0	2

Crash Analysis System (CAS) | NZTA

Crash road	Distance	Direction	<u>Side road</u>	<u>ID</u>	<u>Date</u>	<u>Day of</u> week	<u>Time</u>	Description of events	Crash factors	<u>Surface</u> condition	<u>Natural</u> light	<u>Weather</u>	Junction	<u>Control</u>	<u>Crash</u> <u>count</u> <u>fatal</u>	<u>Crash</u> <u>count</u> severe	<u>Crash</u> <u>count</u> <u>minor</u>
CAMBRIDGE ROAD	90m	w	PEKERAU CRESCENT	<u>201750817</u>	30/09/2017	Sat	11:45	Van1 EDB on Cambridge Rd Te Awamutu hit Van2 U-turning from same direction of travel	VAN2, blind spot, did not check/notice another party behind	Dry	Bright sun	Fine	Nil (Default)	Unknown	0	0	0
CAMBRIDGE ROAD	120m	E	PEKERAU CRESCENT	<u>201813695</u>	19/04/2018	Thu	18:25	Car/Wagon1 EDB on Cambridge Rd hit Pedestrian2 (Age 65) crossing road from right side	CAR/WAGON1, alcohol test below limit, did not check/notice another party from other dirn, failed to see another party wearing dark clothing, ENV: street lighting inadequate	Dry	Dark	Fine	Nil (Default)	Unknown	0	0	1
CAMBRIDGE ROAD	25m	E	PEKERAU CRESCENT	<u>201034521</u>	02/05/2010	Sun	10:11	Car/Wagon1 WDB on CAMBRIDGE ROAD lost control but did not leave the road	CAR/WAGON1, puncture or blowout	Dry	Bright sun	Fine	Nil (Default)	Nil	0	0	0
CAMBRIDGE ROAD		I	PEKERAU CRESCENT	<u>201139432</u>	28/12/2011	Wed	15:20	Truck1 WDB on CAMBRIDGE ROAD lost control turning right, Truck1 hit kerbing, poles	TRUCK1, attention diverted by other traffic, lost control when turning	Dry	Overcast	Fine	T Junction	Stop	0	0	0
CAMBRIDGE ROAD	140m	W	PEKERAU CRESCENT	<u>201717837</u>	29/09/2017	Fri	16:20	Car/Wagon1 WDB on Cambridge rd hit rear of left turning Van2 WDB on Cambridge rd	CAR/WAGON1, following too closely, other attention diverted	Dry	Bright sun	Fine	Driveway	Nil	0	0	1
CAMBRIDGE ROAD	120m	E	PEKERAU CRESCENT	<u>201754051</u>	02/11/2017	Thu	12:15	SUV1 WDB on Cambridge hit parked veh, SUV1 hit parked vehicle	SUV1, attention diverted by food, cigarettes, beverages, too far left	Dry	Bright sun	Fine	Nil (Default)	Unknown	0	0	0
CAMBRIDGE ROAD	100m	E	PEKERAU CRESCENT	<u>201814989</u>	12/06/2018	Tue	14:30	Car/Wagon1 WDB on Cambridge Road hit parked veh, Car/Wagon1 hit parked vehicle	CAR/WAGON1, alcohol test below limit, too far left	Wet	Overcast	Light rain	Nil (Default)	Unknown	0	0	1
CAMBRIDGE ROAD	110m	W	PICQUET HILL ROAD	<u>201418710</u>	23/12/2014	Tue	07:42	Car/Wagon1 WDB on CAMBRIDGE ROAD lost control on straight and hit SUV2 head on, Car/Wagon1 hit fences	CAR/WAGON1, fatigue due to lack of sleep, other inattentive, other lost control	Dry	Bright sun	Fine	Nil (Default)	Unknown	0	1	1
CAMBRIDGE ROAD		I	THORNCOMBE ROAD	<u>201358128</u>	16/11/2013	Sat	17:35	Car/Wagon1 SDB on CAMBRIDGE ROAD lost control turning right, Car/Wagon1 hit parked vehicle	CAR/WAGON1, alcohol test above limit or test refused, wheelspins/wheelies/doughnuts/drifting	Dry	Bright sun	Fine	T Junction	Give way	0	0	0
CAMBRIDGE ROAD		I	THORNCOMBE ROAD	<u>201443014</u>	14/08/2014	Thu	15:14	Car/Wagon1 SDB on CAMBRIDGE ROAD missed intersection or end of road	CAR/WAGON1, alcohol test above limit or test refused, did not stop at stop sign, new driver/under instruction, other lost control	Dry	Bright sun	Fine	T Junction	Stop	0	0	0

1-17 of 17

Untitled query

Crash year

2009 - 2019

Saved sites

SH3 RAB Te Awamutu

Plain English report

38 results from your query.

1-38 of 38

Distance	<u>Direction</u>	Side road	<u>ID</u>	Date	<u>Day of</u> week	<u>Time</u>	Description of events	Crash factors	<u>Surface</u> condition	<u>Natural</u> light	<u>Weather</u>	Junction	<u>Control</u>	<u>Crash</u> <u>count</u> fatal	<u>Crash</u> <u>count</u> severe	<u>Crash</u> count minor
	I	ARAWATA ST	<u>201897617</u>	24/07/2018	Tue	16:10	Car/Wagon1 DIRN on 003-0016 sideswiped by Unknown2 DIRN on 003-0016 turning left	UNKNOWN2, turned right from incorrect lane	Dry	Bright sun	Fine	Roundabout	Give way	0	0	0
	I	CAMBRIDGE ROAD	<u>201895902</u>	22/11/2018	Thu	17:00	Car/Wagon1 NDB on 003-0016 overtaking SUV2	CAR/WAGON1, too far left	Dry	Overcast	Fine	Roundabout	Give way	0	0	0
	1	SH 3	<u>201239396</u>	19/10/2012	Fri	07:05	Van1 NDB on ARAWATA ST hit Van2 crossing at right angle from right	VAN1, did not check/notice another party from other dirn, failed to give way at priority traffic control, ENV: slippery road due to rain	Wet	Bright sun	Light rain	Roundabout	Give way	0	0	0
	I	SH 3	<u>201736211</u>	07/04/2017	Fri	07:00	Car/Wagon1 NDB on ARAWATA ST hit rear end of Car/Wagon2 stop/slow for cross traffic	CAR/WAGON1, following too closely CAR/WAGON2, suddenly braked	Dry	Twilight	Null	Roundabout	Give way	0	0	0
	I	SH 3	<u>201138354</u>	03/11/2011	Thu	15:30	Car/Wagon1 EDB on ARAWATA ST sideswiped by SUV2 EDB on ARAWATA ST turning left	SUV2, turned right from incorrect lane	Dry	Bright sun	Fine	Roundabout	Give way	0	0	0
	I	SH 3	<u>201139354</u>	28/12/2011	Wed	10:10	Van1 EDB on ARAWATA ST sideswiped by Car/Wagon2 EDB on ARAWATA ST turning left	CAR/WAGON2, turned right from incorrect lane	Dry	Overcast	Fine	Roundabout	Give way	0	0	0
	I	SH 3	<u>201440078</u>	04/07/2014	Fri	16:55	Car/Wagon1 NDB on ARAWATA ST hit Car/Wagon2 crossing at right angle from right	CAR/WAGON1, failed to give way at priority traffic control	Dry	Bright sun	Fine	Roundabout	Give way	0	0	0
	I	SH 3	<u>201652520</u>	15/09/2016	Thu	18:45	Car/Wagon1 NDB on ARAWATA ST hit Car/Wagon2 crossing at right angle from right	CAR/WAGON1, failed to give way at priority traffic control	Wet	Dark	Fine	Roundabout	Give way	0	0	0
	Distance	• Distance Direction I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	I ARAWATA ST I CAMBRIDGE ROAD I SH 3 I SH 3 I SH 3 I SH 3 I SH 3 I SH 3	I ARAWATA 201897617 ST ST 201897617 I CAMBRIDGE 201895902 ROAD 1 SH 3 I SH 3 201239396 I SH 3 201736211 I SH 3 201138354 I SH 3 201139354 I SH 3 201139354 I SH 3 201139354 I SH 3 201440078	I ARAWATA 201897617 24/07/2018 I CAMBRIDGE 201895902 22/11/2018 I CAMBRIDGE 201239396 19/10/2012 I SH 3 201736211 07/04/2017 I SH 3 201138354 03/11/2011 I SH 3 201139354 28/12/2011 I SH 3 201139354 04/07/2014	• Distance Direction Side road ID Date week I ARAWATA ST 201897617 24/07/2018 Tue I CAMBRIDGE ROAD 201895902 22/11/2018 Thu I SH 3 201239396 19/10/2012 Fri I SH 3 201736211 07/04/2017 Fri I SH 3 201138354 03/11/2011 Thu I SH 3 201138354 03/11/2011 Thu I SH 3 201138354 03/11/2011 Thu I SH 3 201138354 04/07/2014 Fri	• Distance Direction Side road ID Date week Time I ARAWATA ST 201897517 24/07/2018 Tue 16:10 I CAMBRIDGE ROAD 201895902 22/11/2018 Thu 17:00 I SH 3 201239396 19/10/2012 Fri 07:05 I SH 3 201736211 07/04/2017 Fri 07:00 I SH 3 201138354 03/11/2011 Thu 15:30 I SH 3 201139354 28/12/2011 Wed 10:10 I SH 3 20140078 04/07/2014 Fri 16:55	DistanceDirectionSide roadIDDateweekTimeDescription of eventsIARAWATA20189761724/07/2018Tue16:10Car/Wagon1 DIRN on 003-0016 sideswiped by Unknown2 DIRN on 003-0016 turning leftICAMBRIDGE20189590222/11/2018Thu17:00Car/Wagon1 NDB on 003-0016 overtaking SUV2ICAMBRIDGE20123939619/10/2012Fri07:05Van1 NDB on ARAWATA ST hit Van2 crossing at right angle from rightISH 320173621107/04/2017Fri07:00Car/Wagon1 NDB on ARAWATA ST hit rear end of Car/Wagon2 stop/slow for cross trafficISH 320113835403/11/2011Thu15:30Car/Wagon1 EDB on ARAWATA ST sideswiped by SUV2 EDB on ARAWATA ST turning leftISH 320113935428/12/2011Wed10:10Van1 EDB on ARAWATA ST sideswiped by SUV2 EDB on ARAWATA ST turning leftISH 320144007804/07/2014Fri16:55Car/Wagon1 NDB on ARAWATA ST hit Car/Wagon2 crossing at right angle from rightISH 320165252015/09/2016Thu18:45Car/Wagon1 NDB on ARAWATA ST hit Car/Wagon2 crossing at right angle from right	Distance Direction Side road ID Date week Time Description of events Crash factors I ARAWATA ST 201897617 ST 24/07/2018 Tue 16:10 Car/Wagon1 DIRN on 003-0016 sideswiped by Unknown20 DIRN on 003-0016 turning left UNKNOWN2, turned right from incorrect lane I CAMBRIDGE ROAD 201895902 22/11/2018 Thu 17:00 Car/Wagon1 NDB on 003-0016 overtaking SUV2 CAR/WAGON1, too far left I SH 3 201239395 19/10/2012 Fri 07:05 Van1 NDB on ARAWATA ST hit Van2 crossing at right angle from right VAN1, did not check/notice another party from other dirn, failed to give way at priority traffic control I SH 3 201736211 07/04/2017 Fri 07:00 Car/Wagon1 NDB on ARAWATA ST hit car end of Car/Wagon2 stop/slow for cross traffic CAR/WAGON1, following too closely CAR/WAGON2, suddenly braked I SH 3 201138354 03/11/2011 Thu 15:30 Car/Wagon1 EDB on ARAWATA ST sideswiped by SUV2 EDB on ARAWATA ST turning left SUV2, turned right from incorrect lane I SH 3 201138354 28/12/2011 Wed 10:10 Van1 EDB on ARAW	• Distance Direction Side road ID Date week Time Description of events Crash factors condition I ARAWATA ST 201897617 201897617 24/07/2018 Tue 16:0 Car/Magon1 NDR on 003-0016 sideswiped by UNKnown2 DDRN no 003-0015 turning left UNKKNOWN2, turned right from incorrect lane Dry I CAMBRIDGE 201895902 22/11/2018 Thu 17:0 Car/Magon1 NDB on 003-0016 CAR/WAGON1, too far left Dry I ROAD 201239396 19/10/2012 Fri 07:00 Van1 NDB on ARAWATA ST hit Van2 crossing at right angle from right VAN1, did not check/notice another party from other dim, failed to give way at priority traffic control, ENV: slippery road due to rain Wet I SH 3 201736211 Thu SH 3 Car/Wagon1 NDB on ARAWATA ST infeirer and of Car/Wagon2 CAR/WAGON1, following too closely CAR/WAGON2, suddenly braked Dry I SH 3 201138354 3/11/2011 Thu 15:30 Car/Wagon1 EDB on ARAWATA ST ideswiped by Car/Wagon2 EDB on ARAWATA ST turning left CAR/WAGON2, turned right from incorrect lane Dry I SH 3	• DistanceDirectionSide roadIDDateweekTimeDescription of eventsCrash factorsconditionjentIARAWATA20189761724/07/2018Tue16:0Car/Wagon1 NDR no 003-0016 sideswiped by Unknown2 DIRN no 30:0016 turning leftUNKKNOWN2, turned right from incorrect laneDryBright sunICAMBRIDGE20189590222/11/2018Tue17:00Car/Wagon1 NDB on 03-0016 overtaking SUV2CAR/WAGON1, too far leftDryOvercastIROADSH320123939619/10/2012Fri7:00Van1 NDB on ARAWATA ST hit Van2 crossing at right angle from rightWAN1, did not check/notice another party from other dirn, faited to give way at priority traffic control, ENV: slippery road due to rainWetBright sunISH320173621107/04/2017FriSidsCar/Wagon1 NDB on ARAWATA ST sideswiped by SUV2 EDB on ARAWATA ST sideswiped by SUV2 EDB on ARAWATA ST turning leftCAR/WAGON2, suddenly brakedDryBright sunISH320113835403/11/2011ThuIS:30Car/Wagon1 EDB on ARAWATA ST sideswiped by SUV2 EDB on ARAWATA ST turning leftSUV2, turned right from incorrect laneDryDryOvercast sideswiped by SUV2 EDB on on ARAWATA ST turning leftISH32014007820113935428/12/2011WetSideVan1 EDB on ARAWATA ST sideswiped by Car/Wagon2 EDB on ARAWATA ST turning leftCAR/WAGON1, failed to give way at priority traffic controlDryOvercast sinf <td>• Distance Direction Side road ID Date week Time Description of events Crash factors condition Light Weather I ARAWATA ST 2018975017 ST 24/07/2018 Tue 16:10 Car/Wagon1 DIRN on03-0016 on03-0016 turning left UNKNOWKA2, turned right from incorrect lane Dry Bright Bright Fine I CAMBRIDGE ROAD 201895900 22/11/2018 Tue 17:00 Car/Wagon1 DIRD on 03-0016 onvertaking SUV2 CAR/WAGON1, too far left Dry Overcas Fine I NA SH3 20129396 19/10/2012 Fin 07:05 Car/Wagon1 NDB on ARAWATA ST hit Van 2 crossing at right angle from right VAIL, did not check/notice another party from other drim, failed or yew ay at priority failed or yew ay at priority failed or yew ay failed Dry Dry Dry Dr</td> <td>• Distance Direction Side road IQ Date week Time Description of events Crash factors condition light Weither Munction I ARAWATA ST 201897617 201897617 2014972018 Tue 16:1 Gra/Wagon1 DING non03-0016 sides/Weighed by Unknown2 0IBM no 003-0016 turning left UNKNOWN2, turned right from incorrect lane Dry Bright Fine Roundabout I CAMBRIDE 201895902 22/11/2018 Thu 17:00 Car/Wagon1 NDB on 003-0016 overtaking SUV2 CAR/WAGON1, tol far left Dry Overcast Fine Roundabout I SH3 20129396 19/10/2012 Fri 07:05 Van1 NDB on ARAWATA ST hit nght corresting stright angle for right corresting stright angle for right corresting trained to give way at priority from other drim, failed to give way at priority from other drim, failed to give way at priority traffic control, ENV: slipperyroad drive to rain Wet Singlet Usinglet Null Roundabout I SH3 201736211 Fri 07:0 Vir Singlet Singlet Singlet Singlet Singlet Singlet</td> <td>Distance Distance Bide read ID Date Time Description of events Crash factors condition light Weather Junction Condition I ARAWATA ST 201897511 24/07/2018 Tw 1.0 SchWagon1 DIRN on 003-0016 UNNKNOW2, turned right from incorrect lane Dry Bright Fine Roundabout Give way I CAMBRIDGE 201897502 22/11/2018 Tw 1.00 CARWagon1 NDB on 03:0016 overtaking SU/2 CAR/WAGON1, too far left Dry Overcast Fine Roundabout Give way I SH3 SH3 201233351 19/10/2012 Fin Or.0 Van1 MOB on ARAWATAST right VAN1, did not check/notice another party from other dim, right Number party from other dim, right<</td> <td>Distance Direction <thdirection< th=""> Direction <thd< td=""><td>Niteme Niteme Name Name</td></thd<></thdirection<></td>	• Distance Direction Side road ID Date week Time Description of events Crash factors condition Light Weather I ARAWATA ST 2018975017 ST 24/07/2018 Tue 16:10 Car/Wagon1 DIRN on03-0016 on03-0016 turning left UNKNOWKA2, turned right from incorrect lane Dry Bright Bright Fine I CAMBRIDGE ROAD 201895900 22/11/2018 Tue 17:00 Car/Wagon1 DIRD on 03-0016 onvertaking SUV2 CAR/WAGON1, too far left Dry Overcas Fine I NA SH3 20129396 19/10/2012 Fin 07:05 Car/Wagon1 NDB on ARAWATA ST hit Van 2 crossing at right angle from right VAIL, did not check/notice another party from other drim, failed or yew ay at priority failed or yew ay at priority failed or yew ay failed Dry Dry Dry Dr	• Distance Direction Side road IQ Date week Time Description of events Crash factors condition light Weither Munction I ARAWATA ST 201897617 201897617 2014972018 Tue 16:1 Gra/Wagon1 DING non03-0016 sides/Weighed by Unknown2 0IBM no 003-0016 turning left UNKNOWN2, turned right from incorrect lane Dry Bright Fine Roundabout I CAMBRIDE 201895902 22/11/2018 Thu 17:00 Car/Wagon1 NDB on 003-0016 overtaking SUV2 CAR/WAGON1, tol far left Dry Overcast Fine Roundabout I SH3 20129396 19/10/2012 Fri 07:05 Van1 NDB on ARAWATA ST hit nght corresting stright angle for right corresting stright angle for right corresting trained to give way at priority from other drim, failed to give way at priority from other drim, failed to give way at priority traffic control, ENV: slipperyroad drive to rain Wet Singlet Usinglet Null Roundabout I SH3 201736211 Fri 07:0 Vir Singlet Singlet Singlet Singlet Singlet Singlet	Distance Distance Bide read ID Date Time Description of events Crash factors condition light Weather Junction Condition I ARAWATA ST 201897511 24/07/2018 Tw 1.0 SchWagon1 DIRN on 003-0016 UNNKNOW2, turned right from incorrect lane Dry Bright Fine Roundabout Give way I CAMBRIDGE 201897502 22/11/2018 Tw 1.00 CARWagon1 NDB on 03:0016 overtaking SU/2 CAR/WAGON1, too far left Dry Overcast Fine Roundabout Give way I SH3 SH3 201233351 19/10/2012 Fin Or.0 Van1 MOB on ARAWATAST right VAN1, did not check/notice another party from other dim, right Number party from other dim, right<	Distance Direction Direction <thdirection< th=""> Direction <thd< td=""><td>Niteme Niteme Name Name</td></thd<></thdirection<>	Niteme Niteme Name Name

Showing <u>20</u> 100 results at once.

6/7/2019

Crash Analysis System (CAS) | NZTA

<u>Crash road</u>	Distance	Direction	Side road	<u>ID</u>	<u>Date</u>	<u>Day of</u> week	<u>Time</u>	Description of events	Crash factors	Surface condition	<u>Natural</u> light	Weather	Junction	<u>Control</u>	<u>Crash</u> count fatal	<u>Crash</u> count severe	<u>Crash</u> count minor
BOND ROAD		I	OHAUPO ROAD	<u>201637035</u>	28/04/2016	Thu	11:00	Truck1 and Truck2 both SDB on BOND ROAD and turning; collided	TRUCK1, alcohol test below limit, too far left TRUCK2, alcohol test below limit	Dry	Bright sun	Fine	T Junction	Give way	0	0	0
BOND ROAD		I	SH 3	<u>201837764</u>	07/04/2018	Sat	12:30	Car/Wagon2 turning right hit by oncoming Car/Wagon1 SDB on Ohaupo	CAR/WAGON1, other wrong lane or position CAR/WAGON2, failed to give way when waved through by other dri	Dry	Bright sun	Fine	T Junction	Give way	0	0	0
BOND ROAD		I	SH 3	<u>201233687</u>	21/06/2012	Thu	16:30	Truck1 and Van2 both SDB on BOND ROAD and turning; collided	TRUCK1, blind spot VAN2, failed to notice indication of vehicle in front	Dry	Bright sun	Fine	T Junction	Give way	0	0	0
CAMBRIDGE ROAD		I	OHAUPO ROAD	<u>201631734</u>	21/01/2016	Thu	00:00	Car/Wagon1 EDB on CAMBRIDGE ROAD changing lanes to left hit Car/Wagon2	CAR/WAGON1, alcohol test below limit, did not check/notice another party from other dirn, other inattentive, overtaking on left without due care CAR/WAGON2, alcohol test below limit	Dry	Bright sun	Fine	Roundabout	Give way	0	0	0
CAMBRIDGE ROAD		I	SH 3	<u>201836605</u>	03/04/2018	Tue	18:15	Van1 SDB on CAMBRIDGE ROAD hit Car/Wagon2 merging from the left	CAR/WAGON2, failed to give way at priority traffic control	Dry	Bright sun	Fine	Roundabout	Give way	0	0	0
CAMBRIDGE ROAD		Ι	SH 3	<u>201836607</u>	27/02/2018	Tue	16:00	Car/Wagon1 SDB on CAMBRIDGE ROAD sideswiped by Van2 SDB on CAMBRIDGE ROAD turning left	VAN2, failed to give way at priority traffic control	Dry	Twilight	Fine	Roundabout	Give way	0	0	0
CAMBRIDGE ROAD		Ι	SH 3	<u>201040618</u>	24/09/2010	Fri	19:00	Car/Wagon1 SDB on CAMBRIDGE ROAD hit Car/Wagon2 merging from the left	CAR/WAGON2, alcohol suspected, failed to give way at priority traffic control	Dry	Dark	Fine	Roundabout	Give way	0	0	0
CAMBRIDGE ROAD		I	SH 3	<u>201356469</u>	01/11/2013	Fri	08:13	Car/Wagon1 NDB on CAMBRIDGE ROAD hit Motorcycle2 crossing at right angle from right	CAR/WAGON1, alcohol test above limit or test refused, did not check/notice another party from other dirn, failed to give way at priority traffic control	Dry	Overcast	Fine	Roundabout	Give way	0	0	0
CAMBRIDGE ROAD		I	SH 3	<u>201435253</u>	21/03/2014	Fri	16:06	Van1 SDB on CAMBRIDGE ROAD hit Car/Wagon2 merging from the right	CAR/WAGON2, failed to give way at priority traffic control	Dry	Bright sun	Fine	Roundabout	Give way	0	0	0
CAMBRIDGE ROAD		I	SH 3 ALBERT PARK	<u>201138015</u>	05/10/2011	Wed	21:15	Car/Wagon1 WDB on CAMBRIDGE ROAD hit Car/Wagon2 turning right onto AXROAD from the left	CAR/WAGON2, failed to give way at priority traffic control, misjudged intentions of another party	Wet	Dark	Fine	Roundabout	Give way	0	0	0
CAMBRIDGE ROAD		I	SH 3 ALBERT PARK DRIVE	<u>201547700</u>	24/09/2015	Thu	09:47	Car/Wagon1 WDB on CAMBRIDGE ROAD hit Car/Wagon2 crossing at right angle from right	CAR/WAGON2, attn diverted by scenery/persons outside vehicle	Dry	Overcast	Fine	Roundabout	Give way	0	0	0
ROGERS PLACE	50m	E	BOND ROAD	<u>201640974</u>	26/05/2016	Thu	14:36	Car/Wagon1 WDB on ROGERS PLACE hit Car/Wagon2 turning into angle park	CAR/WAGON2, did not check/notice another party behind	Dry	Bright sun	Null	Nil (Default)	Unknown	0	0	0

6/7/2019

Crash Analysis System (CAS) | NZTA

<u>Crash road</u>	Distance	<u>Direction</u>	Side road	<u>ID</u>	Date	<u>Day of</u> <u>week</u>	<u>Time</u>	Description of events	Crash factors	<u>Surface</u> condition	<u>Natural</u> light	<u>Weather</u>	Junction	<u>Control</u>	<u>Crash</u> count fatal	<u>Crash</u> <u>count</u> severe	<u>Crash</u> count minor
ROGERS PLACE	60m	W	TE RAHU ROAD	<u>201746939</u>	04/08/2017	Fri	11:30	Car/Wagon1 NDB on Rogers place hit VEHB manoeuvring, Car/Wagon1 hit houses	CAR/WAGON1, wrong pedal/foot slipped	Dry	Overcast	Fine	Nil (Default)	Unknown	0	0	0
SH 3		I	ARAWATA ST	<u>201833163</u>	02/02/2018	Fri	11:50	Car/Wagon1 SDB on SH 3 hit rear end of Car/Wagon2 stopped/moving slowly	CAR/WAGON1, following too closely	Dry	Bright sun	Fine	Roundabout	Give way	0	0	0
SH 3		1	ARAWATA ST	<u>201302009</u>	13/03/2013	Wed	20:19	Car/Wagon1 EDB on SH 3 lost control turning right, Car/Wagon1 hit traffic islands, parked vehicle, stationary vehicle	CAR/WAGON1, alcohol test above limit or test refused, driver over- reacted, lost control when turning, speed entering corner/curve	Dry	Dark	Fine	Roundabout	Give way	0	1	1
SH 3		I	ARAWATA ST	<u>201339127</u>	30/09/2013	Mon	18:20	Car/Wagon1 EDB on SH 3 hit SUV2 crossing at right angle from right	CAR/WAGON1, failed to give way at priority traffic control, failed to notice control	Wet	Overcast	Light rain	Roundabout	Give way	0	0	0
SH 3		I	ARAWATA ST	<u>201642318</u>	29/06/2016	Wed	11:52	Car/Wagon1 SDB on SH 3 hit Car/Wagon2 crossing at right angle from right	CAR/WAGON2, alcohol test below limit CAR/WAGON1, alcohol test below limit, did not check/notice another party from other dirn, failed to give way at priority traffic control	Wet	Overcast	Heavy rain	Roundabout	Give way	0	0	0
SH 3		I	ARAWATA ST	<u>201752650</u>	10/10/2017	Tue	13:15	Car/Wagon1 SDB on SH 3 changing lanes to left hit Car/Wagon2	CAR/WAGON1, following too closely	Dry	Bright sun	Fine	Roundabout	Give way	0	0	0
SH 3		I	ARAWATA ST	<u>201440072</u>	04/07/2014	Fri	14:00	Car/Wagon1 NDB on SH 3 hit rear of Car/Wagon2 NDB on SH 3 turning right from left side	CAR/WAGON1, travelled straight ahead from turning lane or flus	Dry	Bright sun	Fine	Roundabout	Give way	0	0	0
SH 3		I	ARAWATA ST	<u>201039448</u>	08/09/2010	Wed	08:00	Car/Wagon1 WDB on SH 3 overtaking hit Car/Wagon2 WDB on SH 3 turning right	CAR/WAGON2, turned right from incorrect lane	Dry	Overcast	Fine	Roundabout	Give way	0	0	0
SH 3		I	ARAWATA ST	<u>201201043</u>	19/01/2012	Thu	22:17	Motorcycle2 turning right hit by oncoming SUV1 NDB on SH 3	SUV1, failed to give way at priority traffic control, misjudged intentions of another party	Dry	Dark	Fine	Roundabout	Give way	0	0	1
SH 3		I	ARAWATA ST	<u>201039388</u>	03/09/2010	Fri	08:30	Car/Wagon1 SDB on SH 3 hit Car/Wagon2 merging from the left	CAR/WAGON1, failed to give way at priority traffic control	Dry	Overcast	Fine	Roundabout	Give way	0	0	0
SH 3		I	ARAWATA ST	<u>201848911</u>	25/09/2018	Tue	16:20	Car/Wagon1 NDB on ARAWATA STREET, TE AWAMUTU, WAIPA sideswiped by Van2 NDB on ARAWATA STREET, TE AWAMUTU, WAIPA turning left	VAN2, alcohol test below limit, other wrong lane or position CAR/WAGON1, alcohol test below limit	Dry	Bright sun	Fine	Roundabout	Give way	0	0	0
SH 3	5m	S	BOND ROAD	<u>2936728</u>	16/05/2009	Sat	09:34	SUV1 SDB on SH 3 hit rear end of Car/Wagon2 stop/slow for queue	SUV1, failed to notice car slowing, stopping/stationary, following too closely, ENV: slippery road due to rain	Wet	Overcast	Light rain	T Junction	Give way	0	0	0

6/7/2019

Crash Analysis System (CAS) | NZTA

<u>Crash road</u>	<u>Distance</u>	Direction	Side road	<u>ID</u>	Date	<u>Day of</u> <u>week</u>	<u>Time</u>	Description of events	Crash factors	<u>Surface</u> condition	<u>Natural</u> light	<u>Weather</u>	Junction	<u>Control</u>	<u>Crash</u> count fatal	<u>Crash</u> <u>count</u> <u>severe</u>	<u>Crash</u> count minor
SH 3		I	BOND ROAD	<u>201519543</u>	23/12/2015	Wed	14:40	Car/Wagon2 turning right hit by oncoming SUV1 SDB on SH 3	CAR/WAGON2, didnt look/notice other party - visibility obstruc, failed to give way turning to non- turning traffic SUV1, failed to give way when waved through by other dri	Dry	Bright sun	Null	T Junction	Give way	0	0	1
SH 3		I	CAMBRIDGE ROAD	<u>201335938</u>	08/08/2013	Thu	14:00	Car/Wagon1 SDB on SH 3 hit Car/Wagon2 merging from the left	CAR/WAGON1, failed to give way at priority traffic control, other inattentive	Dry	Overcast	Fine	Roundabout	Give way	0	0	0
SH 3		I	CAMBRIDGE ROAD	<u>201530394</u>	06/01/2015	Tue	08:00	Van1 EDB on SH 3 sideswiped by Car/Wagon2 EDB on SH 3 turning left	VAN1, other inattentive, turned right from incorrect lane	Dry	Bright sun	Fine	Roundabout	Give way	0	0	0
SH 3		I	CAMBRIDGE ROAD	<u>201650354</u>	26/09/2016	Mon	15:40	Car/Wagon1 SDB on SH 3 sideswiped by Car/Wagon2 SDB on SH 3 turning left	CAR/WAGON1, travelled straight ahead from turning lane or flus	Dry	Overcast	Fine	Roundabout	Give way	0	0	0
SH 3		I	CAMBRIDGE ROAD	<u>201652816</u>	18/11/2016	Fri	14:45	Van1 EDB on Ohaupo Road sideswiped by Car/Wagon2 EDB on Ohaupo Road turning left	CAR/WAGON2, turned right from incorrect lane	Dry	Bright sun	Fine	Roundabout	Nil	0	0	0
SH 3		I	SH 3	<u>201739448</u>	15/05/2017	Mon	14:50	Car/Wagon1 EDB on Ohaupo road sideswiped by Car/Wagon2 EDB on Ohaupo road turning left	CAR/WAGON2, did not check/notice another party behind, non-compliance with regulatory device with sign or, turned right from incorrect lane	Dry	Overcast	Fine	Roundabout	Give way	0	0	0

1-38 of 38

Appendix D: T11 Modelling Reports

Modelling outputs for the following intersections included:

- Proposed Access 1
- Proposed Access 2
- Proposed Access 3
- Gleneagles Road

Also included as reference for the high-level assessment of State Highway 3:

• State Highway 3 / Cambridge Road / Arawata Street intersectio

▽ Site: 101 [2018_Low Dev_Access 1_AM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Performance Measure	Vehicles	Persons
Fravel Speed (Average)	49.5 km/h	49.5 km/h
Travel Distance (Total)	521.7 veh-km/h	626.1 pers-km/h
Travel Time (Total)	10.5 veh-h/h	12.7 pers-h/h
Demand Flows (Total)	518 veh/h	621 pers/h
Percent Heavy Vehicles (Demand)	1.0 %	021 per3/11
Degree of Saturation	0.173	
Practical Spare Capacity	466.9 %	
Effective Intersection Capacity	2996 veh/h	
	2330 Vermi	
Control Delay (Total)	0.09 veh-h/h	0.11 pers-h/h
Control Delay (Average)	0.6 sec	0.6 sec
Control Delay (Worst Lane)	7.7 sec	
Control Delay (Worst Movement)	7.7 sec	7.7 sec
Geometric Delay (Average)	0.5 sec	
Stop-Line Delay (Average)	0.2 sec	
dling Time (Average)	0.0 sec	
ntersection Level of Service (LOS)	NA	
95% Back of Queue - Vehicles (Worst Lane)	0.1 veh	
95% Back of Queue - Distance (Worst Lane)	0.6 m	
Queue Storage Ratio (Worst Lane)	0.00	"
Total Effective Stops	31 veh/h	37 pers/h
Effective Stop Rate	0.06	0.06
Proportion Queued	0.04	0.04
Performance Index	10.8	10.8
Cost (Total)	165.94 \$/h	165.94 \$/h
Fuel Consumption (Total)	32.3 L/h	100.0+ ψ/II
Carbon Dioxide (Total)	76.3 kg/h	
Hydrocarbons (Total)	0.005 kg/h	
Carbon Monoxide (Total)	0.059 kg/h	
NOx (Total)	0.040 kg/h	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good

LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Site Model Variability Index (Iterations 3 to N): 1.2 %

Number of Iterations: 4 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 28.0% 1.6% 0.8%

Performance Measure	Vehicles	Persons
Demand Flows (Total)	248,590 veh/y	298,307 pers/y
Delay	44 veh-h/y	52 pers-h/y
Effective Stops	14,679 veh/y	17,614 pers/y
Travel Distance	250,434 veh-km/y	300,521 pers-km/y
Travel Time	5,062 veh-h/y	6,075 pers-h/y
Cost	79,650 \$/y	79,650 \$/y
Fuel Consumption	15,521 L/y	-
Carbon Dioxide	36,617 kg/y	
Hydrocarbons	2 kg/y	
Carbon Monoxide	28 kg/y	
NOx	19 kg/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 31 May 2019 1:42:52 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

Lane Level of Service

abla Site: 101 [2018_Low Dev_Access 1_AM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Γ		Ap	proach	es	Intersection
L		South	East	West	Intersection
	LOS	А	NA	NA	NA

LOS A LOS B LOS C LOS D LOS E LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 31 May 2019 1:42:52 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

▽ Site: 101 [2018_Low Dev_Access 1_PM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Performance Measure	Vehicles	Persons
ravel Speed (Average)	49.5 km/h	49.5 km/h
Travel Distance (Total)	521.7 veh-km/h	626.1 pers-km/h
Travel Time (Total)	10.5 veh-h/h	12.6 pers-h/h
Demand Flows (Total)	518 veh/h	621 pers/h
Percent Heavy Vehicles (Demand)	1.0 %	621 per3/11
Degree of Saturation	0.172	
Practical Spare Capacity	471.0 %	
Effective Intersection Capacity	3017 veh/h	
Control Delay (Total)	0.08 veh-h/h	0.09 pers-h/h
Control Delay (Average)	0.5 sec	0.5 sec
Control Delay (Worst Lane)	7.8 sec	
Control Delay (Worst Movement)	7.8 sec	7.8 sec
Geometric Delay (Average)	0.5 sec	
Stop-Line Delay (Average)	0.1 sec	
dling Time (Average)	0.0 sec	
ntersection Level of Service (LOS)	NA	
95% Back of Queue - Vehicles (Worst Lane)	0.1 veh	
95% Back of Queue - Distance (Worst Lane)	0.5 m	
Queue Storage Ratio (Worst Lane)	0.00	
otal Effective Stops	28 veh/h	34 pers/h
Effective Stop Rate	0.05	0.05
Proportion Queued	0.02	0.02
Performance Index	10.8	10.8
Cost (Total)	217.50 \$/h	217.50 \$/h
Fuel Consumption (Total)	32.3 L/h	217.00 ψ/Π
Carbon Dioxide (Total)	76.1 kg/h	
Hydrocarbons (Total)	0.005 kg/h	
Carbon Monoxide (Total)	0.059 kg/h	
NOx (Total)	0.040 kg/h	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 0.6 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 63.7% 13.7% 0.6%

Performance Measure	Vehicles	Persons	
Demand Flows (Total)	248,590 veh/y	298,307 pers/y	
Delay	38 veh-h/y	45 pers-h/y	
Effective Stops	13,465 veh/y	16,158 pers/y	
Travel Distance	250,428 veh-km/y	300,513 pers-km/y	
Travel Time	5,057 veh-h/y	6,068 pers-h/y	
Cost	104,400 \$/y	104,400 \$/y	
Fuel Consumption	15,503 L/y		
Carbon Dioxide	36,544 kg/y		
Hydrocarbons	2 kg/y		
Carbon Monoxide	28 kg/y		
NOx	19 kg/y		

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 31 May 2019 1:42:52 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

Lane Level of Service

abla Site: 101 [2018_Low Dev_Access 1_PM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Γ		Ap	proach	Intersection		
L		South	East	West	Intersection	
	LOS	Α	NA	NA	NA	

LOS B LOS A LOS C LOS D LOS E LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 31 May 2019 1:42:52 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

✓ Site: 101 [2035_Hi Dev_Access 1_AM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Performance Measure	Vehicles	Persons
Travel Speed (Average)	49.3 km/h	49.3 km/h
Fravel Distance (Total)	720.9 veh-km/h	865.1 pers-km/h
Travel Time (Total)	14.6 veh-h/h	17.6 pers-h/h
Demand Flows (Total)	719 veh/h	863 pers/h
Percent Heavy Vehicles (Demand)	1.0 %	·
Degree of Saturation	0.233	
Practical Spare Capacity	320.4 %	
Effective Intersection Capacity	3084 veh/h	
Control Delay (Total)	0.18 veh-h/h	0.22 pers-h/h
Control Delay (Average)	0.16 Ven-1/11 0.9 sec	0.22 pers-n/n
Control Delay (Worst Lane)	9.6 sec	0.3 560
Control Delay (Worst Movement)	9.6 sec	9.6 sec
Geometric Delay (Average)	0.6 sec	9.0 Sec
Stop-Line Delay (Average)	0.3 sec	
dling Time (Average)	0.0 sec	
ntersection Level of Service (LOS)	NA	
	IN/A	
95% Back of Queue - Vehicles (Worst Lane)	0.2 veh	
95% Back of Queue - Distance (Worst Lane)	1.2 m	
Queue Storage Ratio (Worst Lane)	0.00	
Total Effective Stops	61 veh/h	73 pers/h
Effective Stop Rate	0.09	0.09
Proportion Queued	0.06	0.06
Performance Index	15.2	15.2
Cost (Total)	233.25 \$/h	233.25 \$/h
Fuel Consumption (Total)	45.1 L/h	200.20 ψ/Π
Carbon Dioxide (Total)	106.5 kg/h	
Hydrocarbons (Total)	0.006 kg/h	
Carbon Monoxide (Total)	0.082 kg/h	
NOx (Total)	0.057 kg/h	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good

LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 1.7 %

Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 3.0% 1.5% 0.7%

Performance Measure	Vehicles	Persons
Demand Flows (Total)	345,095 veh/y	414,114 pers/y
Delay	88 veh-h/y	106 pers-h/y
Effective Stops	29,348 veh/y	35,217 pers/y
Travel Distance	346,050 veh-km/y	415,260 pers-km/y
Travel Time	7,025 veh-h/y	8,431 pers-h/y
Cost	111.961 \$/y	111,961 \$/y
Fuel Consumption	21,672 L/y	, +· ,
Carbon Dioxide	51,126 kg/y	
Hydrocarbons	3 kg/y	
Carbon Monoxide	39 kg/y	
NOx	27 kg/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 31 May 2019 1:42:57 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

Lane Level of Service

▽ Site: 101 [2035_Hi Dev_Access 1_AM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

ſ		Ap	Intersection			
l		South	East	West	Intersection	
	LOS	А	NA	NA	NA	

LOS B LOS A LOS C LOS D LOS E LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 31 May 2019 1:42:57 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

✓ Site: 101 [2035_Hi Dev_Access 1_PM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Performance Measure	Vehicles	Persons
Fravel Speed (Average)	49.3 km/h	49.3 km/h
Fravel Distance (Total)	720.9 veh-km/h	865.1 pers-km/h
Travel Time (Total)	14.6 veh-h/h	17.5 pers-h/h
Demand Flows (Total)	719 veh/h	863 pers/h
Percent Heavy Vehicles (Demand)	1.0 %	
Degree of Saturation	0.230	
Practical Spare Capacity	326.4 %	
Effective Intersection Capacity	3128 veh/h	
	0120 001/11	
Control Delay (Total)	0.15 veh-h/h	0.18 pers-h/h
Control Delay (Average)	0.8 sec	0.8 sec
Control Delay (Worst Lane)	9.8 sec	
Control Delay (Worst Movement)	9.8 sec	9.8 sec
Geometric Delay (Average)	0.6 sec	
Stop-Line Delay (Average)	0.1 sec	
dling Time (Average)	0.0 sec	
ntersection Level of Service (LOS)	NA	
NEW Rook of Queue Vehicles (Worst Long)	0.1.voh	
95% Back of Queue - Vehicles (Worst Lane)	0.1 veh	
95% Back of Queue - Distance (Worst Lane)	1.0 m 0.00	
Queue Storage Ratio (Worst Lane)		00
Fotal Effective Stops	53 veh/h	63 pers/h
Effective Stop Rate	0.07	0.07
Proportion Queued	0.04	0.04
Performance Index	15.1	15.1
Cost (Total)	303.70 \$/h	303.70 \$/h
Fuel Consumption (Total)	45.1 L/h	- •
Carbon Dioxide (Total)	106.2 kg/h	
lydrocarbons (Total)	0.006 kg/h	
Carbon Monoxide (Total)	0.082 kg/h	
NOx (Total)	0.056 kg/h	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good

LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 0.9 %

Number of Iterations: 4 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 18.2% 1.2% 0.6%

Performance Measure	Vehicles	Persons
Demand Flows (Total)	345,095 veh/y	414,114 pers/y
Delay	73 veh-h/y	87 pers-h/y
Effective Stops	25,317 veh/y	30,380 pers/y
Travel Distance	346,036 veh-km/y	415,243 pers-km/y
Travel Time	7,012 veh-h/y	8,415 pers-h/y
Cost	145.777 \$/v	145,777 \$/y
Fuel Consumption	21,633 L/y	
Carbon Dioxide	50,993 kg/y	
Hydrocarbons	3 kg/y	
Carbon Monoxide	39 kg/y	
NOx	27 kg/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 31 May 2019 1:42:57 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

Lane Level of Service

abla Site: 101 [2035_Hi Dev_Access 1_PM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

ſ		Ap	Intersection			
l		South	East	West	Intersection	
	LOS	А	NA	NA	NA	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 31 May 2019 1:42:57 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

▽ Site: 101 [2018_Low Dev_Access 2_AM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

ntersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Fravel Speed (Average)	49.3 km/h	49.3 km/h
Travel Distance (Total)	210.1 veh-km/h	252.2 pers-km/h
Travel Time (Total)	4.3 veh-h/h	5.1 pers-h/h
Demand Flows (Total)	496 veh/h	595 pers/h
Percent Heavy Vehicles (Demand)	1.0 %	
Degree of Saturation	0.168	
Practical Spare Capacity	483.8 %	
Effective Intersection Capacity	2954 veh/h	
Control Delay (Total)	0.05 veh-h/h	0.06 pero h th
Control Delay (Total) Control Delay (Average)	0.05 ven-n/n 0.4 sec	0.06 pers-h/h 0.4 sec
Control Delay (Worst Lane)	6.2 sec	0.4 Sec
Control Delay (Worst Movement)	7.7 sec	7.7 sec
Geometric Delay (Average)	0.3 sec	7.7 Sec
Stop-Line Delay (Average)	0.3 sec	
dling Time (Average)	0.1 sec	
ntersection Level of Service (LOS)	NA	
	NA	
95% Back of Queue - Vehicles (Worst Lane)	0.1 veh	
95% Back of Queue - Distance (Worst Lane)	0.6 m	
Queue Storage Ratio (Worst Lane)	0.00	
Total Effective Stops	18 veh/h	21 pers/h
Effective Stop Rate	0.04	0.04
Proportion Queued	0.02	0.02
Performance Index	4.5	4.5
Cost (Total)	71.45 \$/h	71.45 \$/h
Fuel Consumption (Total)	13.2 L/h	ο φ/π
Carbon Dioxide (Total)	31.2 kg/h	
Hydrocarbons (Total)	0.002 kg/h	
Carbon Monoxide (Total)	0.024 kg/h	
NOx (Total)	0.017 kg/h	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 0.9 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 49.9% 27.9% 0.9%

Performance Measure	Vehicles	Persons
Demand Flows (Total)	237,979 veh/y	285,575 pers/y
Delay	25 veh-h/y	30 pers-h/y
Effective Stops	8,569 veh/y	10,283 pers/y
Travel Distance	100,865 veh-km/y	121,037 pers-km/y
Travel Time	2,047 veh-h/y	2,457 pers-h/y
Cost	34.296 \$/y	34,296 \$/y
Fuel Consumption	6,341 L/v	54,290 Wy
Carbon Dioxide	14,956 kg/y	
Hydrocarbons	1 kg/y	
Carbon Monoxide	12 kg/y	
NOx	8 kg/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 31 May 2019 1:42:53 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

Lane Level of Service

▽ Site: 101 [2018_Low Dev_Access 2_AM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

	Ap	oproach	Intersection		
	South	East	West	Intersection	
LOS	Α	NA	NA	NA	

(HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN & TAYLOR | Processed: Friday, 31 May 2019 1:42:53 PM

Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

▽ Site: 101 [2018_Low Dev_Access 2_PM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Performance Measure	Vehicles	Persons
ravel Speed (Average)	49.3 km/h	49.3 km/h
ravel Distance (Total)	210.1 veh-km/h	252.1 pers-km/h
ravel Time (Total)	4.3 veh-h/h	5.1 pers-h/h
Demand Flows (Total)	496 veh/h	595 pers/h
Percent Heavy Vehicles (Demand)	1.0 %	
Degree of Saturation	0.167	
Practical Spare Capacity	487.5 %	
Effective Intersection Capacity	2972 veh/h	
Control Delay (Total)	0.05 veh-h/h	0.06 pers-h/h
Control Delay (Average)	0.3 sec	0.3 sec
Control Delay (Worst Lane)	5.9 sec	
Control Delay (Worst Movement)	7.7 sec	7.7 sec
Geometric Delay (Average)	0.3 sec	
Stop-Line Delay (Average)	0.0 sec	
dling Time (Average)	0.0 sec	
ntersection Level of Service (LOS)	NA	
5% Back of Queue - Vehicles (Worst Lane)	0.0 veh	
5% Back of Queue - Distance (Worst Lane)	0.3 m	
Queue Storage Ratio (Worst Lane)	0.00	
Total Effective Stops	16 veh/h	20 pers/h
Effective Stops	0.03	0.03
Proportion Queued	0.03	0.01
Performance Index	4.4	4.4
	T.T	т. т
Cost (Total)	87.53 \$/h	87.53 \$/h
Fuel Consumption (Total)	13.2 L/h	
Carbon Dioxide (Total)	31.1 kg/h	
lydrocarbons (Total)	0.002 kg/h	
Carbon Monoxide (Total)	0.024 kg/h	
NOx (Total)	0.017 kg/h	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 0.4 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 47.1% 13.3% 0.4%

Performance Measure	Vehicles	Persons
Demand Flows (Total)	237,979 veh/y	285,575 pers/y
Delay	22 veh-h/y	27 pers-h/y
Effective Stops	7,859 veh/y	9,430 pers/y
Travel Distance	100,855 veh-km/y	121,026 pers-km/y
Travel Time	2,045 veh-h/y	2,454 pers-h/y
Cost	42,012 \$/y	42,012 \$/y
Fuel Consumption	6,331 L/y	
Carbon Dioxide	14,924 kg/y	
Hydrocarbons	1 kg/y	
Carbon Monoxide	12 kg/y	
NOx	8 kg/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 31 May 2019 1:42:53 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

Lane Level of Service

V Site: 101 [2018_Low Dev_Access 2_PM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Γ		Approaches			Intersection	
L		South	East	West	Intersection	
	LOS	Α	NA	NA	NA	

(HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN & TAYLOR | Processed: Friday, 31 May 2019 1:42:53 PM

Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

∇ Site: 101 [2035_Hi Dev_Access 2_AM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average)	48.8 km/h	48.8 km/h
Travel Distance (Total)	291.0 veh-km/h	349.2 pers-km/h
Travel Time (Total)	6.0 veh-h/h	7.2 pers-h/h
Demand Flows (Total)	685 veh/h	822 pers/h
Percent Heavy Vehicles (Demand)	1.0 %	
Degree of Saturation	0.225	
Practical Spare Capacity	334.7 %	
Effective Intersection Capacity	3040 veh/h	
Control Delay (Total)	0.12 veh-h/h	0.14 pers-h/h
Control Delay (Average)	0.6 sec	0.6 sec
Control Delay (Worst Lane)	7.3 sec	
Control Delay (Worst Movement)	9.7 sec	9.7 sec
Geometric Delay (Average)	0.4 sec	
Stop-Line Delay (Average)	0.2 sec	
Idling Time (Average)	0.0 sec	
Intersection Level of Service (LOS)	NA	
95% Back of Queue - Vehicles (Worst Lane)	0.2 veh	
95% Back of Queue - Distance (Worst Lane)	1.4 m	
Queue Storage Ratio (Worst Lane)	0.00	
Total Effective Stops	40 veh/h	48 pers/h
Effective Stop Rate	0.06	0.06
Proportion Queued	0.04	0.04
Performance Index	6.5	6.5
Cost (Total)	102.47 \$/h	102.47 \$/h
Fuel Consumption (Total)	18.7 L/h	
Carbon Dioxide (Total)	44.1 kg/h	
Hydrocarbons (Total)	0.003 kg/h	
Carbon Monoxide (Total)	0.034 kg/h	
NOx (Total)	0.024 kg/h	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good

LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 1.2 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 2.1% 1.0% 0.5%

Performance Measure	Vehicles	Persons	
Demand Flows (Total)	328,926 veh/y	394,712 pers/y	
Delay	58 veh-h/y	69 pers-h/y	
Effective Stops	19,276 veh/y	23,132 pers/y	
Travel Distance	139,664 veh-km/y	167,596 pers-km/y	
Travel Time	2,860 veh-h/y	3,432 pers-h/y	
Cost	49,185 \$/y	49,185 \$/y	
Fuel Consumption	8,972 L/y		
Carbon Dioxide	21,161 kg/y		
Hydrocarbons	1 kg/y		
Carbon Monoxide	16 kg/y		
NOx	12 kg/y		

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 31 May 2019 1:42:57 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

Lane Level of Service

▽ Site: 101 [2035_Hi Dev_Access 2_AM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

ſ		Approaches			Intersection	
l		South	East	West	Intersection	
	LOS	А	NA	NA	NA	

(HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN & TAYLOR | Processed: Friday, 31 May 2019 1:42:57 PM

Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

✓ Site: 101 [2035_Hi Dev_Access 2_PM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Performance Measure	Vehicles	Persons
Travel Speed (Average)	49.0 km/h	49.0 km/h
Travel Distance (Total)	290.9 veh-km/h	349.1 pers-km/h
Travel Time (Total)	5.9 veh-h/h	7.1 pers-h/h
Demand Flows (Total)	685 veh/h	822 pers/h
Percent Heavy Vehicles (Demand)	1.0 %	022 p013/11
Degree of Saturation	0.224	
Practical Spare Capacity	336.8 %	
Effective Intersection Capacity	3054 veh/h	
Control Delay (Total)	0.10 veh-h/h	0.12 pers-h/h
Control Delay (Average)	0.5 sec	0.5 sec
Control Delay (Worst Lane)	6.4 sec	
Control Delay (Worst Movement)	9.7 sec	9.7 sec
Geometric Delay (Average)	0.4 sec	
Stop-Line Delay (Average)	0.1 sec	
Idling Time (Average)	0.0 sec	
Intersection Level of Service (LOS)	NA	
95% Back of Queue - Vehicles (Worst Lane)	0.1 veh	
95% Back of Queue - Distance (Worst Lane)	0.6 m	
Queue Storage Ratio (Worst Lane)	0.00	
Total Effective Stops	34 veh/h	41 pers/h
Effective Stop Rate	0.05	0.05
Proportion Queued	0.02	0.02
Performance Index	6.3	6.3
	100 F7 ¢/b	100 F7 ¢/b
Cost (Total) Fuel Consumption (Total)	123.57 \$/h 18.6 L/h	123.57 \$/h
Carbon Dioxide (Total)		
Hydrocarbons (Total)	43.9 kg/h 0.003 kg/h	
Carbon Monoxide (Total) NOx (Total)	0.034 kg/h 0.024 kg/h	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 0.8 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 52.1% 17.7% 0.8%

Performance Measure	Vehicles	Persons
Demand Flows (Total)	328,926 veh/y	394,712 pers/y
Delay	46 veh-h/y	56 pers-h/y
Effective Stops	16,214 veh/y	19,457 pers/y
Travel Distance	139,651 veh-km/y	167,582 pers-km/y
Travel Time	2,850 veh-h/y	3,421 pers-h/y
Cost	59,315 \$/y	59,315 \$/y
Fuel Consumption	8,942 L/v	
Carbon Dioxide	21,080 kg/y	
Hydrocarbons	1 kg/y	
Carbon Monoxide	16 kg/y	
NOx	12 kg/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 31 May 2019 1:42:58 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

Lane Level of Service

V Site: 101 [2035_Hi Dev_Access 2_PM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

ſ		Approaches			Intersection	
l		South	East	West	Intersection	
	LOS	А	NA	NA	NA	

(HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN & TAYLOR | Processed: Friday, 31 May 2019 1:42:58 PM

Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

▽ Site: 101 [2018_Low Dev_Access 3_AM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

ntersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Fravel Speed (Average)	48.3 km/h	48.3 km/h
Travel Distance (Total)	259.4 veh-km/h	311.3 pers-km/h
Travel Time (Total)	5.4 veh-h/h	6.4 pers-h/h
Demand Flows (Total)	548 veh/h	658 pers/h
Percent Heavy Vehicles (Demand)	1.0 %	
Degree of Saturation	0.170	
Practical Spare Capacity	476.1 %	
Effective Intersection Capacity	3224 veh/h	
Control Delay (Total)	0.15 veh-h/h	0.19 poro h th
Control Delay (Average)	1.0 sec	0.18 pers-h/h 1.0 sec
Control Delay (Worst Lane)	6.0 sec	1.0 Sec
	6.7 sec	6.7 sec
Control Delay (Worst Movement) Geometric Delay (Average)	0.7 sec	6.7 Sec
Stop-Line Delay (Average)	0.7 sec	
dling Time (Average)	0.3 sec	
o (o ,		
ntersection Level of Service (LOS)	NA	
95% Back of Queue - Vehicles (Worst Lane)	0.2 veh	
95% Back of Queue - Distance (Worst Lane)	1.4 m	
Queue Storage Ratio (Worst Lane)	0.00	
Total Effective Stops	50 veh/h	60 pers/h
Effective Stop Rate	0.09	0.09
Proportion Queued	0.08	0.08
Performance Index	6.2	6.2
Cost (Total)	113.30 \$/h	113.30 \$/h
Fuel Consumption (Total)	17.5 L/h	Πο.ου φ/Π
Carbon Dioxide (Total)	41.2 kg/h	
Hydrocarbons (Total)	0.003 kg/h	
Carbon Monoxide (Total)	0.032 kg/h	
	0.002 kg/11	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good

LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 46.5% 5.3% 0.0%

Performance Measure	Vehicles	Persons	
Demand Flows (Total)	263,242 veh/y	315,891 pers/y	
Delay	70 veh-h/y	84 pers-h/y	
Effective Stops	23,864 veh/y	28,637 pers/y	
Travel Distance	124,532 veh-km/y	149,439 pers-km/y	
Travel Time	2,576 veh-h/y	3,091 pers-h/y	
Cost	54,385 \$/y	54,385 \$/y	
Fuel Consumption	8,385 L/v		
Carbon Dioxide	19,765 kg/y		
Hydrocarbons	1 kg/y		
Carbon Monoxide	16 kg/y		
NOx	11 kg/y		

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Saturday, 8 June 2019 6:13:52 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

Lane Level of Service

abla Site: 101 [2018_Low Dev_Access 3_AM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

	A	pproach	Intersection		
	South	East	West	Intersection	
LOS	Α	NA	NA	NA	

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Saturday, 8 June 2019 6:13:52 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

▽ Site: 101 [2018_Low Dev_Access 3_PM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Performance Measure	Vehicles	Persons
Travel Speed (Average)	48.4 km/h	48.4 km/h
Travel Distance (Total)	259.4 veh-km/h	311.3 pers-km/h
Travel Time (Total)	5.4 veh-h/h	6.4 pers-h/h
Demand Flows (Total)	548 veh/h	658 pers/h
Percent Heavy Vehicles (Demand)	1.0 %	
Degree of Saturation	0.193	
Practical Spare Capacity	406.6 %	
Effective Intersection Capacity	2835 veh/h	
Control Delay (Total)	0.13 veh-h/h	0.16 pers-h/h
Control Delay (Average)	0.8 sec	0.8 sec
Control Delay (Worst Lane)	5.5 sec	
Control Delay (Worst Movement)	6.8 sec	6.8 sec
Geometric Delay (Average)	0.7 sec	
Stop-Line Delay (Average)	0.1 sec	
dling Time (Average)	0.0 sec	
ntersection Level of Service (LOS)	NA	
95% Back of Queue - Vehicles (Worst Lane)	0.3 veh	
95% Back of Queue - Distance (Worst Lane)	2.2 m	
Queue Storage Ratio (Worst Lane)	0.01	
Total Effective Stops	46 veh/h	55 pers/h
Effective Stop Rate	0.08	0.08
Proportion Queued	0.06	0.06
Performance Index	6.2	6.2
	100.27 \$/h	100.27 \$/h
Cost (Total) Fuel Consumption (Total)	17.6 L/h	100.27 \$/11
Carbon Dioxide (Total)	41.5 kg/h	
Hydrocarbons (Total)	0.003 kg/h	
Carbon Monoxide (Total)	0.033 kg/h	
NOx (Total)	0.033 kg/n 0.024 kg/h	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good

LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 41.0% 2.7% 0.0%

Performance Measure	Vehicles	Persons
Demand Flows (Total)	263,242 veh/y	315,891 pers/y
Delay	62 veh-h/y	74 pers-h/y
Effective Stops	22,104 veh/y	26,525 pers/y
Travel Distance	124,514 veh-km/y	149,417 pers-km/y
Travel Time	2,572 veh-h/y	3,087 pers-h/y
Cost	48,130 \$/y	48,130 \$/y
Fuel Consumption	8,443 L/y	
Carbon Dioxide	19,911 kg/y	
Hydrocarbons	1 kg/y	
Carbon Monoxide	16 kg/y	
NOx	12 kg/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Saturday, 8 June 2019 6:13:52 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

Lane Level of Service

abla Site: 101 [2018_Low Dev_Access 3_PM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

	Ap	oproach	es	Intersection
	South	East	West	Intersection
LOS	Α	NA	NA	NA

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Saturday, 8 June 2019 6:13:52 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

✓ Site: 101 [2035_Hi Dev_Access 3_AM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Performance Measure	Vehicles	Persons
ravel Speed (Average)	47.5 km/h	47.5 km/h
Travel Distance (Total)	371.2 veh-km/h	445.5 pers-km/h
ravel Time (Total)	7.8 veh-h/h	9.4 pers-h/h
Demand Flows (Total)	791 veh/h	949 pers/h
Percent Heavy Vehicles (Demand)	1.0 %	
Degree of Saturation	0.231	
Practical Spare Capacity	325.1 %	
Effective Intersection Capacity	3429 veh/h	
	0120 0000	
Control Delay (Total)	0.34 veh-h/h	0.41 pers-h/h
Control Delay (Average)	1.5 sec	1.5 sec
Control Delay (Worst Lane)	6.9 sec	
Control Delay (Worst Movement)	8.2 sec	8.2 sec
Geometric Delay (Average)	1.0 sec	
Stop-Line Delay (Average)	0.6 sec	
dling Time (Average)	0.1 sec	
ntersection Level of Service (LOS)	NA	
DER Back of Queue Vahiolog (Marat Lang)	0.5 veh	
95% Back of Queue - Vehicles (Worst Lane) 95% Back of Queue - Distance (Worst Lane)	0.5 ven 3.4 m	
	0.01	
Queue Storage Ratio (Worst Lane) Total Effective Stops	112 veh/h	124 para/b
	0.14	134 pers/h 0.14
Effective Stop Rate	0.13	0.14
Proportion Queued Performance Index	9.7	9.7
	9.7	9.7
Cost (Total)	171.05 \$/h	171.05 \$/h
Fuel Consumption (Total)	26.3 L/h	
Carbon Dioxide (Total)	61.9 kg/h	
lydrocarbons (Total)	0.004 kg/h	
Carbon Monoxide (Total)	0.049 kg/h	
NOx (Total)	0.037 kg/h	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good

LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 54.4% 10.2% 0.0%

Performance Measure	Vehicles	Persons
Demand Flows (Total)	379,453 veh/y	455,343 pers/y
Delay	162 veh-h/y	195 pers-h/y
Effective Stops	53,537 veh/y	64,245 pers/y
Travel Distance	178,181 veh-km/y	213,817 pers-km/y
Travel Time	3,750 veh-h/y	4,500 pers-h/y
0 · ·	00.400.04	00,400, \$
Cost	82,103 \$/y	82,103 \$/y
Fuel Consumption	12,600 L/y	
Carbon Dioxide	29,699 kg/y	
Hydrocarbons	2 kg/y	
Carbon Monoxide	24 kg/y	
NOx	18 kg/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Saturday, 8 June 2019 6:13:57 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

Lane Level of Service

▽ Site: 101 [2035_Hi Dev_Access 3_AM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

ſ		Ap	oproach	es	Intersection	
l		South	East	West	Intersection	
	LOS	А	NA	NA	NA	

LOS B LOS F LOS A LOS C LOS D LOS E

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Saturday, 8 June 2019 6:13:57 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

✓ Site: 101 [2035_Hi Dev_Access 3_PM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Performance Measure	Vehicles	Persons
ravel Speed (Average)	47.6 km/h	47.6 km/h
Travel Distance (Total)	371.1 veh-km/h	445.4 pers-km/h
ravel Time (Total)	7.8 veh-h/h	9.4 pers-h/h
Demand Flows (Total)	791 veh/h	949 pers/h
Percent Heavy Vehicles (Demand)	1.0 %	
Degree of Saturation	0.281	
Practical Spare Capacity	249.3 %	
Effective Intersection Capacity	2817 veh/h	
Control Delay (Total)	0.29 veh-h/h	0.34 pers-h/h
Control Delay (Average)	1.3 sec	1.3 sec
Control Delay (Worst Lane)	6.1 sec	
Control Delay (Worst Movement)	8.5 sec	8.5 sec
Geometric Delay (Average)	1.0 sec	
Stop-Line Delay (Average)	0.3 sec	
dling Time (Average)	0.0 sec	
ntersection Level of Service (LOS)	NA	
95% Back of Queue - Vehicles (Worst Lane)	0.7 veh	
95% Back of Queue - Distance (Worst Lane)	5.1 m	
Queue Storage Ratio (Worst Lane)	0.01	
Total Effective Stops	95 veh/h	114 pers/h
Effective Stops	0.12	0.12
Proportion Queued	0.12	0.12
Performance Index	9.7	9.7
	5.7	5.1
Cost (Total)	154.73 \$/h	154.73 \$/h
Fuel Consumption (Total)	26.6 L/h	
Carbon Dioxide (Total)	62.7 kg/h	
lydrocarbons (Total)	0.004 kg/h	
Carbon Monoxide (Total)	0.050 kg/h	
NOx (Total)	0.039 kg/h	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good

LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 48.8% 5.0% 0.0%

Performance Measure	Vehicles	Persons
Demand Flows (Total)	379,453 veh/y	455,343 pers/y
Delay	138 veh-h/y	166 pers-h/y
Effective Stops	45,569 veh/y	54,683 pers/y
Travel Distance	178,144 veh-km/y	213,772 pers-km/y
Travel Time	3,741 veh-h/y	4,489 pers-h/y
Cost	74,272 \$/y	74,272 \$/y
Fuel Consumption	12,771 L/y	
Carbon Dioxide	30,113 kg/y	
Hydrocarbons	2 kg/y	
Carbon Monoxide	24 kg/y	
NOx	19 kg/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Saturday, 8 June 2019 6:13:57 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

Lane Level of Service

▽ Site: 101 [2035_Hi Dev_Access 3_PM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

	A	Intersection		
	South	East	West	Intersection
LOS	Α	NA	NA	NA

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Saturday, 8 June 2019 6:13:57 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

▽ Site: 101 [2018_Low Dev_Gleneagles_AM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Performance Measure	Vehicles	Persons
Travel Speed (Average)	49.0 km/h	49.0 km/h
Travel Distance (Total)	155.1 veh-km/h	186.1 pers-km/h
Travel Time (Total)	3.2 veh-h/h	3.8 pers-h/h
Demand Flows (Total)	496 veh/h	595 pers/h
Percent Heavy Vehicles (Demand)	0.9 %	
Degree of Saturation	0.173	
Practical Spare Capacity	467.7 %	
Effective Intersection Capacity	2872 veh/h	
Control Dalay (Tatal)	0.05 yeb b/b	0.06 pore h/h
Control Delay (Total) Control Delay (Average)	0.05 veh-h/h 0.4 sec	0.06 pers-h/h 0.4 sec
Control Delay (Worst Lane)	6.1 sec	0.4 Sec
Control Delay (Worst Lane) Control Delay (Worst Movement)	6.5 sec	6.5 sec
Geometric Delay (Average)	0.3 sec	0.5 Sec
Stop-Line Delay (Average)	0.3 sec	
Idling Time (Average)	0.0 sec	
Intersection Level of Service (LOS)	NA	
	NA	
95% Back of Queue - Vehicles (Worst Lane)	0.1 veh	
95% Back of Queue - Distance (Worst Lane)	0.5 m	
Queue Storage Ratio (Worst Lane)	0.00	
Total Effective Stops	18 veh/h	22 pers/h
Effective Stop Rate	0.04	0.04
Proportion Queued	0.02	0.02
Performance Index	3.3	3.3
Cost (Total)	62.41 \$/h	62.41 \$/h
Fuel Consumption (Total)	9.9 L/h	<u> </u>
Carbon Dioxide (Total)	23.3 kg/h	
Hydrocarbons (Total)	0.001 kg/h	
Carbon Monoxide (Total)	0.018 kg/h	
NOx (Total)	0.011 kg/h	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 0.0% 49.4% 0.2%

Intersection Performance - Annual Values		
Performance Measure	Vehicles	Persons
Demand Flows (Total)	237,979 veh/y	285,575 pers/y
Delay	24 veh-h/y	29 pers-h/y
Effective Stops	8,714 veh/y	10,456 pers/y
Travel Distance	74,445 veh-km/y	89,334 pers-km/y
Travel Time	1,519 veh-h/y	1,823 pers-h/y
Cost	29,958 \$/y	29,958 \$/y
Fuel Consumption	4,741 L/y	· · ·
Carbon Dioxide	11,176 kg/y	
Hydrocarbons	1 kg/y	
Carbon Monoxide	9 kg/y	
NOx	5 kg/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Saturday, 8 June 2019 6:13:49 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

Lane Level of Service

abla Site: 101_[2018_Low Dev_Gleneagles_AM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN & TAYLOR | Processed: Saturday, 8 June 2019 6:13:49 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

∇ Site: 101 [2018_Low Dev_Gleneagles_PM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Performance Measure	Vehicles	Persons
ravel Speed (Average)	49.1 km/h	49.1 km/h
Travel Distance (Total)	155.1 veh-km/h	186.2 pers-km/h
Travel Time (Total)	3.2 veh-h/h	3.8 pers-h/h
Demand Flows (Total)	496 veh/h	595 pers/h
Percent Heavy Vehicles (Demand)	0.9 %	
Degree of Saturation	0.175	
Practical Spare Capacity	460.9 %	
Effective Intersection Capacity	2838 veh/h	
Control Delay (Total)	0.05 veh-h/h	0.06 pers-h/h
Control Delay (Average)	0.3 sec	0.3 sec
Control Delay (Worst Lane)	6.0 sec	
Control Delay (Worst Movement)	6.5 sec	6.5 sec
Geometric Delay (Average)	0.3 sec	
Stop-Line Delay (Average)	0.0 sec	
dling Time (Average)	0.0 sec	
ntersection Level of Service (LOS)	NA	
NEW Deals of Owene Wahieles (Marst Lans)	0.0 vich	
95% Back of Queue - Vehicles (Worst Lane)	0.0 veh	
95% Back of Queue - Distance (Worst Lane)	0.3 m 0.00	
Queue Storage Ratio (Worst Lane)		
Total Effective Stops	18 veh/h 0.04	21 pers/h 0.04
Effective Stop Rate Proportion Queued	0.04 0.01	0.04 0.01
Performance Index	3.3	3.3
Cost (Total)	62.11 \$/h	62.11 \$/h
Fuel Consumption (Total)	9.9 L/h	·
Carbon Dioxide (Total)	23.3 kg/h	
lydrocarbons (Total)	0.001 kg/h	
Carbon Monoxide (Total)	0.018 kg/h	
NOx (Total)	0.011 kg/h	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 0.0% 48.5% 0.4%

Performance Measure	Vehicles	Persons
Demand Flows (Total)	237,979 veh/y	285,575 pers/y
Delay	22 veh-h/y	27 pers-h/y
Effective Stops	8,431 veh/y	10,117 pers/y
Travel Distance	74,462 veh-km/y	89,355 pers-km/y
Travel Time	1,517 veh-h/y	1,821 pers-h/y
Cost	29,811 \$/y	29,811 \$/y
Fuel Consumption	4,754 L/y	
Carbon Dioxide	11,206 kg/y	
Hydrocarbons	1 kg/y	
Carbon Monoxide	9 kg/y	
NOx	6 kg/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Saturday, 8 June 2019 6:13:50 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

Lane Level of Service

abla Site: 101_[2018_Low Dev_Gleneagles_PM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN & TAYLOR | Processed: Saturday, 8 June 2019 6:13:50 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

∑ Site: 101 [2035_Hi Dev_Gleneagles_AM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

ntersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Fravel Speed (Average)	48.9 km/h	48.9 km/h
Travel Distance (Total)	208.5 veh-km/h	250.2 pers-km/h
Travel Time (Total)	4.3 veh-h/h	5.1 pers-h/h
Demand Flows (Total)	666 veh/h	800 pers/h
Percent Heavy Vehicles (Demand)	0.9 %	p
Degree of Saturation	0.231	
Practical Spare Capacity	323.5 %	
Effective Intersection Capacity	2880 veh/h	
Control Delay (Total)	0.08 veh-h/h	0.00 para h/b
Control Delay (Total) Control Delay (Average)	0.08 ven-n/n 0.4 sec	0.09 pers-h/h 0.4 sec
Control Delay (Worst Lane)	6.8 sec	0.4 Sec
Control Delay (Worst Movement)	7.6 sec	7.6 sec
Geometric Delay (Average)	0.3 sec	7.0 Sec
Stop-Line Delay (Average)	0.3 sec 0.1 sec	
dling Time (Average)	0.1 sec 0.0 sec	
ntersection Level of Service (LOS)	NA	
	INA	
95% Back of Queue - Vehicles (Worst Lane)	0.1 veh	
95% Back of Queue - Distance (Worst Lane)	0.9 m	
Queue Storage Ratio (Worst Lane)	0.00	
Total Effective Stops	27 veh/h	32 pers/h
Effective Stop Rate	0.04	0.04
Proportion Queued	0.02	0.02
Performance Index	4.5	4.5
Cost (Total)	84.41 \$/h	84.41 \$/h
Fuel Consumption (Total)	13.3 L/h	ςψ/Π
Carbon Dioxide (Total)	31.4 kg/h	
Hydrocarbons (Total)	0.002 kg/h	
Carbon Monoxide (Total)	0.024 kg/h	
NOx (Total)	0.015 kg/h	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 0.0% 56.3% 0.3%

Performance Measure	Vehicles	Persons
Demand Flows (Total)	319,832 veh/y	383,798 pers/y
Delay	37 veh-h/y	45 pers-h/y
Effective Stops	12,835 veh/y	15,402 pers/y
Travel Distance	100,099 veh-km/y	120,119 pers-km/y
Travel Time	2,047 veh-h/y	2,457 pers-h/y
Cost	40,519 \$/y	40,519 \$/y
Fuel Consumption	6,402 L/y	-
Carbon Dioxide	15,089 kg/y	
Hydrocarbons	1 kg/y	
Carbon Monoxide	12 kg/y	
NOx	7 kg/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Saturday, 8 June 2019 6:13:55 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

Lane Level of Service

abla Site: 101 [2035_Hi Dev_Gleneagles_AM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN & TAYLOR | Processed: Saturday, 8 June 2019 6:13:55 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

V Site: 101 [2035_Hi Dev_Gleneagles_PM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average)	48.9 km/h	48.9 km/h
Travel Distance (Total)	208.6 veh-km/h	250.3 pers-km/h
Travel Time (Total)	4.3 veh-h/h	5.1 pers-h/h
Demand Flows (Total)	666 veh/h	800 pers/h
Percent Heavy Vehicles (Demand)	0.9 %	
Degree of Saturation	0.240	
Practical Spare Capacity	308.3 %	
Effective Intersection Capacity	2776 veh/h	
Control Delay (Total)	0.08 veh-h/h	0.10 pers-h/h
Control Delay (Average)	0.4 sec	0.4 sec
Control Delay (Worst Lane)	7.1 sec	
Control Delay (Worst Movement)	7.6 sec	7.6 sec
Geometric Delay (Average)	0.3 sec	
Stop-Line Delay (Average)	0.1 sec	
Idling Time (Average)	0.0 sec	
Intersection Level of Service (LOS)	NA	
95% Back of Queue - Vehicles (Worst Lane)	0.1 veh	
95% Back of Queue - Distance (Worst Lane)	0.7 m	
Queue Storage Ratio (Worst Lane)	0.00	
Total Effective Stops	26 veh/h	31 pers/h
Effective Stop Rate	0.04	0.04
Proportion Queued	0.03	0.03
Performance Index	4.6	4.6
Cost (Total)	79.08 \$/h	79.08 \$/h
Fuel Consumption (Total)	13.5 L/h	19.00 Ø/11
Carbon Dioxide (Total)		
	31.8 kg/h	
Hydrocarbons (Total)	0.002 kg/h	
Carbon Monoxide (Total)	0.025 kg/h	
NOx (Total)	0.016 kg/h	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 59.0% 3.2% 0.0%

Performance Measure	Vehicles	Persons		
Demand Flows (Total)	319,832 veh/y	383,798 pers/y		
Delay	38 veh-h/y	46 pers-h/y		
Effective Stops	12,480 veh/y	14,976 pers/y		
Travel Distance	100,117 veh-km/y	120,140 pers-km/y		
Travel Time	2,048 veh-h/y	2,458 pers-h/y		
Cost	37,961 \$/y	37,961 \$/y		
Fuel Consumption	6,471 L/y			
Carbon Dioxide	15,255 kg/y			
Hydrocarbons	1 kg/y			
Carbon Monoxide	12 kg/y			
NOx	8 kg/y			

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Saturday, 8 June 2019 6:13:55 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

Lane Level of Service

abla Site: 101 [2035_Hi Dev_Gleneagles_PM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN & TAYLOR | Processed: Saturday, 8 June 2019 6:13:55 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

Lane Level of Service for Network Sites

****** Network: N101 [2018_Low Dev]

New Network Network Category: (None)

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Saturday, 8 June 2019 6:17:29 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

NETWORK SUMMARY

☆ Network: N101 [2018_Low Dev]

New Network Network Category: (None)

Network Performance - Hourly Values Performance Measure Vehicles Per Unit Distance Persons Network Level of Service (LOS) LOS A Travel Time Index 9.64 Speed Efficiency 0.97 Congestion Coefficient 1.03 Travel Speed (Average) 48.4 km/h 48.4 km/h Travel Distance (Total) 1196.6 veh-km/h 1435.9 pers-km/h 24.7 veh-h/h Travel Time (Total) 29.7 pers-h/h Desired Speed 50.0 km/h Demand Flows (Total for all Sites) 2861 veh/h 3433 pers/h Arrival Flows (Total for all Sites) 3433 pers/h 2861 veh/h Demand Flows (Entry Total) 918 veh/h Midblock Inflows (Total) 26 veh/h Midblock Outflows (Total) -126 veh/h Percent Heavy Vehicles (Demand) 1.0 % Percent Heavy Vehicles (Arrival) 1.0 % Degree of Saturation 0.233 Control Delay (Total) 0.72 veh-h/h 0.86 pers-h/h Control Delay (Average) 0.9 sec 0.9 sec Control Delay (Worst Lane) 9.6 sec Control Delay (Worst Movement) 9.7 sec 9.7 sec Geometric Delay (Average) 0.6 sec Stop-Line Delay (Average) 0.3 sec Queue Storage Ratio (Worst Lane) 0.01 **Total Effective Stops** 240 veh/h 287 pers/h Effective Stop Rate 0.08 0.20 per km 0.08 **Proportion Queued** 0.07 0.07 28.1 28.1 Performance Index 566.08 \$/h 0.47 \$/km 566.08 \$/h Cost (Total) Fuel Consumption (Total) 79.7 L/h 66.6 mL/km Fuel Economy 6.7 L/100km Carbon Dioxide (Total) 187.9 kg/h 157.0 g/km Hydrocarbons (Total) 0.012 kg/h 0.010 g/km Carbon Monoxide (Total) 0.147 kg/h 0.123 g/km 0.088 g/km 0.106 kg/h NOx (Total)

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% 0.0% Network Level of Service (LOS) Method: SIDRA Speed Efficiency.

Software Setup used: New Zealand.

Network Performance - Annual Values						
Performance Measure	Vehicles	Persons				
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,373,305 veh/y 346 veh-h/y 114,997 veh/y 574,369 veh-km/y 11,867 veh-h/y	1,647,966 pers/y 415 pers-h/y 137,996 pers/y 689,243 pers-km/y 14,240 pers-h/y				
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide NOx	271,717 \$/y 38,270 L/y 90,184 kg/y 6 kg/y 71 kg/y 51 kg/y	271,717 \$/y				

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Saturday, 8 June 2019 6:17:29 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

Lane Level of Service for Network Sites

Network: N102 [2035_Hi Dev]

New Network Network Category: (None)

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Saturday, 8 June 2019 6:17:33 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

NETWORK SUMMARY

Network: N102 [2035_Hi Dev]

New Network

Network Category: (None)

Network Performance - Hourly Va	lues		
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Travel Time Index Speed Efficiency Congestion Coefficient	LOS A 9.67 0.97 1.03		
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed	48.5 km/h 1215.8 veh-km/h 25.1 veh-h/h 50.0 km/h		48.5 km/h 1459.0 pers-km/h 30.1 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	2861 veh/h 2861 veh/h 818 veh/h 126 veh/h -26 veh/h 1.0 % 1.0 % 0.281		3433 pers/h 3433 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	0.62 veh-h/h 0.8 sec 9.8 sec 9.8 sec 0.6 sec 0.2 sec		0.74 pers-h/h 0.8 sec 9.8 sec
Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.01 207 veh/h 0.07 0.05 28.1	0.17 per km	249 pers/h 0.07 0.05 28.1
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	637.21 \$/h 81.2 L/h 6.7 L/100km 191.4 kg/h 0.012 kg/h 0.150 kg/h 0.108 kg/h	0.52 \$/km 66.8 mL/km 157.4 g/km 0.010 g/km 0.123 g/km 0.089 g/km	637.21 \$/h

Network Model Variability Index (Iterations 3 to N): 0.0 % Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0% 0.0% 0.0% Network Level of Service (LOS) Method: SIDRA Speed Efficiency.

Software Setup used: New Zealand.

Network Performance - Annual Values						
Performance Measure	Vehicles	Persons				
Demand Flows (Total for all Sites) Delay Effective Stops Travel Distance Travel Time	1,373,305 veh/y 295 veh-h/y 99,580 veh/y 583,599 veh-km/y 12,033 veh-h/y	1,647,966 pers/y 354 pers-h/y 119,496 pers/y 700,319 pers-km/y 14,440 pers-h/y				
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide NOx	305,861 \$/y 38,995 L/y 91,857 kg/y 6 kg/y 72 kg/y 52 kg/y	305,861 \$/y				

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Saturday, 8 June 2019 6:17:33 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

V Site: 101 [2018_No Dev_Hi-Lvl Peak]

New Site Site Category: (None) Roundabout

Travel Time (Total)279.5 veh-h/h335.3 pers-h/hDemand Flows (Total)4342 veh/h5211 pers/hPercent Heavy Vehicles (Demand)6.8 %Degree of Saturation1.325Practical Spare Capacity-35.8 %Effective Intersection Capacity3278 veh/hControl Delay (Total)207.26 veh-h/h248.71 pers-h/hControl Delay (Average)171.8 sec171.8 secControl Delay (Worst Lane)317.0 sec318.7 secControl Delay (Average)188.7 sec318.7 secControl Delay (Average)168.1 sec118.6 secIntersection Level of Service (LOS)LOS F95% Back of Queue - Vehicles (Worst Lane)1.03 veh95% Back of Queue - Vehicles (Worst Lane)1.12Total Effective Stops18868 veh/h22642 pers/hEffective Stop Rate4.354.35Proportion Queued0.980.98Performance Index1072.31072.3Cost (Total)8081.36 \$/h8081.36 \$/hCost (Total)762.2 L/h8081.36 \$/h	Intersection Performance - Hourly Values		
Travel Distance (Total) 3725.0 veh-km/h 4470.0 pers-km/h Travel Time (Total) 279.5 veh-h/h 335.3 pers-h/h Demand Flows (Total) 4342 veh/h 5211 pers/h Percent Heavy Vehicles (Demand) 6.8 % 5211 pers/h Percent Heavy Vehicles (Demand) 1.325 5 Practical Spare Capacity -35.8 % 5 Effective Intersection Capacity 3278 veh/h 248.71 pers-h/h Control Delay (Total) 207.26 veh-h/h 248.71 pers-h/h Control Delay (Worst Lane) 171.8 sec 171.8 sec Control Delay (Worst Lane) 317.0 sec 318.7 sec Geometric Delay (Average) 178.7 sec 318.7 sec Stop-Line Delay (Average) 168.1 sec 118.6 sec Intersection Level of Service (LOS) LOS F 95% Back of Queue - Vehicles (Worst Lane) 170.3 veh 95% Back of Queue - Vehicles (Worst Lane) 170.3 veh 22642 pers/h Stop Effective Stop Rate 4.35 4.35 Proportion Queued 0.98 0.98 Performance Index 1072.3 1072.3 Cost (Total) 762.2 L/h 8081.36 \$/h <	Performance Measure	Vehicles	Persons
Travel Time (Total)279.5 veh-h/h335.3 pers-h/hDemand Flows (Total)4342 veh/h5211 pers/hPercent Heavy Vehicles (Demand)6.8 %Degree of Saturation1.325Practical Spare Capacity-35.8 %Effective Intersection Capacity3278 veh/hControl Delay (Total)207.26 veh-h/hControl Delay (Average)171.8 secControl Delay (Average)318.7 secControl Delay (Worst Movement)318.7 secStop-Line Delay (Average)168.1 secIntersection Level of Service (LOS)LOS F95% Back of Queue - Vehicles (Worst Lane)1.304.9 mQueue Storage Ratio (Worst Lane)1.12Total Effective Stops18868 veh/h22642 pers/hEffective Stop Rate4.35Proportion Queued0.98Outed Liffective Stops18868 veh/hStop-Line Delay Corrage Ratio (Worst Lane)1.12Total Effective Stop Rate4.35Proportion Queued0.98Performance Index1072.3Cost (Total)762.2 L/hCost (Total)762.2 L/hCost (Total)1813.9 kg/h	Travel Speed (Average)	13.3 km/h	13.3 km/h
Demand Flows (Total) Percent Heavy Vehicles (Demand) Degree of Saturation Practical Spare Capacity Fractical Spare Capacity Control Delay (Total) Control Delay (Average) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Control Delay (Worst Movement) Star. Sec Control Delay (Average) Stop-Line Delay (Average) Stop-Line Delay (Average) Intersection Level of Service (LOS) Intersection Level of Service (LOS) Sec Stop-Line Delay (Worst Lane) S% Back of Queue - Vehicles (Worst Lane) S% Back of Queue - Usiance (Worst L	Travel Distance (Total)	3725.0 veh-km/h	4470.0 pers-km/h
Percent Heavy Vehicles (Demand) 6.8 % Degree of Saturation 1.325 Practical Spare Capacity -35.8 % Effective Intersection Capacity 3278 veh/h Control Delay (Total) 207.26 veh-h/h 248.71 pers-h/h Control Delay (Average) 171.8 sec 171.8 sec Control Delay (Worst Lane) 317.0 sec Control Delay (Worst Movement) 318.7 sec 318.7 sec Geometric Delay (Average) 168.1 sec Stop-Line Delay (Average) 168.1 sec Intersection Level of Service (LOS) LOS F 95% Back of Queue - Vehicles (Worst Lane) 170.3 veh 95% Back of Queue - Vehicles (Worst Lane) 170.3 veh 95% Back of Queue - Vehicles (Worst Lane) 1.12 Total Effective Stops 18868 veh/h 22642 pers/h Effective Stop Rate 4.35 4.35 Proportion Queued 0.98 0.98 Performance Index 1072.3 1072.3 Cost (Total) 8081.36 \$/h 8081.36 \$/h Fuel Consumption (Total) 762.2 L/h Carbon Dioxide (Total) 1813.9 kg/h	Travel Time (Total)	279.5 veh-h/h	335.3 pers-h/h
Percent Heavy Vehicles (Demand)6.8 %Degree of Saturation1.325Practical Spare Capacity-35.8 %Effective Intersection Capacity3278 veh/hControl Delay (Total)207.26 veh-h/h248.71 pers-h/hControl Delay (Average)171.8 sec171.8 secControl Delay (Worst Lane)317.0 sec318.7 secControl Delay (Average)3.7 sec318.7 secGeometric Delay (Average)168.1 sec111.6 secIdling Time (Average)186.5 sec118.6 secIntersection Level of Service (LOS)LOS F95% Back of Queue - Vehicles (Worst Lane)1304.9 mQueue Storage Ratio (Worst Lane)1.12Total Effective Stops18868 veh/h22642 pers/hEffective Stop Rate4.35Proportion Queued0.98Performance Index1072.3Cost (Total)8081.36 \$/hFuel Consumption (Total)762.2 L/hCost (Total)1813.9 kg/h	Demand Flows (Total)	4342 veh/h	5211 pers/h
Degree of Saturation1.325Practical Spare Capacity-35.8 %Effective Intersection Capacity3278 veh/hControl Delay (Total)207.26 veh-h/h248.71 pers-h/hControl Delay (Average)171.8 sec171.8 secControl Delay (Worst Lane)317.0 sec318.7 secControl Delay (Worst Queverage)3.7 sec318.7 secStop-Line Delay (Average)168.1 sec118.6 secIdling Time (Average)170.3 veh95% Back of Queue - Vehicles (Worst Lane)1304.9 mQueue Storage Ratio (Worst Lane)1.121.12Total Effective Stops18868 veh/h22642 pers/hEffective Stop Rate4.354.35Proportion Queued0.980.98Performance Index1072.31072.3Cost (Total)8081.36 \$/h8081.36 \$/hFuel Consumption (Total)762.2 L/h8081.36 \$/hCost (Total)1813.9 kg/h1813.9 kg/h			
Practical Spare Capacity -35.8 % Effective Intersection Capacity 3278 veh/h Control Delay (Total) 207.26 veh-h/h 248.71 pers-h/h Control Delay (Average) 171.8 sec 171.8 sec Control Delay (Worst Lane) 317.0 sec Control Delay (Worst Movement) 318.7 sec 318.7 sec Geometric Delay (Average) 3.7 sec Stop-Line Delay (Average) 168.1 sec Idling Time (Average) 118.6 sec Intersection Level of Service (LOS) LOS F 95% Back of Queue - Vehicles (Worst Lane) 170.3 veh 95% Back of Queue - Vehicles (Worst Lane) 1304.9 m Queue Storage Ratio (Worst Lane) 1.12 Total Effective Stop Rate 4.35 4.35 Proportion Queued 0.98 0.98 Performance Index 1072.3 1072.3 Cost (Total) 8081.36 \$/h 8081.36 \$/h Fuel Consumption (Total) 762.2 L/h Carbon Dioxide (Total) 1813.9 kg/h	, , , , , , , , , , , , , , , , , , ,		
Effective Intersection Capacity 3278 veh/h Control Delay (Total) 207.26 veh-h/h 248.71 pers-h/h Control Delay (Average) 171.8 sec 171.8 sec Control Delay (Worst Lane) 317.0 sec 318.7 sec 318.7 sec Control Delay (Worst Movement) 318.7 sec 318.7 sec 318.7 sec Geometric Delay (Average) 3.7 sec 318.7 sec 318.7 sec Stop-Line Delay (Average) 168.1 sec 170.8 sec 170.8 sec Idling Time (Average) 118.6 sec 170.3 veh 170.3 veh 95% Back of Queue - Vehicles (Worst Lane) 170.3 veh 170.3 veh 95% Back of Queue - Vehicles (Worst Lane) 1.12 170.3 veh 95% Back of Queue - Vehicles (Worst Lane) 1.12 120.2 pers/h Iffective Stop Rate 4.35 4.35 Proportion Queued 0.98 0.98 Proportion Queued 0.98 0.98 Performance Index 1072.3 1072.3 Cost (Total) 8081.36 \$/h 8081.36 \$/h Fuel Consumption (Total) 762.2 L/h 1072.3			
Control Delay (Average)171.8 sec171.8 secControl Delay (Worst Lane)317.0 sec171.8 secControl Delay (Worst Movement)318.7 sec318.7 secGeometric Delay (Average)3.7 sec318.7 secStop-Line Delay (Average)168.1 sec171.8 secIdling Time (Average)118.6 sec171.8 secIntersection Level of Service (LOS)LOS F95% Back of Queue - Vehicles (Worst Lane)170.3 veh95% Back of Queue - Vehicles (Worst Lane)1304.9 mQueue Storage Ratio (Worst Lane)1.12Total Effective Stops18868 veh/h22642 pers/hEffective Stop Rate4.35Proportion Queued0.98Ouse0.98Ouse0.98Ouse0.98Cost (Total)8081.36 \$/hFuel Consumption (Total)762.2 L/hCarbon Dioxide (Total)1813.9 kg/h			
Control Delay (Average)171.8 sec171.8 secControl Delay (Worst Lane)317.0 sec171.8 secControl Delay (Worst Movement)318.7 sec318.7 secGeometric Delay (Average)3.7 sec318.7 secStop-Line Delay (Average)168.1 sec171.8 secIdling Time (Average)118.6 sec171.8 secIntersection Level of Service (LOS)LOS F95% Back of Queue - Vehicles (Worst Lane)170.3 veh95% Back of Queue - Vehicles (Worst Lane)1304.9 mQueue Storage Ratio (Worst Lane)1.12Total Effective Stops18868 veh/h22642 pers/hEffective Stop Rate4.35Proportion Queued0.98Ouse0.98Performance Index1072.3Cost (Total)8081.36 \$/hFuel Consumption (Total)762.2 L/hCarbon Dioxide (Total)1813.9 kg/h			
Control Delay (Worst Lane)317.0 secControl Delay (Worst Movement)318.7 secGeometric Delay (Average)3.7 secStop-Line Delay (Average)168.1 secIdling Time (Average)118.6 secIntersection Level of Service (LOS)LOS F95% Back of Queue - Vehicles (Worst Lane)170.3 veh95% Back of Queue - Distance (Worst Lane)1304.9 mQueue Storage Ratio (Worst Lane)1.12Total Effective Stops18868 veh/h22642 pers/hEffective Stop Rate4.35Proportion Queued0.980.980.98Performance Index1072.3Cost (Total)8081.36 \$/hFuel Consumption (Total)762.2 L/hCarbon Dioxide (Total)1813.9 kg/h			
Control Delay (Worst Movement)318.7 sec318.7 secGeometric Delay (Average)3.7 sec318.7 secStop-Line Delay (Average)168.1 secIdling Time (Average)118.6 secIntersection Level of Service (LOS)LOS F95% Back of Queue - Vehicles (Worst Lane)1304.9 mQueue Storage Ratio (Worst Lane)1.12Total Effective Stops18868 veh/h22642 pers/hEffective Stop Rate4.35Proportion Queued0.980.980.98Performance Index1072.3Cost (Total)8081.36 \$/hFuel Consumption (Total)762.2 L/hCarbon Dioxide (Total)1813.9 kg/h			1/1.8 sec
Geometric Delay (Average)3.7 secStop-Line Delay (Average)168.1 secIdling Time (Average)118.6 secIntersection Level of Service (LOS)LOS F95% Back of Queue - Vehicles (Worst Lane)170.3 veh95% Back of Queue - Distance (Worst Lane)1304.9 mQueue Storage Ratio (Worst Lane)1.12Total Effective Stops18868 veh/h22642 pers/hEffective Stop Rate4.35Proportion Queued0.980.980.98Performance Index1072.3Cost (Total)8081.36 \$/hFuel Consumption (Total)762.2 L/hCarbon Dioxide (Total)1813.9 kg/h			o / o =
Stop-Line Delay (Åverage)168.1 secIdling Time (Average)118.6 secIntersection Level of Service (LOS)LOS F95% Back of Queue - Vehicles (Worst Lane)170.3 veh95% Back of Queue - Distance (Worst Lane)1304.9 mQueue Storage Ratio (Worst Lane)1.12Total Effective Stops18868 veh/h22642 pers/hEffective Stop Rate4.35Proportion Queued0.980.980.98Performance Index1072.3Cost (Total)8081.36 \$/hFuel Consumption (Total)762.2 L/hCarbon Dioxide (Total)1813.9 kg/h			318.7 sec
Idling Time (Average) 118.6 sec Intersection Level of Service (LOS) LOS F 95% Back of Queue - Vehicles (Worst Lane) 170.3 veh 95% Back of Queue - Distance (Worst Lane) 1304.9 m Queue Storage Ratio (Worst Lane) 1.12 Total Effective Stops 18868 veh/h 22642 pers/h Effective Stop Rate 4.35 4.35 Proportion Queued 0.98 0.98 Performance Index 1072.3 1072.3 Cost (Total) Fuel Consumption (Total) 762.2 L/h Carbon Dioxide (Total) 1813.9 kg/h			
Intersection Level of Service (LOS) LOS F 95% Back of Queue - Vehicles (Worst Lane) 170.3 veh 95% Back of Queue - Distance (Worst Lane) 1304.9 m Queue Storage Ratio (Worst Lane) 1.12 Total Effective Stops 18868 veh/h 22642 pers/h Effective Stop Rate 4.35 4.35 Proportion Queued 0.98 0.98 Performance Index 1072.3 1072.3 Cost (Total) 8081.36 \$/h 8081.36 \$/h Fuel Consumption (Total) 762.2 L/h Carbon Dioxide (Total) 1813.9 kg/h			
95% Back of Queue - Vehicles (Worst Lane) 95% Back of Queue - Distance (Worst Lane) Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued 0.98 Performance Index Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) 8081.36 %/h 170.3 veh 1304.9 m 1.12 18868 veh/h 22642 pers/h 4.35 0.98 0.98 0.98 0.98 1072.3 8081.36 %/h 8081.36 %/h 8081.36 %/h 1813.9 kg/h	c (c)		
95% Back of Queue - Distance (Worst Lane) Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued 0.98 Performance Index Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) 1304.9 m 1304.9 m 1304.9 m 1.12 0.98	Intersection Level of Service (LOS)	LOS F	
95% Back of Queue - Distance (Worst Lane) Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued 0.98 Performance Index Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) 8081.36 \$/h 1304.9 m 1.12	95% Back of Queue - Vehicles (Worst Lane)	170.3 veh	
Queue Storage Ratio (Worst Lane) 1.12 Total Effective Stops 18868 veh/h 22642 pers/h Effective Stop Rate 4.35 4.35 Proportion Queued 0.98 0.98 Performance Index 1072.3 1072.3 Cost (Total) 8081.36 \$/h 8081.36 \$/h Fuel Consumption (Total) 762.2 L/h 22642 pers/h Carbon Dioxide (Total) 1813.9 kg/h 1072.3		1304.9 m	
Total Effective Stops 18868 veh/h 22642 pers/h Effective Stop Rate 4.35 4.35 Proportion Queued 0.98 0.98 Performance Index 1072.3 1072.3 Cost (Total) 8081.36 \$/h 8081.36 \$/h Fuel Consumption (Total) 762.2 L/h 22642 pers/h Carbon Dioxide (Total) 1813.9 kg/h 1813.9 kg/h		1.12	
Effective Stop Rate 4.35 4.35 Proportion Queued 0.98 0.98 Performance Index 1072.3 1072.3 Cost (Total) 8081.36 \$/h 8081.36 \$/h Fuel Consumption (Total) 762.2 L/h 2 Carbon Dioxide (Total) 1813.9 kg/h 2		18868 veh/h	22642 pers/h
Proportion Queued0.980.98Performance Index1072.31072.3Cost (Total)8081.36 \$/h8081.36 \$/hFuel Consumption (Total)762.2 L/h21000000000000000000000000000000000000	Effective Stop Rate		
Cost (Total) 8081.36 \$/h 8081.36 \$/h Fuel Consumption (Total) 762.2 L/h 762.2 L/h Carbon Dioxide (Total) 1813.9 kg/h 1813.9 kg/h		0.98	0.98
Fuel Consumption (Total)762.2 L/hCarbon Dioxide (Total)1813.9 kg/h	Performance Index	1072.3	1072.3
Fuel Consumption (Total)762.2 L/hCarbon Dioxide (Total)1813.9 kg/h		0001 00 作作	0001 00 ¢/h
Carbon Dioxide (Total) 1813.9 kg/h		•	8081.30 \$/N
Hudroporbono (Total)			
Hydrocarbons (Total) 0.206 kg/h		5	
Carbon Monoxide (Total) 1.661 kg/h NOx (Total) 4.169 kg/h	,	5	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 4.7 %

Number of Iterations: 7 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 1.9% 1.0% 0.5%

Performance Measure	Vehicles	Persons
Demand Flows (Total)	2,084,211 veh/y	2,501,053 pers/y
Delay	99,484 veh-h/y	119,381 pers-h/y
Effective Stops	9,056,741 veh/y	10,868,090 pers/y
Travel Distance	1,787,985 veh-km/y	2,145,582 pers-km/y
Travel Time	134,139 veh-h/y	160,967 pers-h/y
Cost	3,879,052 \$/y	3,879,052 \$/y
Fuel Consumption	365,868 L/y	
Carbon Dioxide	870,655 kg/y	
Hydrocarbons	99 kg/y	
Carbon Monoxide	798 kg/y	
NOx	2,001 kg/y	

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 7 June 2019 1:09:51 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_SH3 RAB.sip8

Lane Level of Service

V Site: 101 [2018_No Dev_Hi-Lvl Peak]

New Site Site Category: (None) Roundabout

 LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: SIDRA Roundabout LOS

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN & TAYLOR | Processed: Friday, 7 June 2019 1:09:51 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_SH3 RAB.sip8

V Site: 101 [2018_Low Dev_Hi-Lvl Peak]

New Site Site Category: (None) Roundabout

Intersection Performance - Hourly Values			
Performance Measure	Vehicles	Persons	
Travel Speed (Average) Travel Distance (Total) Travel Time (Total)	11.2 km/h 3888.4 veh-km/h 348.7 veh-h/h	11.2 km/h 4666.1 pers-km/h 418.5 pers-h/h	
Demand Flows (Total) Percent Heavy Vehicles (Demand) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	4505 veh/h 6.6 % 1.558 -45.4 % 2892 veh/h	5406 pers/h	
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	273.09 veh-h/h 218.2 sec 521.4 sec 523.0 sec 3.8 sec 214.4 sec 157.9 sec LOS F	327.71 pers-h/h 218.2 sec 523.0 sec	
95% Back of Queue - Vehicles (Worst Lane) 95% Back of Queue - Distance (Worst Lane) Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	218.8 veh 1557.6 m 1.25 21908 veh/h 4.86 0.98 1301.6	26290 pers/h 4.86 0.98 1301.6	
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	9971.07 \$/h 871.0 L/h 2070.2 kg/h 0.238 kg/h 1.851 kg/h 4.339 kg/h	9971.07 \$/h	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Site Model Variability Index (Iterations 3 to N): 3.9 %

Number of Iterations: 10 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 1.0% 1.1% 0.8%

Performance Measure	Vehicles	Persons	
Demand Flows (Total)	2,162,526 veh/y	2,595,032 pers/y	
Delay	131,083 veh-h/y	157,300 pers-h/y	
Effective Stops	10,516,060 veh/y	12,619,270 pers/y	
Travel Distance	1,866,426 veh-km/y	2,239,711 pers-km/y	
Travel Time	167,380 veh-h/y	200,856 pers-h/y	
Cost	4,786,112 \$/y	4,786,112 \$/y	
Fuel Consumption	418,100 L/y		
Carbon Dioxide	993,702 kg/y		
Hydrocarbons	114 kg/y		
Carbon Monoxide	889 kg/y		
NOx	2,082 kg/y		

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TONKIN & TAYLOR | Processed: Friday, 7 June 2019 1:05:57 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_SH3 RAB.sip8

Lane Level of Service

V Site: 101 [2018_Low Dev_Hi-Lvl Peak]

New Site Site Category: (None) Roundabout

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: SIDRA Roundabout LOS

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN & TAYLOR | Processed: Friday, 7 June 2019 1:05:57 PM Project: \\ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_SH3 RAB.sip8

www.tonkintaylor.co.nz

+++ ++

+ + +

++ + + 4 +

4

+ +

4

++ ++ ++ 4

+

+ + ÷

4 + + + ++

+

+ +

+ +

+

+ + +

4 +

 \pm \pm 4 +

++

+ \pm +

++ \pm

++ \pm

+ + +

+ + + + + +

÷ + + + +

+ + + + + +

+ + + + +

+ +

+ + + \pm

+ \pm + ÷

+ +

+ +

+ +

+ +

+ +

+

+ ÷ ÷ +

+

÷

+

+

+

+

+

+ +

+

+

+

+

+

+

+ +

+

 \pm \pm + +

÷ +