## 民司 Tonkin+Taylor



## Exceptional thinking together

 www.tonkintaylor.co.nz
## Document Control

| Title: Te Awamutu T6 and T11 Structure Plans |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| Date | Version | Description | Prepared by: | Reviewed by: | Authorised <br> by: |  |
| June 2019 1 Draft T Broadhead A Gregory  <br> August <br> 2019 2 Draft following WDC comments J Brzeski A Gregory  <br> August <br> 2019 3 Final T Broadhead A Gregory G Nicholson <br>       <br>       <br>       |  |  |  |  |  |  |

## Distribution:

Boffa Miskell

## Table of contents

1 Te Awamutu: T611.1 Structure Plan Area ..... 1
1.2 Existing Situation ..... 2
1.2.1 Existing Transport Environment ..... 2
1.2.2 Crash History ..... 4
1.2.3 Crash Prediction Modelling ..... 6
1.2.4 Road Safety ..... 7
1.2.5 Travel Patterns ..... 7
1.2.6 Public Transport ..... 9
1.2.7 Other Modes ..... 9
1.3 Proposed Situation ..... 10
1.3.1 Proposed Road Network ..... 11
1.3.2 Proposed Alternative Mode Links ..... 12
1.4 Modelling Assessments ..... 13
1.4.1 Trip Distribution ..... 13
1.4.2 Intersection Modelling ..... 14
1.4.3 Access 4 - Belle Amie Drive ..... 24
1.4.4 Crash Prediction Modelling ..... 25
1.5 Indicative Costs ..... 25
1.6 Conclusion ..... 26
1.7 Recommendations ..... 26
2 Te Awamutu: T11 ..... 28
2.1 Structure Plan Area ..... 28
2.2 Existing Situation ..... 28
2.2.1 Existing Transport Environment ..... 28
2.2.2 Crash History ..... 29
2.2.3 Crash Prediction Modelling ..... 29
2.2.4 Road Safety ..... 30
2.2.5 Travel Patterns ..... 30
2.2.6 Public Transport ..... 31
2.2.7 Other Modes ..... 31
2.3 Feasibility Report ..... 31
2.4 Proposed Situation ..... 33
2.4.1 Proposed Road Network ..... 33
2.4.2 Proposed Alternative Mode Links ..... 34
2.5 Modelling Assessments ..... 34
2.5.1 Trip Distribution ..... 34
2.5.2 Intersection Modelling ..... 35
2.5.3 Crash Prediction Modelling ..... 42
2.6 Indicative Costs ..... 42
2.7 Conclusion ..... 43
2.8 Recommendations ..... 43
3 Applicability ..... 44
Appendix A :Appendix B :T6 Modelling Reports
Appendix C : T11 CAS Outputs
Appendix D: T11 Modelling Reports

## Executive summary

Growth Cells T6 and T11, both in the Te Awamutu area of Waipa District, were assessed for both the existing and potential future statuses of the transport network.

Considerations were as follows:

- Existing nature of the roads and other transport facilities around each growth area, including safety considerations.
- Crash history for the existing roads, including a comparison against NZTA Crash Prediction Modelling.
- Likely attractors for travel, and resulting travel patterns.
- Network assessment using the principles of ‘Gravity Modelling' for those travel patterns in various scenarios from Existing to a predicted 2035 2\% per annum increase plus High Development of the growth areas (anticipating future sub-division).
- Intersection modelling for key locations based on the assessed trip distribution.
- A comparison of the worst case future Crash Prediction Model with the existing situation.
- Consideration of a previous Feasibility Report by Opus (T11 only).

Taking all these factors, including results of modelling exercises, into account the following conclusions and recommendations were reached.

## Growth Area T6 Conclusions and Recommendations:

This report found that there may be existing deficiencies in road width on several local roads and one local arterial (Golf Road) in the rural area, and that existing crash statistics on two of these roads (Herbert Street and Whitmore Street) are in excess of what would be expected using NZTA crash prediction modelling.

The traffic modelling also revealed that normal traffic growth to 2035, without including additional demand for growth area T6, could result in the following three intersections having unacceptable waiting times:

- State Highway 3 / St Leger Road / Golf Road intersection
- State Highway 3 / Herbert Street / Nixon Street intersection
- State Highway 3 / Whitmore Street intersection

The further demand placed on the network is estimated to be 2,400 additional vehicles per day in the proposed "Low Development" scenario, or 4,800 vehicles per day in the suggested conservative "High Development" scenario (assuming future sub-division of these lots).

These additional vehicles, whilst not helping existing issues if they go unaddressed, are otherwise able to be accommodated within the assessed network even with further baseline traffic growth.

In addition, there are also a lack of pedestrian and cyclist facilities around T6 which, whilst arguably not currently a known issue, the desire of Waipa District Council to incorporate these facilities in a growth area means there could be a lack of connectivity if not addressed in the existing network.

In line with these conclusions we have prepared some recommendations for work going forward to help address existing and future concerns:

Existing Local Roads:
a The following council roads have higher than expected crash injury rates, and further investigation is required to determine why this is occurring:
b The following council roads are currently considered to have too narrow a seal width for their future purpose, and it is recommended investigation into widening and marking them is undertaken:
i St Leger Road (some sections of)
ii Brill Road
iii Haultain Street
iv McAndrew Street
v Golf Road (rural section)
vi McGhie Road (if desired to include as an alternative route east)
Pedestrian and Cyclist Facilities:
a Pedestrian and cyclist facilities around the growth area are lacking for connections to the anticipated facilities within the growth area. It is recommended that Waipa District Council review the existing facilities and programme in providing new infrastructure as the growth area is developed. The key connections to focus on for these facilities are anticipated to be:
i St Leger Road from Brill Road to State Highway 3
ii Ballance Street from the growth area connection to State Highway 3
iii Leslie Street from 'Access 3' to State Highway 3
b There are currently no dedicated or shared cyclist facilities along State Highway 3. It is recommended that NZTA look into providing these in some form.
c The only existing crossing facility along State Highway 3 is in Kihikihi town centre. It is recommended that NZTA look into additional provision for pedestrian (and possibly cyclist, depending on the solution) safe crossing facilities in the residential areas to the north and south of the town centre.

Intersection traffic issues:
a The State Highway 3 / Golf Road / St Leger Road intersection is recommended for an immediate investigation, for potential upgrade due to existing issues with vehicles trying to exit Golf Road. This intersection is designated as the junction of the proposed Western Arterial Road with SH3 in the Integrated Transport Strategy for WDC published in 2010.
b The State Highway 3 / Herbert Street / Nixon Street intersection is recommended for an upgrade investigation should growth area T6 be approved.
c The following intersections are recommended for an upgrade investigation before 2035 whether or not growth area T6 is approved for development:
i State Highway 3 / Whitmore Street
ii State Highway 3 / Herbert Street / Nixon Street

## Growth Area T11 Conclusions and Recommendations:

This report found that the existing injury crash rate on Cambridge Road is higher than is predicted by NZTA modelling guidelines, which should be investigated further.

The traffic modelling around the State Highway 3 intersection with Cambridge Road and Arawata Street at a high level appears to be indicating that the intersection is near if not at capacity with current traffic flows.

The further demand placed on the network is estimated to be 1,510 additional vehicles per day in the proposed "Low Development" scenario, or 3,020 vehicles per day in the suggested conservative "High Development" scenario (assuming future sub-division of these lots).

These additional vehicles, whilst not helping existing issues, are able to be accommodated within the assessed network with no measureable detriment, even with further baseline traffic growth.

In addition, there is also a lack of dedicated cyclist facilities around T11 which, whilst arguably not currently a known issue, the desire of Waipa District Council to incorporate these facilities in the growth area means there could be a break in connectivity if not addressed in the existing network.

In line with these conclusions we have prepared some recommendations for work going forward to help address existing and future concerns:

1 Pedestrian and Cyclist Facilities:
a Cyclist facilities down Cambridge Road are lacking for connections to the anticipated facilities within the growth area, although a shared path facility exists at the State Highway roundabout with Cambridge Road. It is recommended that Waipa District Council review the existing facilities and programme in providing / extending infrastructure as the growth area is developed.
b The only existing crossing facility along Cambridge Road is at the State Highway roundabout where there is a refuge island at the intersection. It is recommended that Waipa District Council look at a more formal facility near the supermarket, or at least another refuge island, to enable pedestrian traffic to more safely access local amenities.

2 The arrangement of Access 2 with the service lane for the shopping complex is considered to be a safety issue, and it is recommended discussions are held with the owner of that service lane to form an arrangement which is less problematic.
It is noted that Mitre 10 does not appear to have delivery doors/facilities to the rear, so there remains the possibility of combining the two into an intersection, and providing an access off the new road.

The following points are recommendations from the Opus Feasibility Report which we believe are still relevant:

1 Undertake a more detail assessment of speed management measures for Cambridge Road.
2 Undertake a review of pedestrian and cycling connectivity.

- Recommendations have been made in this regard, however a specific detailed review of what facilities are warranted has not been undertaken and could be useful to Waipa District Council in targeting funds.
3 Detailed assessment of how to change the right of way at Cambridge Road Access 1 to be a public road.


## 1 <br> Te Awamutu: T6

### 1.1 Structure Plan Area



Figure 1.1: Approximate extents of T6 growth cell (image sourced from Google Earth)

The T6 growth cell lies between Kihikihi and Te Awamutu in a currently rural area zoned for future large-lot residential, immediately south of State Highway 3.

### 1.2 Existing Situation

### 1.2.1 Existing Transport Environment

With the exception of State Highway 3 to the north of the growth cell, all roads directly affected by T6 are classified as Local Roads.

There is a single narrow footpath on the northern / eastern side of the State Highway, otherwise there are no existing pedestrian or cyclist facilities on this major arterial.

Local roads surrounding the growth cell are generally consistent with a rural environment, with some residential on the Kihikihi (eastern) side.

Table 1.1: Road Details (Indicative Existing): Immediate Area

| Road Name | Total <br> Seal <br> Width <br> (m) | Lanes | Shoulder | Cycle <br> Facilities | Footpaths | Posted <br> Speed <br> (km/hr) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| St Leger Road | $\begin{aligned} & 6.0- \\ & 8.5 \end{aligned}$ | 2 - Partially marked | Unmarked | None | None | 80-100 |
| Lawbrooke Lane | 6.0 | Unmarked (2 inferred) | Unmarked | None | None | 80 |
| Leger Grove | 6.0 | Unmarked <br> (2 inferred) | Unmarked | None | None | 80 |
| Linehan Road | 5.5 | Unmarked (2 inferred) | Unmarked | None | None | 80 |
| Brill Road | 5.5 | 2 - Partially marked | Unmarked | None | None | 100 |
| Haultain Street | 4.5 | 2-way but effectively single lane | Unmarked | None | None | 50 |
| McAndrew <br> Street | $\begin{aligned} & 4.5- \\ & 6.5 \end{aligned}$ | Unmarked (2 inferred) | Unmarked | None | None | 50 |
| Acacia Avenue | 7.5 | Unmarked (2 inferred) | Unmarked | None | 1.5 m wide, northern side, full length | 50 |
| Walmsley Street | $\begin{aligned} & 6.5- \\ & 8.0 \end{aligned}$ | Unmarked (2 inferred) | Unmarked | None | 1.5 m wide, western side, full length | 50 |
| Cameron Street | 6.5 | Unmarked (2 inferred) | Unmarked | None | None | 50 |
| Ballance Street | 8.5 | Unmarked (2 inferred) | Unmarked | None | 1.5 m wide, northern side, full length | 50 |
| Havelock Street | 4.5 | 2-way but effectively single lane | Unmarked | None | None | 50 |
| Leslie Street | $\begin{aligned} & 7.5- \\ & 8.5 \end{aligned}$ | Unmarked (2 inferred) | Unmarked | None | 1.5 m wide, western side, 200 m long only from south |  |

Note: Measurements are approximate only using Google Earth.

In addition to the above the following roads, whilst not directly associated with the development (with the exception of the State Highway), will provide key links to the wider area:

Table 1.2: Road Details (Indicative Existing): Key Links

| Road Name | Total Seal Width (m) | Lanes | Shoulder | Cycle <br> Facilities | Footpaths | Posted <br> Speed <br> (km/hr) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| State Highway <br> 3 <br> Significant <br> Road Corridor <br> Major Arterial <br> Regional <br> Strategic | $\begin{aligned} & 15.5- \\ & 16.5 \end{aligned}$ | $2+$ median | 2, varies but generally at least 1.0 m wide | None | 1.5 m wide, Northern / eastern side, full length | 50-80 |
| Golf Road Major Arterial | $\begin{aligned} & 7.9 \text { (town) } \\ & 6.0 \text { (rural) } \end{aligned}$ | 2, fully marked with centreline and edgelines | 1 on northern side to town boundary only, approximately 1.0 m wide | None | None | 70 <br> (town) <br> 100 <br> (rural) |
| McGhie Road Local Road (connects SH3 to a Collector) | 4.5 | 2-way but effectively single lane | Unmarked | None | None | 80 |
| Herbert Street Local Road (connects SH3 to a Collector) | 8.1 | 2 - Partially marked | Unmarked | None | 1.5 m wide, northern side to Moule Street where it switches to southern side, ends at Oliver Street | 50 |
| Whitmore <br> Street <br> Minor Arterial | $\begin{aligned} & 11.2- \\ & 12.0 \end{aligned}$ | 2, fully marked with centreline and edgelines | 2, at least 2.0 m wide each | None | 2 (both <br> sides), 1.5 m <br> wide each, <br> full length <br> within town | 50 |
| Church Street <br> Local Road (possible key link between Ballance and Whitmore) | 7.8 | Unmarked (2 inferred) | Unmarked | None | 1.5 m wide, southern side, full length | 50 |

Note: Measurements are approximate only using Google Earth.
Herbert Street and, to a lesser extent, McGhie Road, provide key linkage through to Flat Road (a local Collector), and in turn feed into Golf Road, which also has its own connection to State Highway 3. Collectively these roads provide a key link to Cambridge and the rural businesses between the towns.

Whitmore Street (turning into Arapuni Road at the town boundary) provides a key link to the South Waikato towns of Putaruru and Tokoroa, as well as serving the rural areas around and to the south of Mount Maungatautari.

Church Street is a small section of road providing a second connection from State Highway 3 to Whitmore Street, however it lies directly opposite the Ballance Street intersection forming a crossroads, and would be the ideal route of many trying to travel from T6 out to the east.

These roads are not considered an exhaustive list, and there are many other local roads which provide "rat-runs" between the roads listed, however these are considered the primary, or most likely, routes for the majority of people, and certainly for those not familiar with urban Kihikihi.

### 1.2.2 Crash History

The NZTA Crash Analysis System (CAS) was interrogated for the period 2009 to 2018 (inclusive) to provide crash data for the roads in the immediate vicinity of the development and roads thought to be key in the distribution of traffic away from and back to the development, but only to the next major intersection or urban boundary. Full CAS outputs can be found in Appendix A.

State Highway 3 was assessed from the St Leger Road intersection to the McAndrew Street intersection (inclusive) only to account for the major intersections utilised by the new development.

While every effort was made to weed out any double-counting, it is possible that, where two roads in the assessment intersect, a crash may have been counted twice.

Table 1.3: Historical Crash Numbers with Injury by Road

| Road Name | Number of Crashes | Non-injury | Minor Injury (M) | Death or Serious (DSI) | Crash Injury Rate | Years |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| State <br> Highway 3 | 67 | 48 | 16 | 3 | 1.9 | $\begin{aligned} & 10 \times 2009(4 \times M ; \\ & 2 \times D S I) \\ & 4 \times 2010(M) \\ & 1 \times 2011(1 \times M) \\ & 4 \times 2012(1 \times M) \\ & 2 \times 2013(1 \times M) \\ & 3 \times 2014 \\ & 11 \times 2015(3 \times M) \\ & 14 \times 2016(1 \times M ; \\ & 1 \times D S I) \\ & 12 \times 2017(2 \times M) \\ & 6 \times 2018(3 \times M) \end{aligned}$ |
| St Leger Road | 3 | 1 | 1 | 1 | 0.2 | $\begin{aligned} & 1 \times 2010 \\ & 1 \times 2012 \\ & 1 \times 2015 \end{aligned}$ |
| Golf Road | 12 | 11 | 1 | 0 | 0.1 | $\begin{aligned} & 2 \times 2009 \\ & 2 \times 2010 \\ & 2 \times 2011(1 \times M) \\ & 1 \times 2012 \\ & 3 \times 2015 \\ & 1 \times 2017 \\ & 1 \times 2018 \end{aligned}$ |


| Road Name | Number of Crashes | Non-injury | Minor Injury (M) | Death or Serious (DSI) | Crash Injury Rate | Years |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| McGhie Road | 1 | 1 | 0 | 0 | 0 | 2011 |
| Herbert Street | 12 | 9 | 3 | 0 | 0.3 | $\begin{aligned} & \hline 2 \times 2009 \\ & 1 \times 2010 \\ & 2 \times 2011(1 \times M) \\ & 3 \times 2012 \\ & 2 \times 2016 \\ & 2 \times 2017(M) \end{aligned}$ |
| Whitmore Street | 21 | 15 | 5 | 1 | 0.6 | $\begin{aligned} & 1 \times 2009 \\ & 1 \times 2010(D S I) \\ & 2 \times 2011 \\ & 3 \times 2012 \\ & 1 \times 2013(M) \\ & 3 \times 2014 \\ & 3 \times 2016(1 \times M) \\ & 4 \times 2017(1 \times M) \\ & 3 \times 2018(2 \times M) \end{aligned}$ |
| Leslie Street | 3 | 3 | 0 | 0 | 0 | $\begin{aligned} & 1 \times 2009 \\ & 1 \times 2012 \\ & 1 \times 2015 \end{aligned}$ |
| Ballance Street | 4 | 4 | 0 | 0 | 0 | $\begin{aligned} & 1 \times 2010 \\ & 1 \times 2014 \\ & 1 \times 2015 \end{aligned}$ |
| McAndrew <br> Street | 2 | 2 | 0 | 0 | 0 | $\begin{aligned} & 1 \times 2009 \\ & 1 \times 2016 \end{aligned}$ |
| Walmsley Street | 0 | 0 | 0 | 0 | 0 | $\mathrm{n} / \mathrm{a}$ |
| Acacia <br> Street | 0 | 0 | 0 | 0 | 0 | $\mathrm{n} / \mathrm{a}$ |
| Haultain Street | 1 | 1 | 0 | 0 | 0.1 | 2009 |
| Brill Road | 0 | 0 | 0 | 0 | 0 | n/a |

As would be expected being a major arterial, State Highway 3 has by far the most crashes for the period, closely followed by Whitmore Street, Herbert Street and Golf Road. While this number seems high, it is less than would be expected by modelling (refer Section 1.2.3 below). This road is also noted as being a medium risk road on NZTA's KiwiRAP (Kiwi Roads Assessment Programme) report in 2012 (the most recent report) and therefore on NZTA's radar of roads that require attention.

Golf Road is a defined as a Major Arterial and Whitmore Street a Minor Arterial, therefore the crash rates on these roads appear consistent with their status.

Herbert Street is considered to be a Local Road, however the accident data suggests that it carries more traffic than normally expected or this classification and may be acting more like a collector road used as a defacto bypass of central Te Awamutu and/or as an alternative route to Cambridge and rural businesses.

If this is the case, it will have significant impact on the use of Herbert Street and its intersection with State Highway 3, over what may have been designed for, and improvement of the intersection and road corridor may be required.

### 1.2.3 Crash Prediction Modelling

A high-level Crash Prediction Model was assessed for the existing situation using the methods and formulae found in NZTA's Crash Estimation Compendium (2016, Updated June 2018).

For the State Highway 3 analysis, specifically the section of the State Highway from the St Leger Road / Golf Road intersection to the McAndrew Street intersection (both inclusive), the following sections were modelled independently from one another and combined in a final summation as per section 2.1.1: Methodology by site and crash type, of the Crash Estimation Compendium:

- State Highway 3 'rural' zone (i.e.: $80 \mathrm{~km} / \mathrm{hr}$ ) mid-block model
- State Highway 3 'urban' zone (i.e.: $50 \mathrm{~km} / \mathrm{hr}$ ) mid-block model
- St Leger Road / Golf Road intersection model
- Herbert Street intersection model
- Leslie Street intersection model
- Whitmore Street intersection model
- Ballance Street / Church Street intersection model
- McAndrew Street intersection model

Those Waipa District Council roads considered to be the main thoroughfares and/or distributors both currently and in the future were assessed as mid-block only as the major intersections were accounted for in the State Highway assessment, and the mid-block modelling can be said to account for minor intersections and private accesses.

Table 1.4: Crash Model Results (Existing)

| Road Name | Predicted Injury <br> Crash Rate <br> (existing) | Actual Injury Crash <br> Rate | Differential: <br> Predicted to <br> Actual | Differential Rate |
| :--- | :--- | :--- | :--- | :--- |
| State Highway 3 <br> (includes <br> intersections) | 3.10 | 1.90 | -1.20 | $-38.7 \%$ |
| St Leger Road | 0.30 | 0.20 | -0.10 | $-33.3 \%$ |
| Golf Road | 0.10 | 0.10 | 0.00 | $0 \%$ |
| Herbert Street | 0.12 | 0.30 | +0.18 | $+50 \%$ |
| Leslie Street | 0.06 | 0.00 | -0.06 | $-100 \%$ |
| Whitmore Street | 0.06 | 0.60 | +0.54 | $+900 \%$ |
| Ballance Street | 0.02 | 0.00 | -0.02 | $-100 \%$ |
| McAndrew Street | 0.02 | 0.00 | -0.02 | $-100 \%$ |

Most of the road corridors, including State Highway 3, are currently experiencing lower injury crash rates than the assessed prediction model estimates, with notable exceptions for Herbert Street and Whitmore Street.

The assumption regarding Herbert Street's collector road status also seems to be supported by the data, and Whitmore Street has a higher crash rate than would normally be expected, which could indicate it is in need of further detailed analysis to understand why this may be occurring.

It is important to note that, being high-level, no detailed analysis of individual crashes was undertaken; as such, it is possible that the actual injury crashes may have been assigned incorrectly.

### 1.2.4 Road Safety

The existing road network is that of a rural town, some is urbanised in facilities such as footpaths etc., and other areas have no footpaths or kerb and channel. Generally the local road network has some provision for pedestrians, as indicated in Table 1.1, however on the roads to the western side of State Highway 3 which will connect directly to this growth area the facilities are spotty, with some roads having partially complete paths on at least one side, and others having nothing. Dedicated cyclist facilities are none existent.

The State Highway, whilst having standard-width footpaths on both sides for most of the study length, is also lacking in dedicated cyclist facilities.

Crossing facilities beyond a drop-kerb in the footpath appear to be confined to the immediate town centre, and then a single Zebra-type crossing facility across the State Highway is the only formal arrangement.

In the crash data (refer Appendix A) there are three accidents which involve pedestrians, all associated with the State Highway; two of these resulted in vehicle to vehicle conflict due to attempts to avoid or slow down for the pedestrians in question. There are no accidents stated to involve cyclists.

One accident involved hitting a pedestrian, resulting in a minor injury, and was caused by the vehicle swerving to avoid 'another party.'

It's also important to note that these accidents were spread quite evenly over the study period, with only one non-injury crash involving a pedestrian in the last five years (in 2015).

This indicates the relative risk for pedestrians and cyclists in Kihikihi appears to be low, however it should be noted that the reason for this is unknown, for example it may be that there are very few pedestrians at all.

### 1.2.5 Travel Patterns

No traffic survey has been undertaken, however using best-practise and existing data from the Road Assessment and Maintenance Management database (RAMM) we can infer likely peak travel patterns.

This data was extracted from Mobileroad.org, which is populated using Road Controlling Authority (RCA) RAMM data. This data is maintained by the RCA (in this case NZTA for State Highway 3, and Waipa District Council for all other roads) for tracking and forecasting maintenance activities on their respective networks; it was noted that while the State Highway traffic data appeared to be based on recent counts, the Waipa District Council roads were all identified as estimates from 2016 and so we are unsure as to the accuracy of the data for that part of the network.

The key RAMM data used in this assessment can be found in Table 1.5 below.

Table 1.5: RAMM Data

| Road Name | Average Daily Traffic <br> (ADT) <br> (veh/day) | Date of Count / Estimate | Heavy Vehicles <br> (\%) |
| :---: | :---: | :---: | :---: |
| Acacia Avenue | 155 | 1/12/2016 | Unknown |
| Ballance Street | 600 | 1/12/2016 | Unknown |
| Brill Road | 230 | 1/12/2016 | Unknown |
| Brill Road Stub | 162 | 1/12/2016 | Unknown |
| Church Street | 1,160 | 1/12/2016 | Unknown |
| Golf Road | 1,580 | 1/12/2016 | Unknown |
| Haultain Street | 80 | 1/12/2016 | Unknown |
| Havelock Street | 30 | 1/12/2016 | Unknown |
| Herbert Street | 1,020 | 1/12/2016 | Unknown |
| Leslie Street | 610 | 1/12/2016 | Unknown |
| McAndrew Street | 250 | 1/12/2016 | Unknown |
| McGhie Road | 220 | 1/12/2016 | Unknown |
| SH3 (Kihikihi Road) North of St Leger/Golf Int. | 12,030 | 25/12/2017 | 8\% |
| SH3 (Kihikihi Road) South of St Leger/Golf Int. | 11,861 | 25/12/2017 | 11\% |
| SH3 (Lyon Street) Herbert to Whitmore | 11,861 | 25/12/2017 | 11\% |
| SH3 (Lyon Street) <br> Whitmore South | 8,670 | 25/12/2017 | 19\% |
| St Leger Road Brill Road to Bruce Road | 355 | 1/12/2016 | Unknown |
| St Leger Road Bruce Road to Linehan Road | 410 | 1/12/2016 | Unknown |
| St Leger Road Lawbrooke to SH3 / Golf | 1,110 | 1/12/2016 | Unknown |
| St Leger Road Leger Grove to Lawbrooke | 920 | 1/12/2016 | Unknown |
| St Leger Road Linehan Road to Leger Grove | 545 | 1/12/2016 | Unknown |
| St Leger Road Stub | 57 | 1/12/2016 | Unknown |
| Walmsley Street | 130 | 1/12/2016 | Unknown |
| Whitmore Street SH3 to Church | 2,350 | 1/12/2016 | Unknown |
| Whitmore Street East of Church | 2,740 | 1/12/2016 | Unknown |

Note: All data obtained from MobileRoad.org, all 2-way traffic.

The attractors for determining travel patterns are considered to be as follows:

Table 1.6: Attractors and Type

| Attractor Name | Approximate Distance from $T 6$ | Attractor Type | Attractions |
| :---: | :---: | :---: | :---: |
| Kihikihi Centre | 700 m | Local Primary Attractor | - Local shops (food, postal services, etc.) |
| Hamilton | 32 km | Primary Attractor | - Largest population centre within 0.5 hrs travel <br> - Large employment area <br> - Large retail bases, including niche shops and large supermarkets <br> - Recreational facilities |
| Te Awamutu | 3 km | Secondary Attractor | - Closest large shopping area, including Supermarkets <br> - Employment |
| Cambridge | 23 km | Secondary Attractor | - Large shopping area, including Supermarkets <br> - Employment |
| Local Rural Areas | 3 km plus | Secondary Attractor | - Employment <br> - Outdoor Recreation |
| Otorohanga (and South) | 25 km plus | Tertiary Attractor | - Employment <br> - Recreation |

From these assumptions we can reasonably determine that the majority of traffic will travel east (Kihikihi Centre, Cambridge, and some rural areas) and north (Hamilton, Te Awamutu, and methods for getting to rural areas north, east and west), with the rest travelling south; and return from those same directions in similar proportions.

Westbound traffic moving away from this area are forced to head either north or south first as no method of direct connection in that direction exists.

### 1.2.6 Public Transport

State Highway 3 is currently serviced by the number 24 "Te Awamutu" bus connecting Te Awamutu and Kihikihi with Ohaupo and Hamilton City according to the "Busit.co.nz" website, and only to Kihikihi on Tuesdays and Thursdays.

No other public transport options are currently available for this area. Engagement with Waikato Regional Council is recommended to look at future public transport options in the lead up to the next LTP development in 2021.

### 1.2.7 Other Modes

For local trips to Kihikihi centre, and possibly Te Awamutu, it is likely cycling and walking will be used by children, the elderly, those with no access to a private vehicle, and those of a health or environmentally friendly mind-set; some of these same groups will use the bus to Te Awamutu and further to Hamilton.

Realistically, however, the majority of trips in this area are still likely to be private vehicle based regardless of the distance to travel.

### 1.3 Proposed Situation



Figure 1.2: Proposed T6 Structure Plan road network

The proposed development area is intended to be a mixture of various lot sizes of residential and compact residential, ranging from $1,000 \mathrm{~m}^{2}$, to $5,000 \mathrm{~m}^{2}$ and over.

Based on the current Structure Plan at the time of writing, this results in an estimated lot yield of around 250-300.

### 1.3.1 Proposed Road Network

### 1.3.1.1 Overview

The proposed road network is designed to provide good connectivity both to and within the land parcel, providing good traffic amenity as well as retaining the potential for future in-fill subdivision from low density to medium density without the need for additional public roading infrastructure.

The links to the existing road network occur at two points on St Leger Road (including the intersection with Brill Road to the south), given it runs through the proposed plan area, and Ballance Street.

St Leger Road provides a good primary connection to State Highway 3 to the north for those living in the south, and parts of the central, plan area, as well as providing a reasonable local road link to State Highway 3 to the south via Brill Road and McAndrew Street.

Belle Amie Drive, leading out to St Leger Road in the northern part of the growth cell is a recently constructed road that appears to be of sufficient standard to join on to the 20 m collector road shown on the Structure Plan. It is likely that this will form the main point of entry for vehicles accessing from the north.

Ballance Street provides a good link from the centre of the plan area to Kihikihi town centre, providing an alternative link to State Highway 3 for those in the northern and central part of the plan area, saving a (comparatively) lengthy travel south.

It is anticipated that vehicles will use the Ballance Street intersection with State Highway 3 sparingly, unless they intend to use Whitmore Street to head out into the rural area, with Leslie and Walmsley Streets providing the primary north and southbound connections to the State Highway respectively.

### 1.3.1.2 Road Upgrades

The following roads, critical to the growth area, are currently estimated to be deficient (based on the desktop exercise) when assessed against the Waipa District Council standards (Regional Infrastructure Technical Specifications, Appendix T4: Criteria for Public and Private Roads) and may require upgrading to meet these standards:

- $\quad$ St Leger Road (some sections of)
- Brill Road
- Haultain Street
- McAndrew Street
- Golf Road (rural section)
- McGhie Road (if desired to include as an alternative route east)

Predominantly this relates to total seal widths, which may be exacerbated by a lack of markings, leading to drivers taking a more central position than they otherwise would do.

Upgrading the intersection of St Leger Road and Brill Road could provide a significant enhancement to safety and efficiency as the current crossroads alignment is narrow with highly constrained sight distance which is considered to be a considerable risk now, which will deteriorate in the future should traffic flows increase, although the medium term estimate is that this is unlikely given the increased ease of connectivity along other roads within the development.

We consider it necessary to undertake a review of these roads prior to the growth area coming online, in conjunction with any hierarchy changes (see below).

### 1.3.1.3 Road Hierarchy Changes

As part of this development, it is expected that certain local roads function, and therefore where it sits in the regional hierarchy, will change.

The table below indicates which roads are expected to change hierarchy as the development in the T6 growth area increases:

Table 1.7: Predicted Road Hierarchy Changes

| Road Name | Current Zone / Hierarchy | Predicted Zone / Hierarchy |
| :--- | :--- | :--- |
| St Leger Road | Rural \& Large Lot Residential / Local | Large Lot Residential / Collector |
| Herbert Street | Residential / Local | Residential / Collector |
| Ballance Street | Residential / Local | Residential / Collector |
| Church Street | Residential / Local | Residential / Collector |

These predictions are based on a combination of function and traffic numbers, and even if T6 does not support the numbers based in this report, the roads listed are likely to function on this basis as a minimum.

If this prediction follows, then it is likely these roads will require some level of upgrade, as per the District Plan minimum standards, to function in this manner safely and efficiently. District Plan Road widths are reproduced in the table below.

Table 1.8: District Plan Residential Zone Road Widths

| Class | Road Reserve <br> Width $(\mathbf{m})$ | Carriageway <br> Width $(\mathbf{m})$ | Lane Width <br> $(\mathbf{m})$ | Cycleway Width <br> $(\mathbf{m})$ | Footpath <br> Width $(\mathbf{m})$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Collector | 25 | 15 | $2 @ 3.5$ | Both sides @ 1.5 | 2 @ 1.5 |
| Local | 11 | 11 | $2 @ 3$ | Shared <br> environment | 2 @ 1.5 |

### 1.3.2 Proposed Alternative Mode Links

Shared pedestrian / cycle facilities have been proposed in the Structure Plan (the pink lines in Figure 1.2) which follow most of the proposed road links to the existing network, as well as providing some amenity linkage through proposed green spaces.

The majority of the roads connecting to these facilities currently have little to no pedestrian and cyclist facilities provided, and what is there is generally considered to be poorly inter-connected. We recommend that WDC consider addressing this in the next LTP by reviewing Kihikihi active mode transport facilities against the Waipa District Cycling Trails Strategic Framework to proposing projects, such as:

- Provision of shared cycle/footway path links to key destinations away from roads.
- Traffic Calming on local roads to reduce vehicle speeds and make a safer environment.
- Localised widening especially on corners to improve visibility and provide safe passing of cyclists.
- Construction of footpaths and berms wherever possible.


### 1.4 Modelling Assessments

### 1.4.1 Trip Distribution

Trip distribution has been assessed at a conceptual level using a simplified form of gravity modelling, a high-level method of determining likely travel patterns based on existing known data.

Using the attractors as a guide, at any one intersection the traffic flow in any direction currently on that road is proportionally split based on the most popular routes and likely destinations, informing the flows between, and therefore at, intersections through to the end of the study area.

The flows undergo a "balancing" exercise where the proportions turning in any one direction are gradually amended until the approximate ADT for each direction and road are arrived at.

This method is a cost effective way of estimating traffic patterns and turning flows without reliance on turning counts and origin destination surveys. The results are used to inform the indicative intersection models and give an indication as to whether intersections are currently functioning as intended, and whether they will continue to do so if more vehicles are added.

### 1.4.1.1 Base Year

The gravity modelling for the existing situation is based on the assumed travel patterns and traffic data identified in section 1.2.3 above.

The ADT data was pro-rated to a Base Year of 2018 using a $2 \%$ per annum average, and also to a Projected Year of 2035 using the same average; 2035 was chosen as this is the latest year this growth area is expected to be fully developed by.

These numbers were then placed into a spreadsheet-based "Wireframe Model" designed to look at the daily peaks using the following further assumptions:

- $\quad$ The average daily peaks will be $10 \%$ of the ADT.
- The flows on any one road are split 70/30 for direction based on the time of day and direction of attractors (i.e.: 70\% AM towards attractors, $70 \%$ PM away from attractors).
- Where Heavy Traffic is 'Unknown' it will be assumed to be $1 \%$

Turning estimates, by percentage of vehicles, were then used to try and balance the vehicles flowing into the study area with the vehicles flowing from the study area along key routes.

Using these turning estimates as a starting point, the 2035 base model was then also created.

### 1.4.1.2 Model Limitations

It is important to note that, no counts or observation verification was conducted at any of the key intersections and the model is entirely derived from the "most likely" routing based on the assumptions used for trip distribution.

Another issue with using ADT data over such a long section of State Highway is the "stepping" which occurs in the data between two count locations, which is difficult to reconcile within the assumptions and method mentioned above.

### 1.4.1.3 Development Figures

The future development of T6 has been assumed to be additional to the standard 2\% traffic growth in this area; this is not strictly correct, as the traffic has to come from somewhere and this type of residential growth tends to be what supports it, however retaining this assumption does provide for a conservative model.

Two development scenarios over and above a standard 2\% growth were considered:
1 Low Development: A scenario whereby the lot yield as presented in the Structure Plan was used to determine additional traffic flow.

2 High Development: A scenario whereby the lot yield was doubled when compared to that in the structure plan, to account for a worst case scenario of smaller lot types and future in-fill development.

The daily traffic per lot was assumed to be 10veh/day, with all other traffic assumptions matching that for the base models. This results in the following additional traffic figures:

1 Low Development $=2,400$ veh/day
2 High Development = 4,800 veh/day

### 1.4.2 Intersection Modelling

The following intersections were modelled in Sidra Intersection 8.0 for levels of service, all based on the Gravity Model calculated flows and turning percentages:

- State Highway 3 / Golf Road / St Leger Road
- State Highway 3 / Herbert Street / Leslie Street / Nixon Street
- $\quad$ State Highway 3 / Whitmore Street / Church Street / Ballance Street
- $\quad$ State Highway 3 / McAndrew Street

These intersections were considered high priority intersections as they are collector roads or higher and/or currently manage or are expected to manage a significant amount of the traffic from both the existing developed areas of Kihikihi and the T6 growth area.

The Level of Service for any lane is directly related to the average delay anticipated for a vehicle in that lane, as follows:

Table 1.9: Level of Service (LoS): Sidra 8 Sign Control

| Level of Service (LoS) <br> for $\mathrm{v} / \mathrm{c} \leq 1.0(\mathrm{v} / \mathrm{c}>1.0=\operatorname{LoS} \mathrm{F})$ | Average Delay per Vehicle <br> in seconds (d) |
| :--- | :--- |
| A | $\mathrm{d} \leq 10$ |
| B | $10<\mathrm{d} \leq 15$ |
| C | $15<\mathrm{d} \leq 25$ |
| D | $25<\mathrm{d} \leq 35$ |
| E | $35<\mathrm{d} \leq 50$ |
| F | $50<\mathrm{d}$ |

The following assumptions, in addition to those mentioned for the Gravity Model, were used:

- $\quad$ No gradients are known, so all gradients for all approaches were set at $0 \%$.
- All measurements possible were taken from aerial views on Google Earth.
- If a median was present it was assumed to act as a Right Turn Bay in lieu of an actual Right Turn Bay.
- If present, shoulders were considered 'full' (of parked vehicles, for example) and so not considered as additional seal width.


### 1.4.2.1 State Highway 3 / Golf Road / St Leger Road



Figure 1.3: Sidra Intersection Diagram - State Highway 3 / Golf Road / St Leger Road

This intersection was modelled for the following situations:

- 2018 base year AM and PM peaks
- 2018 plus Low Development (LD) AM and PM peaks
- 2018 plus High Development (HD) AM and PM peaks
- 2035 assumed natural growth of 2\%pa only, AM and PM peaks
- $\quad 2035$ 2\% growth plus Low Development (LD), AM and PM peaks
- 2035 2\% growth plus High Development (HD), AM and PM peaks

The following tables summarise the LoS findings for each leg / lane by scenario for quick reference. Summaries of the modelling reports can be found in Appendix B.

Table 1.10: AM Peaks

| Scenario | SH3 North |  | SH3 South |  | Golf Road | St Leger Road |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Through Lane | Right Turn Bay | Through Lane | Right Turn Bay |  |  |
| 2018 | A | B | A | A | F | C |
| 2018 + LD | A | B | A | A | F | C |
| 2018 + HD | A | B | A | A | F | C |
| 2035 | A | B | A | A | F | F |
| 2035 + LD | A | B | A | A | F | F |
| 2035 + HD | A | B | A | A | F | F |

Table 1.11: PM Peaks

| Scenario | SH3 North |  | SH3 South |  | Golf Road | St Leger <br> Road |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | Through <br> Lane | Right Turn <br> Bay | Through <br> Lane | Right Turn <br> Bay |  | F |
| 2018 | A | A | A | B | F | C |
| $2018+$ LD | A | A | A | B | F | C |
| $2018+$ HD | A | A | A | B | F | C |
| 2035 | A | A | A | C | F | F |
| $2035+$ LD | A | A | A | C | F | F |
| $2035+$ HD | A | A | A | C | F | F |

These results indicate that, for both AM and PM peaks, the existing intersection requires an upgrade with current traffic levels.

It is likely that, given Golf Road's other connections to the east, the intersection will very rarely see these levels of delay as users will re-direct to Park or Cambridge Roads to bypass any issues; however by 2035, without the added development as additional demand, St Leger Road will also be experiencing delay outside of the desired Levels of Service, with the only option for users to travel south and join the State Highway 3 traffic heading north, therefore adding to the issues with exiting a side road at this intersection, and also potentially causing problems with those within Kihikihi.

### 1.4.2.2 State Highway 3 / Herbert Street / Leslie Street



Figure 1.4: Sidra Intersection Diagram - State Highway 3 / Herbert Street / Leslie Street

This intersection was modelled for the following situations:

- 2018 base year AM and PM peaks
- 2018 plus Low Development (LD) AM and PM peaks
- 2018 plus High Development (HD) AM and PM peaks
- 2035 assumed natural growth of 2\%pa only, AM and PM peaks
- $\quad 2035$ 2\% growth plus Low Development (LD), AM and PM peaks
- 2035 2\% growth plus High Development (HD), AM and PM peaks

It is important to note that this intersection is staggered, and as such has been summarised as two separate intersections, however it was analysed as one model for the purposes of this report.

The following tables summarise the LoS findings for each leg / lane by scenario for quick reference. Summaries of the modelling reports can be found in Appendix B.

Table 1.12: AM Peaks - Herbert Street

| Scenario | SH3 North | SH3 South |  | Herbert <br> Street | Nixon <br> Street |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | Right Turn <br> Bay |  |  |  |
| 2018 | A | A | A | D | C |
| $2018+$ LD | A | A | A | D | C |
| $2018+$ HD | A | A | A | E | C |
| 2035 | A | A | A | F | F |
| $2035+$ LD | A | A | A | F | F |
| $2035+$ HD | A | A | A | F | F |

Table 1.13: AM Peaks - Leslie Street

| Scenario | SH3 North |  | SH3 South | Leslie <br> Street |
| :--- | :--- | :--- | :--- | :--- |
|  | Through <br> Lane | Right Turn <br> Bay |  | A |
| 2018 | A | A | B |  |
| $2018+$ LD | A | A | A | B |
| $2018+$ HD | A | A | A | B |
| 2035 | A | B | A | C |
| $2035+$ LD | A | B | A | C |
| $2035+$ HD | A | B | A | C |

Table 1.14: PM Peaks - Herbert Street

| Scenario | SH3 North | SH3 South |  | Herbert <br> Street | Nixon <br> Street |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | Through <br> Lane | Right Turn <br> Bay |  | C |
| 2018 | A | A | A | E | D |
| $2018+$ LD | A | A | A | F | D |
| $2018+$ HD | A | A | A | F | D |
| 2035 | A | A | C | F | F |
| $2035+$ LD | A | A | C | F | F |
| $2035+$ HD | A | A | C | F | F |

Table 1.15: PM Peaks - Leslie Street

| Scenario | SH3 North |  |  | SH3 South |
| :--- | :--- | :--- | :--- | :--- |
|  | Through <br> Lane | Right Turn <br> Bay |  |  |
| 2018 | A | A | A | A |
| $2018+$ LD | A | A | A | A |
| $2018+$ HD | A | A | A | A |
| 2035 | A | A | A | B |
| $2035+$ LD | A | A | A | A |
| $2035+$ HD | A | A | A | A |

These results indicate that the peak traffic is not currently a problem at either end of this staggered crossroads, however the PM peak becomes problematic with even low development of the T6 growth cell, and both AM and PM peaks are an issue by 2035 under a normal growth scenario.

It is likely that, given Herbert Street's other connections to the east, the intersection will rarely see these levels of delay as users will re-direct to Park or Cambridge Roads to bypass any issues, and users of Nixon Street will turn left and follow the same bypass routes if as those on Herbert; however this of course is potentially passing the problem on to other high-use intersections along the State Highway 3 corridor, which would be undesirable.

### 1.4.2.3 State Highway 3 / Whitmore Street / Church Street / Ballance Street



Figure 1.5: Sidra Intersection Diagram - State Highway 3 / Whitmore Street / Church Street / Ballance Street

This intersection was modelled for the following situations:

- 2018 base year AM and PM peaks
- 2018 plus Low Development (LD) AM and PM peaks
- 2018 plus High Development (HD) AM and PM peaks
- 2035 assumed natural growth of 2\%pa only, AM and PM peaks
- $\quad 2035$ 2\% growth plus Low Development (LD), AM and PM peaks
- 2035 2\% growth plus High Development (HD), AM and PM peaks

It is important to note that this assessment is two intersections being treated as one due to proximity. It has been summarised as two separate intersections for clarity, however it was analysed as one model for the purposes of this report.

The following tables summarise the LoS findings for each leg / lane by scenario for quick reference. Summaries of the modelling reports can be found in Appendix B.

Table 1.16: AM Peaks - Whitmore Street

| Scenario | SH3 North | SH3 South | Whitmore <br> Street |
| :--- | :--- | :--- | :--- |
| 2018 | A | A | D |
| $2018+$ LD | A | A | D |
| $2018+$ HD | A | A | D |
| 2035 | A | A | F |
| $2035+$ LD | A | A | F |
| $2035+$ HD | A | A | F |

Table 1.17: AM Peaks - Ballance Street

| Scenario | SH3 North | SH3 South | Church <br> Street | Ballance <br> Street |
| :--- | :--- | :--- | :--- | :--- |
| 2018 | A | A | A | B |
| $2018+$ LD | A | A | A | B |
| $2018+$ HD | A | A | A | B |
| 2035 | A | A | B | B |
| $2035+$ LD | A | A | B | C |
| $2035+$ HD | A | A | B | C |

Table 1.18: PM Peaks - Whitmore Street

| Scenario | SH3 North | SH3 South | Whitmore <br> Street |
| :--- | :--- | :--- | :--- |
| 2018 | A | A | C |
| $2018+$ LD | A | A | C |
| $2018+$ HD | A | A | D |
| 2035 | A | B | F |
| $2035+$ LD | A | B | F |
| $2035+$ HD | A | B | F |

Table 1.19: PM Peaks - Ballance Street

| Scenario | SH3 North | SH3 South | Church <br> Street | Ballance <br> Street |
| :--- | :--- | :--- | :--- | :--- |
| 2018 | A | A | B | B |
| $2018+$ LD | A | A | B | B |
| $2018+$ HD | A | A | B | B |
| 2035 | A | A | C | B |
| $2035+$ LD | A | A | C | B |
| $2035+$ HD | A | A | C | B |

These results indicate that the peak traffic at the two intersections analysed is currently not a problem, and would still be meeting the required Levels of Service under both T6 growth scenarios.

However, by 2035 under normal a normal growth scenario, without the added development as additional demand, the Whitmore Street intersection falls below the minimum Level of Service and so may require upgrading.

### 1.4.2.4 State Highway 3 / McAndrew Street



Figure 1.6: Sidra Intersection Diagram - State Highway 3 / McAndrew Street

This intersection was modelled for the following situations:

- 2018 base year AM and PM peaks
- 2018 plus Low Development (LD) AM and PM peaks
- 2018 plus High Development (HD) AM and PM peaks
- 2035 assumed natural growth of 2\%pa only, AM and PM peaks
- $\quad 2035$ 2\% growth plus Low Development (LD), AM and PM peaks
- 2035 2\% growth plus High Development (HD), AM and PM peaks

The following tables summarise the LoS findings for each leg / lane by scenario for quick reference. Summaries of the modelling reports can be found in Appendix B.

Table 1.20: AM Peaks

| Scenario | SH3 North | SH3 South | McAndrew <br> Street |
| :--- | :--- | :--- | :--- |
| 2018 | A | A | B |
| $2018+$ LD | A | A | B |
| $2018+$ HD | A | A | B |
| 2035 | A | A | C |
| $2035+$ LD | A | A | C |
| $2035+$ HD | A | A | C |

Table 1.21: PM Peaks

| Scenario | SH3 North | SH3 South | McAndrew <br> Street |
| :--- | :--- | :--- | :--- |
| 2018 | A | A | A |
| $2018+$ LD | A | A | A |
| $2018+$ HD | A | A | A |
| 2035 | A | A | B |
| $2035+$ LD | A | A | B |
| $2035+$ HD | A | A | B |

These results indicate that the McAndrew Street intersection is both currently operating well within the Levels of Service, and continues to do so with development now and to 2035.

### 1.4.3 Access 4 - Belle Amie Drive

Belle Amie Drive, being positioned in the north-western section of the proposed growth area, potentially significantly alters the flow of traffic within this area as the assumptions currently assume most users want to travel north, and most of those users from the northern part of the development will therefore use the Ballance Street exit.

Access 4 would therefore draw traffic away from Ballance Street and place more traffic on the St Leger Road intersection with State Highway 3.

This would not significantly affect the modelling results, as the St Leger Road intersection is need of a more detailed investigation and more traffic would not change this, and Ballance Street (and the other assessed connections to the State Highway in this area) are expected to operate without significant problems up to the extreme case of 2035 traffic plus higher development in the growth area, which would only improve with traffic diverting away.

The connection of Access 4 to St Leger Road, therefore, is not considered a problem and could in fact reduce traffic in Kihikihi town centre if an upgrade to the State Highway 3 / St Leger Road / Golf Road intersection is implemented and works efficiently.

### 1.4.4 Crash Prediction Modelling

Using the additional vehicles assumed to be using the road corridors in a 2035 plus High Development worst-case scenario, as assigned in the Gravity Modelling above, the Crash Prediction Modelling was updated assuming the road corridors were not otherwise altered by the developments.

Table 1.22: Crash Model Results (Combined)

| Road Name | Predicted Injury <br> Crash Rate <br> (existing) | Predicted Injury <br> Crash Rate (2035 + <br> HD) |
| :--- | :--- | :--- |
| State Highway 3 <br> (includes <br> intersections) | 3.10 | 4.36 |
| St Leger Road | 0.30 | 0.49 |
| Golf Road | 0.10 | 0.13 |
| Herbert Street | 0.12 | 0.15 |
| Leslie Street | 0.06 | 0.10 |
| Whitmore Street | 0.06 | 0.08 |
| Ballance Street | 0.02 | 0.04 |
| McAndrew Street | 0.02 | 0.04 |

If the differential from Table 1.4 Crash Model Results (Existing) were applied to Herbert and Whitmore Streets, therefore assuming their current unexpected crash trends continued, they would produce a prediction of 0.23 and 0.72 crashes per year respectively.

This shows an increase in expected crashes as development increases, which is not unexpected, however with further investigation and option assessments for upgrading the various roads and intersections so they are better able to cope with expected traffic growth could help keep this increase to a minimum.

### 1.5 Indicative Costs

Given that the majority of road construction costs will be borne by developers, only a high-level cost estimate has been produced for the structure plan area, and only includes the following:

- Existing road sections which require upgrade to become Collectors or higher (including parts of St Leger Road and Ballance Road).
- New road infrastructure designated Collector or higher, which Waipa DC may wish to implement ahead of developer involvement.

This cost estimate is on the following basis:

- The typical cross section used was based on a "Rural and Large Lot Zone" Collector type road from the Waipa District Plan, with an allowance for a separate pedestrian and cycle shared path.
- No attempt to assess mass-balance of the structure plan area has been made, as a result a nominal earthworks quantity was assumed based on the road following existing contours with no undercutting for poor ground conditions considered.
- No Land Costs have been considered.
- No landscaping, beautification or other enhancement from the stated cross-section in the first point has been assumed (i.e.: grassed berms only).
- No minor roads are included for upgrade or construction.
- Priority intersections are standard (i.e.: no Roundabouts or Traffic Signals).
- No State Highway intersection upgrades have been included, as these are generally high cost bespoke design items, and in the case of the St Leger/Golf Road intersection is already overdue for an upgrade.
- Professional fees associated with the design, consenting and construction observation has not been included.
- Preliminary and General is assumed at 30\%
- Escalation costs are not included.

The indicative estimate is $\$ 12,500,000$, and is considered to be $+/-50 \%$.

### 1.6 Conclusion

There may be existing deficiencies in road width on several local roads including Golf Road (designated as arterial) in the rural area, and that existing crash statistics on Herbert Street and Whitmore Street are in excess of what would be expected using NZTA crash prediction modelling, suggesting that their usage is greater than current assumptions.

Modelling also suggests that normal traffic growth to 2035, without including additional demand for growth area T6, could result in the following three intersections having significant increase in delays:

- State Highway 3 / St Leger Road / Golf Road intersection
- State Highway 3 / Herbert Street / Nixon Street intersection
- $\quad$ State Highway 3 / Whitmore Street intersection

The additional demand placed on the network is estimated to be 2,400 vehicles per day in the proposed "Low Development" scenario, or 4,800 vehicles per day in the suggested conservative "High Development" scenario (assuming future sub-division of these lots).

These additional vehicles, whilst increasing pressure on the current network and compounding existing issues if they go unaddressed, are otherwise able to be accommodated within the assessed local roading network without significant detriment to safety and efficiency.

There is, however, insufficient pedestrian and cyclist facilities around T6 which. Whilst this is not currently a highlighted issue, the desire of Waipa District Council to incorporate these facilities in a growth area suggests there could be a lack of connectivity in the existing network.

In line with these conclusions we have made the following recommendations for work going forward to help address existing and future concerns.

### 1.7 Recommendations

We have prepared the below recommendations, based on the above analysis and discussion.
1 Existing Local Roads:
a The following council roads have higher than expected crash injury rates, and further investigation is required to determine why this is occurring:

$$
\begin{array}{ll}
\text { i } & \text { Herbert Street } \\
\text { ii } & \text { Whitmore Street }
\end{array}
$$

b The following council roads are currently considered to have too narrow a seal width for their future purpose, and it is recommended investigation into widening and marking them is undertaken:
i St Leger Road (some sections of)
ii Brill Road
iii Haultain Street
iv McAndrew Street
$v$ Golf Road (rural section)
vi McGhie Road (if desired to include as an alternative route east)

Pedestrian and Cyclist Facilities:
a Pedestrian and cyclist facilities around the growth area are lacking for connections to the anticipated facilities within the growth area. It is recommended that Waipa District Council review the existing facilities and programme in providing new infrastructure as the growth area is developed. The key connections to focus on for these facilities are anticipated to be:
i St Leger Road from Brill Road to State Highway 3
ii Ballance Street from the growth area connection to State Highway 3
iii Leslie Street from 'Access 3' to State Highway 3
b There are currently no dedicated or shared cyclist facilities along State Highway 3. It is recommended that NZTA look into providing these in some form.
c The only existing crossing facility along State Highway 3 is in Kihikihi town centre. It is recommended that NZTA look into additional provision for pedestrian (and possibly cyclist, depending on the solution) safe crossing facilities in the residential areas to the north and south of the town centre.
Intersection traffic issues:
a The State Highway 3 / Golf Road / St Leger Road intersection is recommended for an immediate investigation for upgrading due to possible existing issues with vehicles trying to exit Golf Road.
b The State Highway 3 / Herbert Street / Nixon Street intersection is recommended for an upgrade investigation should growth area T6 be approved.
c The following intersections are recommended for an upgrade investigation before 2035 whether or not growth area T6 is approved for development:
i $\quad$ State Highway 3 / Whitmore Street
ii State Highway 3 / Herbert Street / Nixon Street

### 2.1 Structure Plan Area



Figure 2.1: Approximate extents of T11 growth cell (image sourced from Google Earth).

The T11 growth cell lies south of Cambridge Road on the eastern extents of Te Awamutu, currently rural but zoned for future residential development.

### 2.2 Existing Situation

### 2.2.1 Existing Transport Environment

The only roads bordering growth cell T11 are Cambridge Road to the north, designated a Major Arterial in the Waipa District Plan; and Park Road to the south, designated a Collector.

There are no existing cycle facilities along this length of Cambridge Road, but there is a footpath on each side.

Cambridge Road is consistent with an urban environment.

Table 2.1: Road Details (Existing)

| Road Name | Total <br> Width <br> $(\mathrm{m})$ | Lanes | Shoulder | Cycle Facilities | Footpaths | Posted <br> Speed <br> (km/hr) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Cambridge <br> Road | 11.0 | 2 <br> (+ median for <br> right turn bay <br> outside <br> supermarket) | 2, min. <br> 1.0 m <br> wide | None | 1.5 m wide, both <br> sides, full length | 50 <br> $(70$ to the <br> east of <br> Gleneagles <br> Drive) |
| Park Road | 8.0 | 2 | 2, approx. <br> 1.0 m <br> wide | None | 1.5 m wide footpath <br> extends from north- <br> west to edge of T11 |  |

Note: Measurements are approximate only using Google Earth.
Park Road in the location of the structure plan area is consistent with a more rural environment, however there is no proposal at this stage to connect any roads through, and so has been disregarded for this assessment.

### 2.2.2 Crash History

The NZTA Crash Analysis System (CAS) was interrogated for the period 2009 to 2018 (inclusive) to provide crash data for the roads in the immediate vicinity of the development and roads thought to be key in the distribution of traffic away from and back to the development, but only to the next major intersection or urban boundary. Full CAS outputs can be found in Appendix C.

Table 2.2: Historical Crash Numbers

| Road Name | Number of Crashes | Non-injury | Minor Injury (M) | Death or Serious (DSI) | Crash Injury Rate | Years |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cambridge <br> Road | 17 | 9 | 7 | 1 | 0.8 | $\begin{aligned} & 2 \times 2010 \\ & 1 \times 2011 \\ & 1 \times 2012 \\ & 2 \times 2013 \text { (1x M) } \\ & 4 \times 2014(2 \times M, \\ & 1 \times D S I) \\ & 1 \times 2016 \text { (M) } \\ & 3 \times 2017 \text { (1x M) } \\ & 3 \times 2018 \text { (2x M) } \end{aligned}$ |

### 2.2.3 Crash Prediction Modelling

A high-level Crash Prediction Model was put together for the existing situation on Cambridge Road using the methods and formulae found in NZTA's Crash Estimation Compendium (2016, Updated June 2018).

Cambridge Road was assessed under the mid-block only formula as this modelling can be said to account for minor intersections and private accesses, which is the most common type in front of growth cell T11.

Table 2.3: Crash Model Results (Existing)

| Road Name | Predicted Injury <br> Crash Rate <br> (existing) | Actual Injury Crash <br> Rate | Differential: <br> Predicted to <br> Actual | Differential Rate |
| :--- | :--- | :--- | :--- | :--- |
| Cambridge Road | 0.18 | 0.80 | +0.62 | $+344 \%$ |

Cambridge Road is revealed to have a higher crash rate than would normally be expected, which could indicate it is in need of more detailed analysis to understand why this may be occurring.

### 2.2.4 Road Safety

The existing road network connecting to Cambridge Road is urban in nature. Generally the local road network has provision for pedestrians, however Cambridge Road only has one crossing facility, being a refuge island at the State Highway intersection some 700 m west.

### 2.2.5 Travel Patterns

No traffic survey has been undertaken, however using best-practise and existing data from the Road Assessment and Maintenance Management database (RAMM) we can infer likely peak travel patterns.

Although not intended to be assessed as part of this work due to the proximity and options for vehicles to re-direct prior, NZTA have requested that the effects on the State Highway 3 intersection some 730 m west be considered; because of this the data for each leg of this intersection has also been retrieved (highlighted blue).

This data was extracted from Mobileroad.org, which is populated using Road Controlling Authority (RCA) RAMM data. This data is maintained by the RCA (in this case NZTA for State Highway 3, and Waipa District Council for all other roads) for tracking and forecasting maintenance activities on their respective networks; it was noted that while the State Highway traffic data appeared to be based on recent counts, the Waipa District Council roads were all identified as estimates from 2016 and so we are unsure as to the accuracy of the data for that part of the network.

The key RAMM data used in this assessment is as follows:

Table 2.4: RAMM Data

| Road Name | Average Daily Traffic <br> (ADT) <br> (veh/day) | Date of Count / <br> Estimate | Heavy Vehicles <br> (\%) |
| :--- | :--- | :--- | :--- |
| Cambridge Road <br> (outside T11) | 4,240 | $1 / 12 / 2016$ | $0 \%$ |
| Arawata Street | 10,020 | $1 / 12 / 2016$ | $0 \%$ |
| Cambridge Road <br> (at intersection) | 9,300 | $1 / 12 / 2016$ | Unknown |
| State Highway 3 North <br> (Ohaupo Road) | 12,623 | $25 / 12 / 2017$ | $6 \%$ |
| State Highway 3 South <br> (Albert Park Drive) | 9,331 | $25 / 12 / 2017$ | $6 \%$ |

Note: All data obtained from MobileRoad.org, all 2-way traffic.

The attractors for determining travel patterns are considered to be as follows:

Table 2.5: Attractors and Type

| Attractor Name | Approximate Distance from T11 | Attractor Type | Attractions |
| :---: | :---: | :---: | :---: |
| Te Awamutu Centre | 1.2 km | Local Primary Attractor | - Closest shopping centre outside immediate area <br> - Employment |
| Hamilton | 30 km | Primary Attractor | - Largest population centre within 0.5 hrs travel <br> - Large employment area <br> - Large retail bases, including niche shops and large supermarkets <br> - Recreational facilities |
| Cambridge | 22 km | Secondary Attractor | - Large shopping area, including Supermarkets <br> - Employment |
| Local Rural Areas |  | Secondary Attractor | - Employment <br> - Outdoor Recreation |
| Otorohanga (and South) | 30 km plus | Tertiary Attractor | - Employment <br> - Recreation |

From these assumptions we can reasonably determine that the majority of traffic will travel west towards the State Highway intersection, distributing from there to Te Awamutu town centre, Hamilton and rural areas to the north and west, with the rest travelling east towards Cambridge, eastern rural areas, and as a Te Awamutu bypass route for travelling south; returning from those same directions in similar proportions.

### 2.2.6 Public Transport

There are no bus routes, or other method of public transport, servicing the Cambridge Road or Park Road areas according to the "Busit.co.nz" website.

### 2.2.7 Other Modes

For local trips to the nearby supermarket, and possibly Te Awamutu, it is likely cycling and walking will be used by children, the elderly, those without access to a private vehicle, and those of a health or environmentally friendly mind-set; some of these same groups may also use these modes in conjunction with the bus to get to Hamilton.

Realistically, however, the majority of trips in this area are still likely to be private vehicle based regardless of the distance to travel.

### 2.3 Feasibility Report

The Opus Transport Project Feasibility Report prepared in June 2018 for this growth area is necessarily conceptual in nature, given the broad nature of the plans for T11 at that point. It is also worth noting that some of the comments and recommendations are linked with another growth area, T 8 , which is outside the scope of this assessment.

Generally the current Structure Plan was developed with this concept as a basis, with the notable amendment of the reduction in size of the planned area for building construction due to flooding issues to the rear of the large-format retail development.

We have the following differences in observation to those presented in the Opus report:

- The sight distances listed as deficient for Access 2 and Access 3 appear, in our estimation, to be adequate, or at least significantly less deficient than presented, possibly due to a change in speed environment.

The following recommendations from this report are addressed as follows (as they relate to T11 only):

- Reduce the number of accesses of growth cell T11 from three to two (i.e.: Remove Access 2)

This is a possibility, given the reduction in lot numbers for this growth area, however has been left in for now due to the likelihood of the growth area just south of T11 (T14) being developed more quickly than planned, and the lack of inter-connectivity with Access 1 due to the flood-prone land not being developed; these two things combined may put pressure on a single access, dependent on other road connections made as part of this further development. It would be preferred if some agreement could be arrived at with the owners of the service access immediately adjacent to the proposed Access 2 , as we agree with the Opus conclusion that this is an undesirable arrangement even with the relatively low expected vehicle movements from the service lane.

- Undertake traffic capacity assessment/ traffic modelling at the following intersections:
- Cambridge Rd/Albert Park Dr/Arawata St/Ohaupo Rd
- Park Rd/Albert Park Dr
- Vaile St/Sloane St/Albert Park Dr

The impact on the Cambridge Road-State Highway 3-Arawata Street intersection is discussed in the Modelling Assessment section below, the other two intersections appear to be more aligned with the T8 growth area and are not considered significantly affected by this proposal.

- Traffic modelling at each of the proposed access locations to assist with intersection layouts This has been conducted and is presented in the Modelling Assessment section below.
- Undertake more detail assessment of speed management measures for Cambridge Road This has not been considered as part of this assessment, and is considered to be future work to be conducted when the effects of all growth areas impacting Cambridge Road can be aggregated.
- Undertake a review of pedestrian and cycling connectivity

Recommendations are made in this regard at the end of this assessment, however a specific detailed review of these facilities has not yet been undertaken.

- Undertake a more detail assessment of internal road network, including midblock cross sections and intersection form

This work has been conducted in conjunction with Boffa Miskell and is presented elsewhere.

- Detail assessment how to change the right of way at Cambridge Access 1 to be a public road This is deemed to be a landowner negotiation and legal issue, not covered by this report.


### 2.4 Proposed Situation



Figure 2.2: Proposed T11 Structure Plan road network

The proposed development area is intended to be a mixture of low and medium density urban residential.

Based on the current Structure Plan at the time of writing, which includes further land to the southeast, this results in an estimated lot yield of around 350. This was a late addition and so is not reflected in the modelling below, however experience suggests that this addition is not significant and the intersections will still be able to cope with this additional development area, though the models should be updated to be sure.

### 2.4.1 Proposed Road Network

The proposed road network is designed to provide good connectivity to Cambridge Road, as well as future connectivity to the T14 growth area, which also lies between Cambridge and Park road, but to the south of T11.

A significant section of this growth area has had to be left undeveloped due to potential flooding issues, which has also significantly affected how the roads will be laid out.

Because of this restriction, there is a small section to the west which is intended to have its own dedicated access to Cambridge Road down an existing access to the supermarket; the rest of the development, and eventually parts of T14, will share two further exit points to the east of the supermarket.

Once onto Cambridge Road, there are several local road options to help bypass the perceived main routes, however these all lead to either no exit roads or back to Cambridge Road to the east, so is considered to only really be useful for those with destinations along these roads rather than as true alternative or bypass routes that significant numbers will utilise.

### 2.4.2 Proposed Alternative Mode Links

Shared pedestrian / cycle facilities have been proposed in the Structure Plan which follow most of the proposed road links to the existing network, as well as providing some amenity linkage through proposed green spaces to Park Road.

Unfortunately, Cambridge and Park roads are both lacking in dedicated cyclist, or shared, facilities, and only Cambridge Road is fully serviced with pedestrian facilities in the immediate area of T11.

### 2.5 Modelling Assessments

### 2.5.1 Trip Distribution

Trip distribution has been assessed at a conceptual level using a simplified form of gravity modelling, a high-level method of determining likely travel patterns based on existing known data.

Using the attractors as a guide, at any one intersection the traffic flow in any direction currently on that road is proportionally split based on the most popular routes and likely destinations, informing the flows between, and therefore at, intersections through to the end of the study area.

The flows undergo a "balancing" exercise where the proportions turning in any one direction are gradually amended until the approximate ADT for each direction and road are arrived at.

This method is a cost effective way of estimating traffic patterns and turning flows without reliance on turning counts and origin destination surveys. The results are used to inform the indicative intersection models and give an indication as to whether intersections are currently functioning as intended, and whether they will continue to do so if more vehicles are added.

### 2.5.1.1 Modelling Basis

Given the relative simplicity of the internal road network and proposed connections, no specific gravity model has been produced for T11; the interaction with future growth cells will change this, and a holistic model of some kind will need to be considered prior to those areas coming on-line.

The following assumptions were used in calculating flows for intersection modelling:

- The ADT data was pro-rated to a Base Year of 2018 using a $2 \%$ per annum average.
- A Projected Year of 2035 using a $2 \%$ per annum average was also used; 2035 was chosen as this is the latest year this growth area is expected to be fully developed by.
- The average daily peaks will be $10 \%$ of the ADT.
- The flows on any one road are split 70/30 for direction based on the time of day and direction of attractors (i.e.: 70\% AM towards attractors, 70\% PM away from attractors).
- Where Heavy Traffic is 'Unknown' it will be assumed to be $1 \%$.


### 2.5.1.2 Model Limitations

It is important to note that, due to cost constraints, no observation verification was conducted at any of the existing intersections and the model is entirely founded on the "most likely" routing based on attractor assumptions and anecdotal evidence.

### 2.5.1.3 Development Figures

The future development of T11 has been assumed to be additional to the standard 2\% traffic growth in this area; this is not strictly correct, as the traffic has to come from somewhere and this type of residential growth tends to be what supports it, however retaining this assumption does provide for a conservative model.

Two development scenarios over and above a standard 2\% growth were considered:
1 Low Development: A scenario whereby the lot yield as presented in the Structure Plan was used to determine additional traffic flow.

2 High Development: A scenario whereby the lot yield was doubled when compared to that in the structure plan, to account for a worst case scenario of smaller lot types and future in-fill development.

The daily traffic per lot was assumed to be 10veh/day, with all other traffic assumptions as per those in section 2.5.1.1 above.

### 2.5.2 Intersection Modelling

The following intersections were modelled in Sidra Intersection 8.0 for levels of service, all based on the logic stated in section 2.5.1 above:

- Access 1 / Cambridge Road
- Access 2 / Cambridge Road
- Access 3 / Cambridge Road
- Gleneagles Drive / Cambridge Road

The Level of Service for any lane is directly related to the average delay anticipated for a vehicle in that lane, as follows:

## Table 2.6: Level of Service (LoS): Sidra 8 Sign Control

| Level of Service (LoS) <br> for $\mathbf{v} / \mathbf{c} \leq 1.0(\mathbf{v} / \mathrm{c}>\mathbf{1 . 0}=$ LoS F$)$ | Average Delay per Vehicle <br> in seconds (d) |
| :--- | :--- |
| A | $\mathrm{d} \leq 10$ |
| B | $10<\mathrm{d} \leq 15$ |
| C | $15<\mathrm{d} \leq 25$ |
| D | $25<\mathrm{d} \leq 35$ |
| E | $35<\mathrm{d} \leq 50$ |
| F | $50<d$ |

The following assumptions, in addition to those mentioned for the Gravity Model, were used:

- No gradients are known, so all gradients for all approaches were set at 0\%.
- All measurements possible were taken from aerial views on Google Earth.
- If a median was present it was assumed to act as a Right Turn Bay in lieu of an actual Right Turn Bay.
- If present, shoulders were considered 'full' (of parked vehicles for example) and so not considered as additional seal width.


### 2.5.2.1 Access 1 / Cambridge Road

Cambridge Road - West


Figure 2.3: Sidra Intersection Diagram - Access 1

This intersection was modelled for the following situations:

- 2018 plus Low Development (LD) AM and PM peaks.
- 2035 2\% growth plus High Development (HD), AM and PM peaks.

This intersections is too new to have existing traffic flow data as of the inception of this growth area, and existing traffic appears to be restricted to delivery traffic and a relatively small proportion of the carpark, so no base years for 2018 and 2035 were modelled. To account for the 'existing traffic' a peak movement of 10 vehicles (or 100 veh/day, equivalent to 10 houses) was added to the calculated figures for this part of the development.

Initially only the current proposed situation, and the forecast extreme situation indicated above were modelled to check the extreme ends of the development impact; given the results, no further modelling was deemed to be necessary.

The following tables summarise the LoS findings for each leg / lane by scenario for quick reference. Summaries of the modelling reports can be found in Appendix D.

Table 2.7: AM Peaks

| Scenario | Cambridge Road West |  | Cambridge | Access 1 |
| :--- | :--- | :--- | :--- | :--- |
|  | Through <br> Lane | Right Turn <br> Bay |  |  |
|  |  |  |  |  |
| $2035+$ HD |  |  |  |  |

Table 2.8: PM Peaks

| Scenario | Cambridge Road West |  |  |  |
| :---: | :--- | :--- | :--- | :--- |
|  | Through <br> Lane | Right Turn <br> Bay | Cambridge <br> Road East | Access 1 |
|  |  |  |  |  |
| $2035+$ HD |  |  |  |  |

The results indicate that the intersection should operate well during peak hours at all levels of development to 2035.

### 2.5.2.2 Access 2 / Cambridge Road

Cambridge Road - West


Figure 2.4: Sidra Intersection Diagram - Access 2

This intersection was modelled for the following situations:

- 2018 plus Low Development (LD) AM and PM peaks.
- 2035 2\% growth plus High Development (HD), AM and PM peaks.

This intersection is brand new as of the inception of this growth area, so no base years for 2018 and 2035 were modelled.

Initially only the current proposed situation, and the forecast extreme situation indicated above were modelled to check the extreme ends of the development impact; given the results, no further modelling was deemed to be necessary.

The following tables summarise the LoS findings for each leg / lane by scenario for quick reference. Summaries of the modelling reports can be found in Appendix D.

Table 2.9: AM Peaks

| Scenario | Cambridge Road West |  |  |  |
| :---: | :--- | :--- | :--- | :--- |
|  | Through <br> Lane | Right Turn <br> Bay | Cambridge <br> Road East | Access 2 |
|  |  |  |  |  |
| $2035+$ HD |  |  |  |  |

Table 2.10: PM Peaks

| Scenario | Cambridge Road West |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Through <br> Lane | Right Turn <br> Bay | Cambridge <br> Road East | Access 2 |
| $2018+$ LD |  |  |  |  |
| $2035+$ HD |  |  |  |  |

The results indicate that the intersection should operate well during peak hours at all levels of development to 2035.

### 2.5.2.3 Access 3 / Cambridge Road

Cambridge Road - West


Figure 2.5: Sidra Intersection Diagram - Access 3

This intersection was modelled for the following situations:

- 2018 plus Low Development (LD) AM and PM peaks.
- 2035 2\% growth plus High Development (HD), AM and PM peaks.

This intersection is brand new as of the inception of this growth area, so no base years for 2018 and 2035 were modelled.

Initially only the current proposed situation, and the forecast extreme situation indicated above were modelled to check the extreme ends of the development impact; given the results, no further modelling was deemed to be necessary.

The following tables summarise the LoS findings for each leg / lane by scenario for quick reference. Summaries of the modelling reports can be found in Appendix D.

Table 2.11: AM Peaks

| Scenario | Cambridge Road West |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Through <br> Lane | Right Turn <br> Bay | Cambridge <br> Road East | Access 3 |
| $2018+$ LD |  |  |  |  |
| $2035+$ HD |  |  |  |  |

Table 2.12: PM Peaks

| Scenario | Cambridge Road West |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Through <br> Lane | Right Turn <br> Bay | Cambridge <br> Road East | Access 3 |
| $2018+$ LD |  |  |  |  |
| $2035+$ HD |  |  |  |  |

The results indicate that the intersection should operate well during peak hours at all levels of development to 2035.

### 2.5.2.4 Gleneagles Drive / Cambridge Road



Cambridge Road - East
Figure 2.6: Sidra Intersection Diagram - Gleneagles Drive

This intersection was modelled for the following situations:

- 2018 plus Low Development (LD) AM and PM peaks.
- 2035 2\% growth plus High Development (HD), AM and PM peaks.

This intersection was modelled for the same situations as the three Accesses so that a Network model (see next section) could be built to check that the close proximity of this and the three other intersections wasn't having a detrimental effect on the operation of Cambridge Road.

Initially only the current proposed situation and the forecast extreme situation indicated above were modelled to check the extreme ends of the development impact; given the results, no further modelling was deemed to be necessary.

The following tables summarise the LoS findings for each leg / lane by scenario for quick reference. Summaries of the modelling reports can be found in Appendix D.

Table 2.13: AM Peaks

| Scenario | Cambridge <br> Road West | Cambridge Road East |  | Gleneagles <br> Gane |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
| $2035+$ HD |  |  |  |  |

Table 2.14: PM Peaks

| Scenario | Cambridge <br> Road West | $\|c\|$ | Through <br> Cane | Right Turn <br> Bay |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
| $2018+$ LD |  |  |  |  |
| $2035+$ HD |  |  |  |  |

The results indicate that the intersection should operate well during peak hours at all levels of development to 2035.

### 2.5.2.5 Network Assessment

These four intersections were then put together in network models to check the LoS "in-situ" as close as can be done.

The results were as per the individual intersection models with no obvious changes; below are the network diagrams for the 2035 2\% growth plus High Development AM and PM:


Figure 2.7: Cambridge Road Network Model - 2035 2\% growth plus HD, AM


Figure 2.8: Cambridge Road Network Model - 2035 2\% growth plus HD, PM

### 2.5.2.6 State Highway 3 Considerations

NZTA have requested the impacts on the State Highway 3 intersection with Cambridge Road and Arawata Street be considered as part of this assessment.

It is noted that this intersection is over 700 m to the west of the nearest exit from the proposed growth area, however the arrangement of the local roads are not conducive to traffic being able to bypass this intersection if they wish to travel to Te Awamutu town centre, or north to Hamilton.

The existing two-way traffic through the intersection was over 40,000 veh/day as at the last State Highway count; this growth area proposes to add some 1,510 veh/day (two-way), with the potential to increase to 3020 veh/day (two-way) if infill development is catered for.

This amounts to an increase of less than 4\% initially, with the potential for an increase of up to 7.5\% in the future, not accounting for other increases in State Highway traffic over that time.

A high-level assessment was conducted as to the capacity of the intersection based on the same assumptions used for the Gravity and Intersection modelling above, and it appears that the intersection may be close to capacity with existing traffic volumes at peak times, with very little change in waiting times once the additional flows are added. This is considered to be a small increase on the demands already placed on the intersection, however further investigation by NZTA may be warranted given the apparent existing issues with capacity. It is recommended that a full traffic survey and modelling exercise is undertaken to determine actual use and capacity thresholds at the roundabout.

CAS data was also retrieved on this intersection, and in the ten years to the end of 2018 there were 36 crashes associated with this intersection, with 3 injury crashes (two minor injury crashes and one severe).

This is an injury crash rate of 0.3 , which is considered better than would be expected by the prediction models used by NZTA, and so the safety risks are considered minimal.

### 2.5.3 Crash Prediction Modelling

Using the additional vehicles assumed to be using the Cambridge Road corridor in a 2035 plus High Development worst-case scenario, as assigned in the Gravity Modelling above, the Crash Prediction Modelling was updated assuming the road corridor was not otherwise altered by the developments.

Table 2.15: Crash Model Results (Combined)

| Road Name | Predicted Injury <br> Crash Rate <br> (existing) | Predicted Injury <br> Crash Rate (2035 + <br> HD) |
| :--- | :--- | :--- |
| Cambridge Road | 0.18 | 0.35 |

This shows an increase in expected injury crashes as development increases, which is not unexpected given the additional volume of traffic on Cambridge Road in addition to the new flows from the development, however the movement is from approximately one injury crash every 5 years to approximately one injury crash every 3 years on average, which is still considered reasonable for a Major Arterial road.

However, if the injury crash differential rate from Table 2.3 is applied, therefore assuming the current unexpected crash trend continues, this would result in a new predicted injury crash rate of 1.19 , or more than one per year on average, which could be considered less acceptable.

### 2.6 Indicative Costs

Given that the majority of road construction costs will be borne by developers, only a high-level cost estimate has been produced for the structure plan area, and only includes new road infrastructure designated Collector or higher, which Waipa DC may wish to implement ahead of developer involvement.

This cost estimate is on the following basis:

- The typical cross section used was based on a "Rural and Large Lot Zone" Collector type road from the Waipa District Plan, with an allowance for a separate pedestrian and cycle shared path.
- No attempt to assess mass-balance of the structure plan area has been made, as a result a nominal earthworks quantity was assumed based on the road following existing contours with no undercutting for poor ground conditions considered.
- No Land Costs have been considered.
- No landscaping, beautification or other enhancement from the stated cross-section in the first point has been assumed (i.e.: grassed berms only).
- No minor roads are included for upgrade or construction.
- Priority intersections are standard (i.e.: no Roundabouts or Traffic Signals).
- Professional fees associated with the design, consenting and construction observation has not been included.
- Preliminary and General is assumed at $30 \%$
- Escalation costs are not included.

The indicative estimate is $\$ 3,200,000$, and is considered to be $+/-50 \%$.

### 2.7 Conclusion

The existing injury crash rate on Cambridge Road is higher than is predicted by NZTA modelling guidelines, which should be investigated further.

The State Highway 3 intersection with Cambridge Road and Arawata Street high level assessment suggests the intersection is near or at capacity with current traffic flows.

The further demand placed on the network is estimated to be 1,510 additional vehicles per day in the proposed "Low Development" scenario, or 3,020 vehicles per day in the suggested conservative "High Development" scenario (assuming future sub-division of these lots).

These additional vehicles, are able to be accommodated within the assessed network with no measureable detriment to safety or efficiency, even with further baseline traffic growth.

Dedicated cyclist facilities around T11 appear to be insufficient which, whilst arguably not currently a known issue, the desire of Waipa District Council to incorporate these facilities in the growth area means there could be a break in connectivity if not addressed in the existing network.

In line with these conclusions we have prepared some recommendations for work going forward to help address existing and future concerns.

### 2.8 Recommendations

We have prepared recommendations, based on the above analysis and discussion.
1 Pedestrian and Cyclist Facilities:
a Cyclist facilities down Cambridge Road are lacking for connections to the anticipated facilities within the growth area, although a shared path facility exists at the State Highway roundabout with Cambridge Road. It is recommended that Waipa District Council review the existing facilities and programme in providing / extending infrastructure as the growth area is developed.
b The only existing crossing facility along Cambridge Road is at the State Highway roundabout where there is a refuge island at the intersection. It is recommended that Waipa District Council look at a more formal facility near the supermarket, or at least another refuge island, to enable pedestrian traffic to more safely access local amenities.

2 The arrangement of Access 2 with the service lane for the shopping complex is considered to be a safety issue, and it is recommended discussions are held with the owner of that service lane to form an arrangement which is less problematic.
It is noted that there doesn't appear to be any delivery doors at the rear of the Mitre 10, so there remains the possibility of combining the two into an intersection, and providing an access off the new road.

3 The structure plan models should be updated to reflect the late change to the lot yield to ensure the intersections with Cambridge Road are not adversely affected, although experience suggest they will not be.

The following points are recommendations from the Opus Feasibility Report which we believe are still relevant:

1 Undertake a more detail assessment of speed management measures for Cambridge Road
2 Undertake a review of pedestrian and cycling connectivity

- Recommendations have been made in this regard, however a specific detailed review of what facilities are warranted has not been undertaken and could be useful to Waipa District Council in targeting funds.

Detailed assessment of how to change the right of way at Cambridge Road Access 1 to be a public road.

## 3 Applicability

This report has been prepared by Tonkin \& Taylor Limited ( $T+T$ ) for Boffa Miskell Ltd pursuant to the terms of engagement (Contract) between T+T and Boffa Miskell Ltd in relation to the T6/T11 Structure Plan project. $\mathrm{T}+\mathrm{T}$ agrees this report may also be used by Waipa District Council (WDC) for the purposes set out in, or able to be reasonably inferred from, the Contract, on the basis that the aggregate liability of T+T to Boffa Miskell Ltd and WDC in respect of any such use or reliance is subject to the limitations and exclusions of liability set out in the Contract. This report may not be relied upon in other contexts or for any other purpose, or by any person other than Boffa Miskell Ltd and WDC, without T+T's prior written agreement.

Tonkin \& Taylor Ltd

Report prepared by: $\quad$ Authorised for Tonkin \& Taylor Ltd by:


Timothy Broadhead
Civil Engineer


Glen Nicholson
Project Director

Reviewed by:

$\qquad$
Alan Gregory
Principal Transport Planner

TIBR
$\mathrm{p}: \backslash 1008305 \backslash 1008305.1000 \backslash$ issueddocuments $\backslash 190823$ final reports $\backslash 190823$. T6 T11 Transportation Assessment.rpt.docx

## Appendix A: T6 CAS Outputs

CAS outputs for the following roads included:

- Ballance Street
- Golf Road
- Haultain Street
- Herbert Street
- Leslie Street
- McAndrew Street
- McGhie Road
- $\quad$ State Highway 3
- St Leger Road
- Walmsley Street
- Whitmore Street

Untitled query

## Saved sites

Leslie Street
Crash year
2009-2019

## Plain English report

5 results from your query.
1-5 of 5

| Crash road | Distance | Direction | $\frac{\text { Side }}{\text { road }}$ | ID | Date | Day of week | Time | Description of events | Crash factors | Surface condition | Natural Light | Weather | Junction | Control | $\frac{\text { Crash }}{\frac{\text { count }}{\text { fotal }}}$ | Crash count severe | $\frac{\frac{\text { Crash }}{}}{\frac{\text { count }}{\text { minor }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ballance st |  | 1 | $\begin{aligned} & \text { LESLIE } \\ & \text { ST } \end{aligned}$ | $\underline{201545879}$ | 18/09/2015 | Fri | 22:23 | Car/Wagon1 EDB on BALLANCE ST lost control but did not leave the road, Car/Wagon1 hit fences | CAR/WAGON1, alcohol suspected, speed on straight | Dry | Dark | Fine | T Junction | Give way | 0 | 0 | 0 |
| ballance st |  | 1 | $\begin{aligned} & \text { LESLIE } \\ & \text { ST } \end{aligned}$ | $\underline{201549561}$ | 24/10/2015 | Sat | 03:00 | Car/Wagon1 SDB on BALLANCE ST missed intersection or end of road, Car/Wagon1 hit fences | CAR/WAGON1, alcohol test above limit or test refused, lost control under braking, speed entering corner/curve, ENV: slippery road due to rain | Wet | Dark | Light rain | T Junction | Give way | 0 | 0 | 0 |
| Lestie st | Om |  |  | $\underline{2931333}$ | 05/02/2009 | Thu | 12:10 | Car/Wagon1 SDB on LESLIE ST hit Car/Wagon2 crossing at right angle from right, Car/Wagon1 hit kerbing | CAR/WAGON2, did not check/notice another party from other dirn | Dry | Bright <br> sun | Fine | Crossroads | Nil | 0 | 0 | 0 |
| Lestiest | Om |  |  | $\underline{201230631}$ | 20/03/2012 | Tue |  | Car/Wagon1 NDB on LESLIE ST hit Car/Wagon2 merging from the right | CAR/WAGON2, other failed to give way | Dry | Bright <br> sun | Fine | Crossroads | Nil | 0 | 0 | 0 |
| Lestie st | 160m | s | SH3 | $\underline{201537993}$ | 19/06/2015 | Fri | 14:48 | Motorcycle1 SDB on LESLIE ST hit Car/Wagon2 U-turning from same direction of travel | CAR/WAGON2, did not check/notice another party behind | Dry | Bright <br> sun | Fine | Nil (Default) | Nil | 0 | 0 | 0 |

[^0]

## AGENCY <br> QCAS

Untitled query

## Saved sites

McAndrew Street
Crash year
2009-2019

## Plain English report

9 results from your query.
1-9 of 9

| Crash road | Distance | Direction | Side road | ID | Date | Day of <br> week | Time | Description of events | Crash factors | $\begin{aligned} & \text { Surface } \\ & \text { condition } \end{aligned}$ | $\frac{\text { Natural }}{\text { light }}$ | Weather | Junction | Control | $\frac{\text { Crash }}{\frac{\text { count }}{\text { fotal }}}$ | $\frac{\frac{\text { Crash }}{\text { count }}}{\frac{\text { count }}{\text { sever }}}$ | $\frac{\frac{\text { Crash }}{\text { count }}}{\frac{\text { count }}{\text { minor }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LYon Street |  | 1 | MCANDREW STREET | $\underline{201951142}$ | 17/02/2019 | Sun | 02:00 | Car/Wagon1 SDB on LYON STREET, KIHIIIHI, WAIPA lost control; went off road to right | CAR/WAGON1, alcohol test above limit or test refused, interferred with driver, too far right | Dry | Dark | Fine | T Junction | Give way | 0 | 0 | 1 |
| MCANDREW ST | 10 m | S | SH 3 | $\underline{201656195}$ | 25/12/2016 | Sun | 19:46 | Car/Wagon1 NDB on State Highway 3 lost control; went off road to left, Car/Wagon1 hit fences | CAR/WAGON1, alcohol test above limit or test refused, too far left | Dry | Bright <br> sun | Fine | T Junction | Give way | 0 | 0 | 0 |
| MCANDREW ST | 20 m | w | WALMSLEY ST | $\underline{2935118}$ | 22/05/2009 | Fri | 20:58 | Car/Wagon1 WDB on MCANDREW ST hit SUV2 doing driveway manoeuvre | CAR/WAGON1, alcohol test above limit or test refused SUV2, failed to give way entering roadway from driveway, misjudged intentions of another party, ENV: entering or leaving private house / farm | Wet | Dark | Mist or Fog | Driveway | Nil | 0 | 0 | 0 |
| SH 3 |  | 1 | MCANDREW ST | $\underline{201435418}$ | 02/05/2014 | Fri | 13:05 | Other1 NDB on SH 3 lost control; went off road to left, Other1 hit fences | OTHER1, too far left | Dry | Bright <br> sun | Fine | T Junction | Give way | 0 | 0 | 0 |
| SH 3 |  | 1 | MCANDREW ST | $\underline{201630915}$ | 02/01/2016 | Sat | 11:35 | Car/Wagon1 SDB on SH 3 lost control turning right, Car/Wagon1 hit fences | CAR/WAGON1, inappropriate speed for road conditions, lost control under braking, ENV: slippery road due to rain | Wet | Overcast | $\begin{aligned} & \text { Light } \\ & \text { rain } \end{aligned}$ | T Junction | Nil | 0 | 0 | 0 |
| SH 3 |  | 1 | MCANDREW ST | $\underline{2902856}$ | 24/04/2009 | Fri | 14:25 | Car/Wagon 1 SDB on SH 3 sideswiped by Truck2 SDB on SH 3 turning left | CAR/WAGON1, failed to notice indication of vehicle in front, overtaking on left without due care, ENV: entering or leaving other commercial | Dry | Overcast | Fine | Driveway | Give way | 0 | 0 | 1 |


| Crash road | Distance | Direction | Side road | ID | Date | Day of week | Time | Description of events | Crash factors | Surface condition | Natural Light | Weather | Junction | Control | $\frac{\text { Crash }}{\frac{\text { count }}{\text { fotal }}}$ | $\frac{\text { Crash }}{\frac{\text { count }}{\text { count }}} \frac{\text { sen }}{\text { sen }}$ | $\begin{aligned} & \frac{\text { Crash }}{\text { count }} \\ & \frac{\text { countor }}{\text { minor }} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SH 3 |  | 1 | MCANDREW ST | $\underline{201104651}$ | 06/11/2011 | Sun | 12:20 | Car/Wagon1 SDB on SH 3 hit rear of Car/Wagon2 SDB on SH 3 turning right from centre line | CAR/WAGON1, attention diverted by passengers, failed to notice car slowing, stopping/stationary, ENV: slippery road due to rain | Wet | Overcast | Light rain | T <br> Junction | Give way | 0 | 0 | 2 |
| SH 3 | 5 m | s | MCANDREW ST | $\underline{201303945}$ | 06/09/2013 | Fri | 15:20 | Car/Wagon1 SDB on SH 3 hit rear of left turning Car/Wagon2 SDB on SH 3 | CAR/WAGON1, attn diverted by scenery/persons outside vehicle, failed to notice indication of vehicle in front, ENV: entering or leaving private house / farm | Dry | Bright sun | Fine | Driveway | Give way | 0 | 0 | 1 |
| SH 3 |  | 1 | MCANDREW ST | 201810849 | 21/01/2018 | Sun | 21:05 | Car/Wagon1 SDB on Lyon Street hit rear of Car/Wagon2 SDB on Lyon Street turning right from centre line | CAR/WAGON1, alcohol test below limit, misjudged another vehicle CAR/WAGON2, alcohol test below limit | Dry | Dark | Fine | T Junction | Give way | 0 | 0 | 1 |

1-9 of 9


Untitled query
Saved sites
McGhie Road
Crash year
2009-2019

## Plain English report

1 results from your query.
1-1 of 1

| Crash road | - | Distance | Direction | $\frac{\text { Side }}{\text { road }}$ | ID | Date | Day of week | Time | Description of events | Crash factors | $\begin{aligned} & \begin{array}{l} \text { Surface } \\ \text { condition } \end{array} \\ & \hline \end{aligned}$ | $\frac{\text { Natural }}{\text { light }}$ | Weather | Junction | Control | $\begin{aligned} & \text { Crash } \\ & \frac{\text { Count }}{\text { cotal }} \end{aligned}$ | Crash <br> count <br> severe | $\begin{aligned} & \frac{\text { Crash }}{} \\ & \frac{\text { count }}{\text { minor }} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| flat road |  | 20 m | s | MCGHIE <br> ROAD | $\underline{201132034}$ | 19/03/2011 | Sat | 15:56 | Car/Wagon1 NDB on FLAT ROAD lost control; went off road to left | CAR/WAGON1, attention diverted by food, cigarettes, beverages, speed at temporary speed limit, too far left | Dry | Bright sun | Fine | Nil (Default) | Unknown | 0 | 0 | 0 |

1-1 of 1

$$
\Rightarrow
$$

## TRANSPOR AGENCY <br> BCAS

Untitled query

## Crash year

2009-2019

## Saved site

SH3 - St Leger to McAndrew

## Plain English repor

69 results from your query.
Showing 20100 results at once.

1-69 of 69

| Crash road | Distance | Direction | Side road | ID | Date | Day of week | Time | Description of events | Crash factors | $\begin{aligned} & \text { Surface } \\ & \text { condition } \end{aligned}$ | $\frac{\text { Natural }}{\text { light }}$ | Weather | Junction | Control | $\begin{aligned} & \frac{\text { Crash }}{\text { count }} \\ & \frac{\text { cotat }}{\text { fatal }} \end{aligned}$ | Crash count severe | $\frac{\text { Crash }}{\frac{\text { Count }}{\text { count }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lyon Street |  | 1 | MCANDREW STREET | $\underline{201951142}$ | 17/02/2019 | Sun | 02:00 | Car/Wagon1 SDB on LYON STREET, KIHIKIHI, WAIPA lost control; went off road to right | CAR/WAGON1, alcohol test above limit or test refused, interferred with driver, too far right | Dry | Dark | Fine | T Junction | Give way | 0 | 0 | 1 |
| 003-0016 |  | 1 | SHEEHAN ST | $\underline{201950632}$ | 30/01/2019 | Wed | 23:45 | Car/Wagon1 SDB on Lyon Street, Kihikihi lost control turning left; went off road to left, Car/Wagon1 hit cliffs | CAR/WAGON1, alcohol suspected, lost control when turning, speed entering corner/curve | Dry | Dark | Fine | T Junction | Nil | 0 | 0 | 1 |
| GOLF ROAD |  | 1 | SH3 | $\underline{2931945}$ | 13/03/2009 | Fri | 14:30 | Truck1 NDB on GOLF ROAD lost control turning right | TRUCK1, lost control when turning, speed entering corner/curve | Dry | Overcast | Fine | Crossroads | Stop | 0 | 0 | 0 |
| Herbert St |  | 1 | SH3 | $\underline{2939001}$ | 05/08/2009 | Wed | 17:17 | Car/Wagon1 SDB on HERBERT ST lost control turning left, Car/Wagon1 hit fences | CAR/WAGON1, speed entering corner/curve | Dry | Bright <br> sun | Fine | T Junction | Give way | 0 | 0 | 0 |
| MCANDREW ST | 10 m | S | SH 3 | $\underline{201656195}$ | 25/12/2016 | Sun | 19:46 | Car/Wagon1 NDB on State Highway 3 lost control; went off road to left, Car/Wagon1 hit fences | CAR/WAGON1, alcohol test above limit or test refused, too far left | Dry | Bright <br> sun | Fine | T Junction | Give way | 0 | 0 | 0 |
| SH 3 | 40 m | S | BALLANCE <br> ST | $\underline{201653711}$ | 17/11/2016 | Thu | 15:10 | Car/Wagon1 SDB on State highway changing lanes/overtaking to right hit SUV2 | CAR/WAGON1, did not check/notice another party from other dirn | Dry | Overcast | Fine | Nil (Default) | Unknown | 0 | 0 | 0 |
| SH 3 |  | 1 | BALLANCE ST | $\underline{201744193}$ | 05/07/2017 | Wed | 13:50 | Van1 NDB on SH 3 hit rear of Van2 NDB on SH 3 turning right from centre line | VAN1, swerved to avoid pedestrian | Dry | Bright <br> sun | Null | T Junction | Give way | 0 | 0 | 0 |
| SH 3 |  | 1 | BALLANCE <br> ST | $\underline{201530499}$ | 26/01/2015 | Mon | 21:25 | Car/Wagon1 NDB on SH 3 lost control turning left, Car/Wagon1 hit fences | CAR/WAGON1, speed entering corner/curve, wrong pedal/foot slipped | Dry | Dark | Fine | T Junction | Stop | 0 | 0 | 0 |


| Crash road | Distance | Direction | Side road | ID | Date | Day of week | Time | Description of events | Crash factors | $\begin{aligned} & \text { Surface } \\ & \text { condition } \end{aligned}$ | $\frac{\text { Natural }}{\text { light }}$ | Weather | Junction | Control | $\begin{aligned} & \text { Crash } \\ & \frac{\text { count }}{\text { fotal }} \end{aligned}$ | Crash count severe | $\begin{aligned} & \frac{\text { Crash }}{\text { count }} \\ & \frac{\text { counor }}{\text { min }} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SH 3 | 60 m | s | CHURCH ST | $\underline{201005983}$ | 21/12/2010 | Tue | 08:24 | Car/Wagon 1 SDB on SH 3 hit rear of Car/Wagon 2 SDB on SH 3 turning right from centre line | CAR/WAGON1, failed to notice car slowing, stopping/stationary, ENV: entering or leaving other commercial | Dry | Overcast | Fine | Driveway | Nil | 0 | 0 | 1 |
| SH 3 | 100m | S | CHURCH ST | $\underline{201752046}$ | 05/10/2017 | Thu | 17:30 | Truck1 NDB on Sh 3 kihikihi hit obstruction, Truck1 hit poles | TRUCK1, misjudged own vehicle | Dry | Bright sun | Fine | Nil <br> (Default) | Unknown | 0 | 0 | 0 |
| SH 3 | 15 m | S | CHURCH ST | $\underline{201040752}$ | 02/10/2010 | Sat | 15:00 | Car/Wagon1 SDB on SH 3 hit Van2 U-turning from same direction of travel | VAN2, did not check/notice another party behind | Dry | Bright sun | Fine | Nil <br> (Default) | Unknown | 0 | 0 | 0 |
| SH 3 | 70 m | N | GALLOWAY <br> ST | $\underline{201235953}$ | 03/08/2012 | Fri | 16:00 | Car/Wagon 1 SDB on SH 3 lost control; went off road to left, Car/Wagon1 hit fences, kerbing | CAR/WAGON1, medical illness (not sudden) | Dry | Bright sun | Fine | Nil <br> (Default) | Unknown | 0 | 0 | 0 |
| SH 3 | 10 m | S | GALLOWAY ST | $\underline{201516715}$ | 26/08/2015 | Wed | 17:00 | Car/Wagon1 SDB on SH 3 hit Pedestrian2 (Age 35) | CAR/WAGON1, lost control avoiding another party, swerved to avoid vehicle | Dry | Twilight | Fine | T Junction | Give way | 0 | 0 | 1 |
| SH 3 | 20 m | S | GALLOWAY <br> ST | $\underline{201655874}$ | 22/11/2016 | Tue | 09:30 | Car/Wagon1 NDB on Lyon street hit turning Car/Wagon2 | CAR/WAGON2, did not check/notice another party from other dirn, failed to give way entering roadway from driveway | Dry | Bright sun | Fine | Driveway | Nil | 0 | 0 | 0 |
| SH 3 |  | 1 | GALLOWAY <br> ST | $\underline{201549085}$ | 11/10/2015 | Sun | 15:30 | Car/Wagon 1 SDB on SH 3 lost control; went off road to right | CAR/WAGON1, fatigue due to lack of sleep, medical illness (not sudden), too far left | Dry | Bright <br> sun | Fine | T Junction | Give way | 0 | 0 | 0 |
| SH 3 | 50 m | S | GALLOWAY <br> ST | $\underline{2931485}$ | 04/03/2009 | Wed | 10:40 | Car/Wagon1 NDB on SH 3 hit rear end of Car/Wagon2 stop/slow for PEDESTRIAN | CAR/WAGON1, failed to notice car slowing, stopping/stationary, other attention diverted | Dry | Bright <br> sun | Fine | Nil <br> (Default) | Unknown | 0 | 0 | 0 |
| SH 3 |  | 1 | GALLOWAY <br> ST | $\underline{201752686}$ | 13/10/2017 | Fri | 15:35 | Car/Wagon1 NDB on Lyon st hit Van2 merging from the right | VAN2, did not check/notice another party from other dirn, failed to give way at priority traffic control | Dry | Overcast | Fine | T Junction | Give way | 0 | 0 | 0 |
| SH 3 | 50 m | s | GALLOWAY ST | $\underline{201203965}$ | 24/08/2012 | Fri | 08:30 | Car/Wagon 1 NDB on SH 3 hit rear end of Car/Wagon2 stop/slow for PEDESTRIAN | CAR/WAGON1, attention diverted by passengers, failed to notice car slowing, stopping/stationary | Dry | Bright <br> sun | Fine | Nil (Default) | Unknown | 0 | 0 | 1 |
| SH 3 | 120 m | N | GALLOWAY <br> ST | $\underline{201657073}$ | 29/12/2016 | Thu | 18:44 | Truck1 NDB on Lyon street hit Car/Wagon2 manoeuvring | CAR/WAGON2, emotionally upset/road rage, too far right | Dry | Bright <br> sun | Fine | Nil (Default) | Unknown | 0 | 0 | 0 |
| SH 3 | 90 m | s | galloway <br> ST | $\underline{201646597}$ | 02/08/2016 | Tue | 19:40 | parked Van1 NDB on SH 3 ran away, Van1 hit parked vehicle | VAN1, parking brake failed/defective | Dry | Dark | Fine | Nil <br> (Default) | Unknown | 0 | 0 | 0 |
| SH 3 | 60 m | N | GALLOWAY <br> ST | $\underline{201737274}$ | 20/04/2017 | Thu | 16:00 | parked Truck1 NDB on Lyon street ran away, Truck1 hit fences | TRUCK1, other brakes | Dry | Bright sun | Fine | Nil <br> (Default) | Unknown | 0 | 0 | 0 |
| SH 3 |  | 1 | Golf road | $\underline{201513311}$ | 15/05/2015 | Fri | 09:30 | Van1 NDB on SH 3 hit Car/Wagon2 turning right onto AXROAD from the left | CAR/WAGON2, did not check/notice another party from other dirn, failed to give way at priority traffic control | Wet | Overcast | Heavy <br> rain | Crossroads | Stop | 0 | 0 | 1 |


| Crash road | Distance | Direction | Side road | ID | Date | $\begin{aligned} & \text { Day of } \\ & \text { week } \end{aligned}$ | Time | Description of events | Crash factors | Surface condition | $\frac{\text { Natural }}{\text { light }}$ | Weather | Junction | Control | $\begin{aligned} & \frac{\text { Crash }}{} \\ & \frac{\text { count }}{\text { fotal }} \end{aligned}$ | Crash count severe | $\frac{\frac{\text { Crash }}{}}{\frac{\text { count }}{\text { count }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SH 3 | 400 m | s | GOLF ROAD | $\underline{201530244}$ | 21/01/2015 | Wed | 11:07 | Car/Wagon1 NDB on SH 3 hit Car/Wagon2 U-turning from same direction of travel | CAR/WAGON2, attention diverted fiding intersection, house, etc, did not check/notice another party behind | Dry | Bright <br> sun | Fine | Nil (Default) | Unknown | 0 | 0 | 0 |
| SH 3 |  | 1 | GOLF ROAD | $\underline{201031270}$ | 10/03/2010 | Wed | 15:08 | Other2 turning right hit by oncoming Van1 SDB on SH 3 | OTHER2, didnt look/notice other party - visibility obstruc, failed to give way turning to non-turning traffic, overseas/migrant driver fail to adjust to nz roads | Dry | Bright sun | Fine | Crossroads | Stop | 0 | 0 | 0 |
| SH 3 |  | 1 | GOLF ROAD | $\underline{201533807}$ | 04/04/2015 | Sat | 13:00 | Car/Wagon 1 WDB on SH 3 hit rear end of Car/Wagon2 stop/slow for cross traffic | CAR/WAGON1, following too closely | Dry | Bright <br> sun | Fine | Crossroads | Stop | 0 | 0 | 0 |
| SH 3 | 250 m | s | GOLF ROAD | $\underline{201543677}$ | 18/07/2015 | Sat | 14:45 | SUV1 SDB on SH 3 lost control turning right, SUV1 hit trees | SUV1, lost control when turning, other attention diverted | Wet | Overcast | Fine | Nil (Default) | Unknown | 0 | 0 | 0 |
| SH 3 |  | 1 | GOLF ROAD | $\underline{201632838}$ | 28/01/2016 | Thu | 09:40 | Car/Wagon2 turning right hit by oncoming Van1 SDB on SH 3 | CAR/WAGON2, did not check/notice another party from other dirn, failed to give way turning to non-turning traffic | Dry | Bright sun | Fine | Crossroads | Stop | 0 | 0 | 0 |
| SH 3 | 330 m | s | GOLF ROAD | $\underline{201652407}$ | 12/11/2016 | Sat | 03:15 | Car/Wagon1 SDB on SH 3 swinging wide hit Truck2 head on, Car/Wagon1 hit ditches | CAR/WAGON1, wrong way in one way street, motorway or roundabou TRUCK2, swerved to avoid vehicle, ENV: heavy rain | Wet | Dark | Heavy rain | Nil (Default) | Unknown | 0 | 0 | 0 |
| SH 3 | 90 m | s | GOLF ROAD | 201710582 | 03/02/2017 | Fri | 03:58 | Car/Wagon1 SDB on Sh 3 otorohanga lost control turning left, Car/Wagon1 hit embankments | CAR/WAGON1, lost control when turning | Wet | Dark | Light rain | Nil (Default) | Unknown | 0 | 0 | 1 |
| SH 3 |  | 1 | GOLF ROAD | $\underline{201740606}$ | 02/06/2017 | Fri | 14:50 | SUV1 EDB on Kihikihi Road hit Car/Wagon2 merging from the left | CAR/WAGON2, failed to give way at priority traffic control, other inexperience | Dry | Overcast | Fine | Crossroads | Stop | 0 | 0 | 0 |
| SH 3 | 200 m | s | GOLF ROAD | $\underline{201611805}$ | 01/03/2016 | Tue | 03:30 | SUV1 NDB on SH 3 lost control; went off road to right | SUV1, fatige due to long day (working/recreation), fatigue due to lack of sleep | Wet | Dark | Light rain | Nil (Default) | Unknown | 0 | 1 | 0 |
| SH 3 |  | 1 | GOLF ROAD | $\underline{201748709}$ | 07/09/2017 | Thu | 14:45 | Car/Wagon1 EDB on State highway 3 hit Van2 turning right onto AXROAD from the left | VAN2, did not check/notice another party from other dirn, failed to give way at priority traffic control | Dry | Overcast | Fine | Crossroads | Stop | 0 | 0 | 0 |
| SH 3 | 50 m | N | havelock ST | $\underline{201445661}$ | 01/10/2014 | Wed | 21:50 | Car/Wagon1 SDB on SH 3 lost control turning right, Car/Wagon1 hit other | CAR/WAGON1, other fatigue | Dry | Dark | Fine | Nil (Default) | Unknown | 0 | 0 | 0 |
| SH 3 | 5 m | s | HAVELOCK ST | $\underline{2901756}$ | 02/02/2009 | Mon | 14:48 | Car/Wagon 1 NDB on SH 3 swinging wide hit Truck2 head on | CAR/WAGON1, lost control when turning | Dry | Bright sun | Fine | T Junction | Give way | 0 | 1 | 0 |
| SH 3 | 30 m | S | HAVELOCK ST | $\underline{201831252}$ | 13/01/2018 | Sat | 22:15 | Car/Wagon1 NDB on Lyon st hit obstruction, Car/Wagon1 hit animals | CAR/WAGON1, alcohol test below limit, ENV: household pet rushed out or playing | Dry | Dark | Fine | Nil <br> (Default) | Unknown | 0 | 0 | 0 |


| Crash road | - Distance | Direction | Side road | ID | Date | $\begin{aligned} & \text { Day of } \\ & \text { week } \end{aligned}$ | Time | Description of events | Crash factors | $\begin{aligned} & \frac{\text { Surface }}{} \\ & \text { condition } \end{aligned}$ | Natural <br> light | Weather | Junction | Control | $\begin{aligned} & \text { Crash } \\ & \frac{\text { count }}{\text { cotal }} \end{aligned}$ | $\begin{aligned} & \frac{\text { Crash }}{\text { count }} \\ & \frac{\text { couer }}{\text { sen }} \end{aligned}$ | $\frac{\frac{\text { Crash }}{\text { count }}}{\frac{\text { counor }}{\text { mino }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SH 3 |  | 1 | HERBERT ST | $\underline{201542699}$ | 12/07/2015 | Sun | 22:00 | Car/Wagon 1 SDB on SH 3 lost control turning right, Car/Wagon1 hit other | CAR/WAGON1, fatigue due to lack of sleep, lost control when turning | Dry | Dark | Fine | T Junction | Give way | 0 | 0 | 0 |
| SH 3 |  | 1 | HERBERT ST | $\underline{201241235}$ | 28/12/2012 | Fri | 13:41 | Car/Wagon1 NDB on SH 3 hit rear of Car/Wagon2 NDB on SH 3 turning right from centre line | CAR/WAGON1, failed to notice indication of vehicle in front, other attention diverted, ENV: fog or mist | Wet | Overcast | Mist or Fog | T Junction | Give way | 0 | 0 | 0 |
| SH 3 | 50 m | s | HERBERT ST | $\underline{201336670}$ | 06/08/2013 | Tue | 15:02 | Car/Wagon1 SDB on SH 3 hit Car/Wagon2 U-turning from same direction of travel | CAR/WAGON2, did not check/notice another party behind | Dry | Bright sun | Fine | Nil (Default) | Unknown | 0 | 0 | 0 |
| SH 3 |  | 1 | LESLIE ST | $\underline{201646455}$ | 12/08/2016 | Fri | 08:30 | SUV1 EDB on SH 3 hit rear of Car/Wagon2 EDB on SH 3 turning right from centre line | SUV1, failed to notice car slowing, stopping/stationary | Null | Unknown | Null | T Junction | Give way | 0 | 0 | 0 |
| SH 3 | 20 m | w | LESLIE ST | $\underline{201839628}$ | 11/05/2018 | Fri | 17:45 | SUV1 SDB on LYON STREET, KIHIKIHI, WAIPA hit rear end of Car/Wagon2 stop/slow for queue | SUV1, alcohol test below limit, failed to notice car slowing, stopping/stationary VAN3, alcohol test below limit | Wet | Dark | Light <br> rain | T Junction | Give way | 0 | 0 | 0 |
| SH 3 |  | 1 | LESLIEST | $\underline{201632343}$ | 17/01/2016 | Sun | 22:47 | SUV1 EDB on SH 3 lost control turning right, SUV1 hit trees | SUV1, fatige due to long day (working/recreation), new driver/under instruction, too far left | Dry | Dark | Fine | T Junction | Nil | 0 | 0 | 0 |
| SH 3 | 100 m | E | LESLIE ST | $\underline{201735845}$ | 07/04/2017 | Fri | 08:26 | Car/Wagon1 SDB on Lyon St hit rear of left turning Van2 SDB on Lyon St , Van2 hit houses | CAR/WAGON1, failed to notice car slowing, stopping/stationary, other attention diverted | Dry | Bright <br> sun | Fine | Driveway | Nil | 0 | 0 | 0 |
| SH 3 |  | 1 | LESLIE ST | 201813985 | 14/05/2018 | Mon | 10:16 | Van1 EDB on LYON STREET, KIHIKIHI, WAIPA hit rear of Car/Wagon2 EDB on LYON STREET, KIHIKIHI, WAIPA turning right from centre line | CAR/WAGON2, alcohol test below limit VAN1, alcohol test below limit, failed to notice car slowing, stopping/stationary | Dry | Bright <br> sun | Fine | T Junction | Give way | 0 | 0 | 1 |
| SH 3 | 50 m | s | LESLIE ST | $\underline{2901711}$ | 20/02/2009 | Fri | 00:15 | Car/Wagon1 SDB on SH 3 lost control turning right, Car/Wagon1 hit street furniture, other | CAR/WAGON1, other fatigue | Dry | Dark | Fine | Nil <br> (Default) | Unknown | 0 | 0 | 1 |
| SH 3 | 10 m | N | LESLIE ST | $\underline{2931323}$ | 30/01/2009 | Fri | 16:30 | SUV1 SDB on SH 3 lost control on curve and hit Truck2 head on | SUV1, lost control when turning, other fatigue | Dry | Bright <br> sun | Fine | T Junction | Nil | 0 | 0 | 0 |
| SH 3 | 30 m | s | LESLIE ST | $\underline{201033073}$ | 13/03/2010 | Sat | 07:36 | SUV1 SDB on SH 3 lost control; went off road to right, SUV1 hit trees | suv1, sudden illness | Dry | Bright <br> sun | Fine | Nil <br> (Default) | Unknown | 0 | 0 | 0 |
| SH 3 | 30 m | s | MCANDREW ST | 201610570 | 01/01/2016 | Fri | 17:08 | Car/Wagon1 NDB on SH 3 lost control turning right, Car/Wagon1 hit fences | CAR/WAGON1, fatigue due to lack of sleep, too far left | Wet | Overcast | Light <br> rain | Nil <br> (Default) | Unknown | 0 | 0 | 1 |
| SH 3 |  | 1 | MCANDREW <br> ST | $\underline{201435418}$ | 02/05/2014 | Fri | 13:05 | Other1 NDB on SH 3 lost control; went off road to left, Other1 hit fences | OTHER1, too far left | Dry | Bright sun | Fine | T Junction | Give way | 0 | 0 | 0 |


| Crash road | Distance | Direction | Side road | ID | Date | Day of | Time | Description of events | Crash factors | $\begin{aligned} & \text { Surface } \\ & \text { condition } \end{aligned}$ | $\frac{\text { Natural }}{\text { light }}$ | Weather | Junction | Control | $\begin{aligned} & \text { Crash } \\ & \begin{array}{c} \text { count } \\ \text { fotal } \end{array} \end{aligned}$ | $\frac{\text { Crash }}{\frac{\text { count }}{\text { severe }}}$ | $\frac{\text { Crash }}{\frac{\text { Count }}{\text { count }}} \underset{\text { minor }}{ }$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SH 3 |  | 1 | MCANDREW ST | $\underline{201630915}$ | 02/01/2016 | Sat | 11:35 | Car/Wagon1 SDB on SH 3 lost control turning right, Car/Wagon1 hit fences | CAR/WAGON1, inappropriate speed for road conditions, lost control under braking, ENV: slippery road due to rain | Wet | Overcast | Light rain | T Junction | Nil | 0 | 0 | 0 |
| SH 3 |  | 1 | MCANDREW ST | $\underline{201104651}$ | 06/11/2011 | Sun | 12:20 | Car/Wagon 1 SDB on SH 3 hit rear of Car/Wagon 2 SDB on SH 3 turning right from centre line | CAR/WAGON1, attention diverted by passengers, failed to notice car slowing, stopping/stationary, ENV: slippery road due to rain | Wet | Overcast | Light rain | T Junction | Give way | 0 | 0 | 2 |
| SH 3 |  | 1 | MCANDREW ST | $\underline{2902856}$ | 24/04/2009 | Fri | 14:25 | Car/Wagon1 SDB on SH 3 sideswiped by Truck 2 SDB on SH 3 turning left | CAR/WAGON1, failed to notice indication of vehicle in front, overtaking on left without due care, ENV: entering or leaving other commercial | Dry | Overcast | Fine | Driveway | Give way | 0 | 0 | 1 |
| SH 3 | 20 m | s | MCANDREW ST | $\underline{201516710}$ | 21/09/2015 | Mon | 12:39 | Van1 NDB on SH 3 lost control; went off road to left | VAN1, other fatigue, too far left | Dry | Overcast | Fine | T Junction | Give way | 0 | 0 | 1 |
| SH 3 | 90 m | N | MCANDREW ST | $\underline{201551169}$ | 18/11/2015 | Wed | 10:22 | Truck1 SDB on SH 3 sideswiped by Car/Wagon 2 SDB on SH 3 turning left | TRUCK1, misjudged intentions of another party CAR/WAGON2, attention diverted by passengers, failed to signal in time | Dry | Overcast | Fine | Driveway | Nil | 0 | 0 | 0 |
| SH 3 | 5 m | s | MCANDREW ST | $\underline{201303945}$ | 06/09/2013 | Fri | 15:20 | Car/Wagon1 SDB on SH 3 hit rear of left turning Car/Wagon2 SDB on SH 3 | CAR/WAGON1, attn diverted by scenery/persons outside vehicle, failed to notice indication of vehicle in front, ENV: entering or leaving private house / farm | Dry | Bright <br> sun | Fine | Driveway | Give way | 0 | 0 | 1 |
| SH 3 |  | 1 | MCANDREW ST | $\underline{201810849}$ | 21/01/2018 | Sun | 21:05 | Car/Wagon1 SDB on Lyon Street hit rear of Car/Wagon2 SDB on Lyon Street turning right from centre line | CAR/WAGON1, alcohol test below limit, misjudged another vehicle CAR/WAGON2, alcohol test below limit | Dry | Dark | Fine | T Junction | Give way | 0 | 0 | 1 |
| SH 3 | 60m | s | MCANDREW ST | $\underline{201812253}$ | 24/03/2018 | Sat | 15:30 | Car/Wagon1 NDB on Lyon street lost control; went off road to left, Car/Wagon1 hit poles | CAR/WAGON1, alcohol test below limit, lost control - road conditions, ENV: heavy rain | Wet | Overcast | Heavy rain | Nil (Default) | Unknown | 0 | 0 | 1 |
| SH 3 | 410 m | N | MCGHIE <br> ROAD | $\underline{201439807}$ | 30/06/2014 | Mon | 14:56 | load or trailer from Van1 NDB on SH 3 hit VEHB, Van1 hit kerbing | VAN1, inadequate tow coupling, load not well secured or load moved, lost control when turning, ENV: heavy rain | Wet | Overcast | Heavy rain | Nil (Default) | Unknown | 0 | 0 | 0 |
| SH 3 | 280 m | N | MCGHIE <br> ROAD | $\underline{2901266}$ | 09/01/2009 | Fri | 22:27 | Car/Wagon 1 SDB on SH 3 lost control turning right, Car/Wagon1 hit fences, trees | CAR/WAGON1, alcohol test above limit or test refused, lost control when turning | Dry | Dark | Fine | Nil (Default) | Unknown | 0 | 1 | 2 |
| SH 3 | 60m | s | MCGHIE <br> ROAD | $\underline{2905082}$ | 14/11/2009 | Sat | 22:00 | Car/Wagon 1 SDB on SH 3 changing lanes/overtaking to right hit Car/Wagon2 | CAR/WAGON1, did not check/notice another party behind | Dry | Dark | Fine | Nil (Default) | Nil | 0 | 0 | 1 |
| SH 3 | 30 m | w | NIXON ST | 201632922 | 09/02/2016 | Tue | 19:00 | Car/Wagon1 WDB on SH 3 hit Van2 headon on straight | VAN2, alcohol test below limit CAR/WAGON1, alcohol test below limit, fatigue due to lack of sleep, too far right | Dry | Bright sun | Fine | Nil (Default) | Unknown | 0 | 0 | 0 |


| Crash road | Distance | Direction | Side road | ID | Date | $\begin{aligned} & \text { Dayof } \\ & \text { week } \end{aligned}$ | Time | Description of events | Crash factors | $\begin{aligned} & \frac{\text { Surface }}{} \\ & \text { condition } \end{aligned}$ | $\frac{\text { Natural }}{\text { light }}$ | Weather | Junction | Control | $\begin{aligned} & \text { Crash } \\ & \frac{\text { count }}{\text { fotal }} \end{aligned}$ | $\begin{aligned} & \frac{\text { Crash }}{\text { count }} \\ & \frac{\text { couer }}{\text { sen }} \end{aligned}$ | $\frac{\text { Crash }}{\frac{\text { Count }}{\text { cont }} \text { minor }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SH 3 | 130 m | w | NIXON ST | $\underline{201747606}$ | 08/08/2017 | Tue | 10:50 | Car/Wagon1 NDB on Kihikihi road hit rear end of Van2 stop/slow for queue | CAR/WAGON1, failed to notice car slowing, stopping/stationary | Wet | Overcast | Fine | Nil (Default) | Unknown | 0 | 0 | 0 |
| SH 3 | 50 m | E | NIXON ST | $\underline{201745930}$ | 18/07/2017 | Tue | 13:06 | Car/Wagon1 EDB on Herbert st lost control; went off road to right, Car/Wagon1 hit fences, poles | CAR/WAGON1, lost control when turning | Wet | Overcast | Light <br> rain | Nil <br> (Default) | Unknown | 0 | 0 | 0 |
| SH 3 | 60 m | s | $\begin{aligned} & \text { SHEEHAN } \\ & \text { ST } \end{aligned}$ | $\underline{201847529}$ | 31/08/2018 | Fri | 00:29 | Van1 SDB on LYON STREET, KIHIKIHI, WAIPA lost control while overtaking | VAN1, drugs suspected, other lost control, overtaking in the face of oncoming traffic, speed on straight | Wet | Dark | Light rain | Nil (Default) | Unknown | 0 | 0 | 0 |
| SH 3 | 15m | N | ST LEGER ROAD | $\underline{2933430}$ | 08/04/2009 | Wed | 18:30 | Car/Wagon1 NDB on SH 3 hit rear end of Car/Wagon2 stopped/moving slowly | CAR/WAGON1, other visibility limited CAR/WAGON2, following too closely, suddenly braked CAR/WAGON3, attention diverted fiding intersection, house, etc, ENV: visibility limited by crest or dip | Wet | Dark | Fine | Nil (Default) | Unknown | 0 | 0 | 0 |
| SH 3 | 40 m | N | WHITMORE ST | $\underline{201232618}$ | 22/05/2012 | Tue | 07:55 | Truck1 SDB on SH 3 hit Car/Wagon2 manoeuvring, Truck1 hit parked vehicle | TRUCK1, misjudged own vehicle | Dry | Bright sun | Fine | Nil <br> (Default) | Unknown | 0 | 0 | 0 |
| SH 3 |  | 1 | WHITMORE ST | $\underline{201552292}$ | 19/10/2015 | Mon | 19:06 | Car/Wagon 1 SDB on SH 3 lost control turning left, Car/Wagon1 hit fences | CAR/WAGON1, lost control when turning, new driver/under instruction, speed entering corner/curve | Dry | Bright sun | Fine | T Junction | Stop | 0 | 0 | 0 |
| SH 3 |  | 1 | WHITMORE ST | $\underline{201713430}$ | 02/05/2017 | Tue | 14:45 | Car/Wagon1 SDB on Lyon hit rear of left turning Car/Wagon2 SDB on Lyon | CAR/WAGON1, wrong pedal/foot slipped | Dry | Bright sun | Fine | T Junction | Stop | 0 | 0 | 2 |
| SH 3 |  | 1 | WHITMORE ST | $\underline{201738969}$ | 19/04/2017 | Wed | 19:30 | Car/Wagon1 NDB on Statehighway Three hit Car/Wagon2 merging from the right | CAR/WAGON2, did not stop at stop sign | Dry | Dark | Fine | T Junction | Stop | 0 | 0 | 0 |
| SH 3 |  | 1 | WHITMORE ST | $\underline{201633688}$ | 26/02/2016 | Fri | 15:30 | Van1 SDB on SH 3 hit SUV2 turning right onto AXROAD from the left | SUV2, did not check/notice another party from other dirn, failed to give way at priority traffic control | Dry | Bright <br> sun | Fine | T Junction | Stop | 0 | 0 | 0 |

1-69 of 69


2939001 －䇋

## TRANSPOR <br> AGENCY

Untitled query
Saved sites
St Leger Road
Crash year
2009-2019

## Plain English report

11 results from your query.
1-11 of 11

| Crash road | - Distance | Direction | $\frac{\text { side }}{\text { road }}$ | ID | Date | Day of week | Time | Description of events | Crash factors | Surface condition | Natural Light | Weather | Junction | Control | $\begin{aligned} & \frac{\text { Crash }}{\text { Count }} \\ & \begin{array}{l} \text { fotatal } \end{array} \end{aligned}$ | $\begin{aligned} & \frac{\text { Crash }}{\text { count }} \\ & \begin{array}{c} \text { severe } \end{array} \end{aligned}$ | $\frac{\frac{\text { Crash }}{\text { count }}}{\frac{\text { countor }}{\text { minor }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GOLF ROAD |  | 1 | SH3 | $\underline{2931945}$ | 13/03/2009 | Fri | 14:30 | Truck1 NDB on GOLF ROAD lost control turning right | TRUCK1, lost control when turning, speed entering corner/curve | Dry | Overcast | Fine | Crossroads | Stop | 0 | 0 | 0 |
| SH 3 |  | 1 | $\begin{aligned} & \text { GOLF } \\ & \text { ROAD } \end{aligned}$ | $\underline{201748709}$ | 07/09/2017 | Thu | 14:45 | Car/Wagon1 EDB on State highway 3 hit Van2 turning right onto AXROAD from the left | VAN2, did not check/notice another party from other dirn, failed to give way at priority traffic control | Dry | Overcast | Fine | Crossroads | Stop | 0 | 0 | 0 |
| SH 3 |  | 1 | $\begin{aligned} & \text { GOLF } \\ & \text { ROAD } \end{aligned}$ | $\underline{201740606}$ | 02/06/2017 | Fri | 14:50 | SUV1 EDB on Kihikihi Road hit Car/Wagon2 merging from the left | CAR/WAGON2, failed to give way at priority traffic control, other inexperience | Dry | Overcast | Fine | Crossroads | Stop | 0 | 0 | 0 |
| SH 3 |  | 1 | $\begin{aligned} & \text { GOLF } \\ & \text { ROAD } \end{aligned}$ | $\underline{201513311}$ | 15/05/2015 | Fri | 09:30 | Van1 NDB on SH 3 hit Car/Wagon2 turning right onto AXROAD from the left | CAR/WAGON2, did not check/notice another party from other dirn, failed to give way at priority traffic control | Wet | Overcast | Heavy rain | Crossroads | Stop | 0 | 0 | 1 |
| SH 3 |  | 1 | $\begin{aligned} & \text { GOLF } \\ & \text { ROAD } \end{aligned}$ | $\underline{201031270}$ | 10/03/2010 | Wed | 15:08 | Other2 turning right hit by oncoming Van1 SDB on SH 3 | OTHER2, didnt look/notice other party - visibility obstruc, failed to give way turning to non-turning traffic, overseas/migrant driver fail to adjust to nz roads | Dry | Bright <br> sun | Fine | Crossroads | Stop | 0 | 0 | 0 |
| SH 3 |  | 1 | $\begin{aligned} & \text { GOLF } \\ & \text { ROAD } \end{aligned}$ | $\underline{201533807}$ | 04/04/2015 | Sat | 13:00 | Car/Wagon1 WDB on SH 3 hit rear end of Car/Wagon2 stop/slow for cross traffic | CAR/WAGON1, following too closely | Dry | Bright sun | Fine | Crossroads | Stop | 0 | 0 | 0 |
| SH 3 |  | 1 | $\begin{aligned} & \text { GOLF } \\ & \text { ROAD } \end{aligned}$ | $\underline{201632838}$ | 28/01/2016 | Thu | 09:40 | Car/Wagon2 turning right hit by oncoming Van1 SDB on SH 3 | CAR/WAGON2, did not check/notice another party from other dirn, failed to give way turning to non-turning traffic | Dry | Bright <br> sun | Fine | Crossroads | Stop | 0 | 0 | 0 |


| Crash road | Distance | Direction | $\frac{\text { sidid }}{\text { road }}$ | ID | Date | Day of week | Time | Description of events | Crash factors | Surface condition | $\frac{\text { Natural }}{\text { light }}$ | Weather | Junction | Control | $\begin{aligned} & \frac{\text { Crash }}{} \\ & \frac{\text { count }}{\text { fatal }} \end{aligned}$ | $\frac{\text { Crash }}{\frac{\text { count }}{\text { cevere }}}$ | $\frac{\frac{\text { Crash }}{\text { count }}}{\frac{\text { count }}{\text { minor }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| St LEGER RD | 70 m | N | $\begin{aligned} & \text { BRUCE } \\ & \text { ROAD } \end{aligned}$ | $\underline{201955814}$ | 09/02/2019 | Sat | 19:57 | Car/Wagon1 NDB on ST LEGER ROAD lost control; went off road to right, Car/Wagon1 hit cliffs | CAR/WAGON1, alcohol test below limit, lost control avoiding another party, swerved to avoid animal, ENV: loose material on seal | Dry | Bright sun | Fine | Nil <br> (Default) | Unknown | 0 | 0 | 0 |
| St Leger road | 100m | N | $\begin{aligned} & \text { BRILL } \\ & \text { ROAD } \end{aligned}$ | $\underline{201534949}$ | 22/02/2015 | Sun | 00:05 | Car/Wagon1 SDB on ST LEGER ROAD hit Car/Wagon2 headon on straight | CAR/WAGON1, headlights fail suddenly, inadequate/no headlights, too far left | Dry | Dark | Fine | Nil <br> (Default) | Nil | 0 | 0 | 0 |
| St leger road | 90 m | s | $\begin{aligned} & \text { BRUCE } \\ & \text { ROAD } \end{aligned}$ | 201204889 | 16/11/2012 | Fri | 18:07 | Motorcycle1 SDB on ST LEGER ROAD lost control while overtaking | MOTORCYCLE1, lost control road conditions, ENV: loose material on seal | Dry | Bright <br> sun | Fine | Nil <br> (Default) | Unknown | 0 | 1 | 0 |
| St leger road | 150m | S | $\begin{aligned} & \text { BRUCE } \\ & \text { ROAD } \end{aligned}$ | $\underline{201001600}$ | 05/02/2010 | Fri | 20:00 | Car/Wagon1 SDB on ST LEGER ROAD lost control turning left, Car/Wagon1 hit cliffs | CAR/WAGON1, alcohol test above limit or test refused, attention diverted by passengers, lost control when turning | Dry | Bright <br> sun | Fine | Nil <br> (Default) | Nil | 0 | 0 | 1 |

$1-11$ of 11


## $\checkmark$ NZTRANSPOR <br> QCAS

Untitled query
Saved sites
Walmsley Street
Crash year
2009-2019

Plain English report
1 results from your query.
1-1 of 1

| Crash road | Distance | Direction | Side road | ID | Date | $\begin{aligned} & \text { Day of } \\ & \text { week } \end{aligned}$ | Time | Description of events | Crash factors | $\begin{aligned} & \text { Surface } \\ & \text { condition } \end{aligned}$ | $\frac{\text { Natural }}{\text { light }}$ | Weather | Junction | Control | $\frac{\text { Crash }}{\frac{\text { count }}{\text { fotal }}}$ | $\frac{\text { Crash }}{\frac{\text { Count }}{\text { cout }}} \frac{}{\text { Sen }}$ | $\frac{\frac{\text { Crash }}{}}{\frac{\text { count }}{\text { counor }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ballance st |  | 1 | WALMSLEY ST | $\underline{201033074}$ | 13/03/2010 | Sat | 03:55 | Car/Wagon1 NDB on BALLANCE ST missed intersection or end of road, Car/Wagon1 hit houses | CAR/WAGON1, alcohol test above limit or test refused, other fatigue | Dry | Dark | Fine | T Junction | Give way | 0 | 0 | 0 |

1-1 of 1


## Untitled query

## Crash year

2009-2019

## Saved sites

Whitmore Street

## Plain English report

25 results from your query.
Showing $\underline{20} 100$ results at once.
$1-25$ of 25

| Crash road | Distance | Direction | Side road | ID | Date | $\frac{\text { Day of }}{}$ | Time | Description of events | Crash factors | $\begin{aligned} & \text { Surface } \\ & \text { condition } \end{aligned}$ | $\frac{\text { Natural }}{\text { Light }}$ | Weather | Junction | Control | $\frac{\text { Crash }}{\frac{\text { Count }}{\text { fotal }}}$ | $\frac{\frac{\text { Crash }}{\text { count }}}{\frac{\text { count }}{\text { seev }}}$ | $\frac{\frac{\text { Crash }}{\frac{\text { count }}{\text { count }}} \text { minor }}{}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ARAPUNI ROAD | 160 m | w | KIMBERLEY <br> ROAD | $\underline{201742178}$ | 19/06/2017 | Mon | 02:45 | Car/Wagon1 EDB on Arapuni Rd lost control turning right, Car/Wagon1 hit fences, ditches | CAR/WAGON1, alcohol test below limit, other fatigue, other lost control | Dry | Dark | Fine | Nil <br> (Default) | Unknown | 0 | 0 | 0 |
| ARAPUNI ROAD | 170m | w | KIMBERLEY <br> ROAD | 201810980 | 31/01/2018 | Wed | 18:36 | Van1 WDB on Arapuni road lost control turning right, Van1 hit trees | VAN1, alcohol test below limit, drugs suspected, fatigue due to lack of sleep, too far left | Dry | Bright sun | Fine | Nil (Default) | Unknown | 0 | 0 | 1 |
| ARAPUNI ROAD | 320 m | E | WHITMORE ST | $\underline{201043693}$ | 26/11/2010 | Fri | 18:54 | Car/Wagon1 WDB on ARAPUNI ROAD lost control turning right, Car/Wagon1 hit ditches | CAR/WAGON1, lost control under braking | Wet | Overcast | Heavy rain | Nil <br> (Default) | Nil | 0 | 0 | 0 |
| CHURCH ST |  | 1 | WHITMORE ST | $\underline{201818251}$ | 06/10/2018 | Sat | 09:00 | Car/Wagon1 NDB on CHURCH STREET, KIHIKIHI, WAIPA hit Van2 crossing at right angle from right | VAN2, alcohol test below limit CAR/WAGON1, alcohol test below limit, failed to give way at priority traffic control, overseas/migrant driver fail to adjust to nz roads | Dry | Bright sun | Fine | Crossroads | Give way | 0 | 0 | 3 |
| moule st |  | 1 | WHITMORE ST | $\underline{201239395}$ | 06/10/2012 | Sat |  | Car/Wagon1 EDB on MOULE ST lost control turning left, Car/Wagon1 hit parked vehicle, traffic sign | CAR/WAGON1, alcohol test above limit or test refused, lost control when turning, speed entering corner/curve | Wet | Overcast | Light rain | T Junction | Give way | 0 | 0 | 0 |
| Rolleston st |  | 1 | WHITMORE ST | $\underline{201000109}$ | 31/07/2010 | Sat | 19:02 | Car/Wagon 1 WDB on ROLLESTON ST hit Car/Wagon2 crossing at right angle from right, Car/Wagon1 hit fences | CAR/WAGON2, alcohol test above limit or test refused, failed to give way at priority traffic control, failed to notice control, speed approaching a traffic control | Dry | Dark | Fine | Crossroads | Give way | 2 | 3 | 1 |
| Rolleston st |  | 1 | WHITMORE ST | $\underline{201614399}$ | 25/05/2016 | Wed | 11:42 | SUV1 WDB on ROLLESTON ST hit Car/Wagon2 crossing at right angle from right | CAR/WAGON2, failed to give way at priority traffic control, overseas/migrant driver fail to adjust to $n z$ roads | Wet | Overcast | Light <br> rain | Crossroads | Give way | 0 | 0 | 1 |


| Crash road | Distance | Direction | Side road | ID | Date | $\frac{\text { Day of }}{}$ | Time | Description of events | Crash factors | $\begin{aligned} & \frac{\text { Surface }}{} \\ & \text { condition } \end{aligned}$ | $\frac{\text { Natural }}{\text { light }}$ | Weather | Junction | Control | $\frac{\text { Crash }}{\frac{\text { Count }}{\text { Cotal }}}$ | $\frac{\text { Crash }}{\frac{\text { count }}{\text { count }}}$ | $\frac{\text { Crash }}{\frac{\text { count }}{\text { count }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WHITMOREST | 40 m | w | CAREY ST | $\underline{201648246}$ | 05/09/2016 | Mon | 17:10 | parked Car/Wagon1 EDB on Whitmore street, kihikihi ran away, Car/Wagon1 hit poles | CAR/WAGON1, parking brake not fully applied | Wet | Overcast | Fine | Nil (Default) | Unknown | 0 | 0 | 0 |
| WHITMOREST | 50 m | E | CAREY ST | $\underline{201734936}$ | 31/01/2017 | Tue | 16:59 | Car/Wagon1 EDB on Whitmore st sideswiped by Van2 EDB on Whitmore st turning left | CAR/WAGON1, misjudged intentions of another party | Dry | Bright <br> sun | Fine | Driveway | Nil | 0 | 0 | 0 |
| WHITMOREST |  | 1 | CHURCH ST | $\underline{2930474}$ | 15/01/2009 | Thu | 15:53 | Car/Wagon1 NDB on WHITMORE ST hit SUV2 crossing at right angle from right | CAR/WAGON1, didnt look/notice other party - visibility obstruc, failed to give way at priority traffic control, ENV: visibility limited by parked vehicle | Dry | Bright sun | Fine | Crossroads | Give way | 0 | 0 | 0 |
| WHITMOREST |  | 1 | CHURCH ST | $\underline{201230037}$ | 16/01/2012 | Mon | 14:20 | Car/Wagon1 WDB on WHITMORE ST hit Motorcycle2 turning right onto AXROAD from the left | MOTORCYCLE2, did not check/notice another party from other dirn, failed to give way at priority traffic control, failed to notice control | Dry | Bright sun | Fine | Crossroads | Give way | 0 | 0 | 0 |
| WHITMOREST |  | 1 | CHURCH ST | $\underline{201845827}$ | 03/08/2018 | Fri | 18:00 | Van1 EDB on WHITMORE STREET, KIHIKIHI, WAIPA hit Car/Wagon2 merging from the right | CAR/WAGON2, alcohol test below limit, did not check/notice another party from other dirn, failed to give way turning to nonturning traffic VAN1, alcohol test below limit | Dry | Dark | Fine | Crossroads | Give way | 0 | 0 | 0 |
| WHITMOREST |  | 1 | CHURCH ST | $\underline{201437937}$ | 17/06/2014 | Tue | 14:40 | SUV1 EDB on WHITMORE ST hit Car/Wagon2 crossing at right angle from right | CAR/WAGON2, failed to give way at priority traffic control, other attention diverted, other inattentive | Dry | Overcast | Fine | Crossroads | Give way | 0 | 0 | 0 |
| WHITMORE ST |  | 1 | CHURCH ST | $\underline{201136569}$ | 18/07/2011 | Mon | 09:00 | Van1 EDB on WHITMORE ST hit Car/Wagon2 merging from the right | CAR/WAGON2, failed to give way at priority traffic control, ENV: dazzling sun | Dry | Bright <br> sun | Fine | Crossroads | Give way | 0 | 0 | 0 |
| WHITMOREST | 50 m | w | CHURCH ST | $\underline{201954029}$ | 13/01/2019 | Sun | 17:15 | Car/Wagon1 EDB on WHITMORE STREET, KIHIKIHI, WAIPA lost control; went off road to right, Car/Wagon1 hit fences | CAR/WAGON1, alcohol test below limit, other lost control | Wet | Overcast | Fine | Nil (Default) | Unknown | 0 | 0 | 0 |
| WHITMOREST | 90 m | w | dICK ST | $\underline{201436016}$ | 31/03/2014 | Mon | 09:47 | Bus1 EDB on WHITMORE ST hit Truck2 U-turning from same direction of travel | TRUCK2, did not check/notice another party behind | Dry | Bright sun | Fine | Nil (Default) | Nil | 0 | 0 | 0 |
| WHITMORE ST | 50 m | s | OLIVERST | $\underline{201638078}$ | 14/05/2016 | Sat | 05:53 | Car/Wagon1 SDB on WHITMORE ST lost control; went off road to left, Car/Wagon1 hit poles | CAR/WAGON1, fatigue due to lack of sleep | Wet | Dark | Light rain | Nil (Default) | Unknown | 0 | 0 | 0 |
| WHITMOREST |  | 1 | OLIVERSt | $\underline{201744665}$ | 28/04/2017 | Fri | 16:30 | Car/Wagon2 turning right hit by oncoming Car/Wagon1 WDB on Arapuni rd, Car/Wagon1 hit traffic sign | CAR/WAGON2, attention diverted by cell phone, attention diverted by passengers, emotionally upset/road rage | Dry | Bright <br> sun | Fine | Crossroads | Give way | 0 | 0 | 0 |


| Crash road | Distance | Direction | Side road | ID | Date | Day of <br> week | Time | Description of events | Crash factors | $\begin{aligned} & \text { Surface } \\ & \text { condition } \end{aligned}$ | $\frac{\text { Natural }}{\text { Light }}$ | Weather | Junction | Control | $\frac{\text { Crash }}{\frac{\text { count }}{\text { fotal }}}$ | $\begin{aligned} & \frac{\text { Crash }}{\text { count }} \\ & \frac{\text { count }}{\text { sever }} \end{aligned}$ | $\frac{\frac{\text { Crash }}{}}{\frac{\text { count }}{\text { counor }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WHITMORE ST | 150m | E | OLIVERST | $\underline{201430721}$ | 15/01/2014 | Wed | 18:00 | Car/Wagon1 EDB on WHITMORE ST hit Car/Wagon2 headon on straight | CAR/WAGON1, too far right | Dry | Bright sun | Fine | Nil (Default) | Nil | 0 | 0 | 0 |
| WHITMORE ST |  | 1 | ROLLESTON ST | $\underline{201138254}$ | 21/10/2011 | Fri | 19:10 | Vani WDB on WHITMORE ST hit Car/Wagon2 crossing at right angle from right | CAR/WAGON2, alcohol test above limit or test refused, did not check/notice another party from other dirn, failed to give way at priority traffic control | Dry | Twilight | Fine | Crossroads | Give way | 0 | 0 | 0 |
| WHITMORE ST |  | 1 | ROLLESTON <br> ST | $\underline{201711676}$ | 14/03/2017 | Tue | 14:13 | Car/Wagon1 EDB on Whitmore hit Car/Wagon2 crossing at right angle from right | CAR/WAGON2, failed to give way at priority traffic control, overseas/migrant driver fail to adjust to nz roads | Dry | Bright sun | Fine | Crossroads | Give way | 0 | 0 | 2 |
| WHITMORE ST |  | 1 | ROLLESTON <br> ST | $\underline{201742808}$ | 17/04/2017 | Mon | 14:15 | Van1 EDB on Whitmore street hit Car/Wagon2 turning right onto AXROAD from the left | CAR/WAGON2, did not check/notice another party from other dirn | Dry | Overcast | Fine | Crossroads | Give way | 0 | 0 | 0 |
| WHITMORE ST |  | 1 | ROLLESton <br> ST | $\underline{201818956}$ | 14/10/2018 | Sun | 12:39 | Van1 EDB on Whitmore street, KIHIKIHI, WAIPA hit Car/Wagon2 crossing at right angle from right | VAN1, alcohol test below limit CAR/WAGON2, alcohol test below limit, did not check/notice another party from other dirn, failed to give way at priority traffic control CAR/WAGON3, alcohol test below limit | Dry | Bright sun | Fine | Crossroads | Give way | 0 | 0 | 1 |
| Whitmore st | 15 m | E | SH3LYON | $\underline{201304411}$ | 07/09/2013 | Sat | 12:10 | Van1 EDB on WHITMORE ST hit obstruction, Van1 hit stationary vehicle | VAN1, emotionally upset/road rage, intentional collision CAR/WAGON2, emotionally upset/road rage | Dry | Bright sun | Fine | Nil (Default) | Unknown | 0 | 0 | 2 |
| Whitmore st | 10 m | s | WHITAKER ST | $\underline{201230962}$ | 12/04/2012 | Thu | 12:45 | Car/Wagon1 WDB on WHITMORE ST lost control; went off road to right, Car/Wagon1 hit poles | CAR/WAGON1, sudden illness, ENV: heavy rain | Wet | Overcast | Heavy rain | Crossroads | Give way | 0 | 0 | 0 |

$1-25$ of 25

Untitled query

## Saved sites

Ballance Street
Crash year
2009-2019

## Plain English report

6 results from your query.
1-6 of 6

| Crash road | - Distance | Direction | Side road | ID | Date | Day of week | Time | Description of events | Crash factors | $\begin{aligned} & \text { Surface } \\ & \text { condition } \end{aligned}$ | $\frac{\text { Natural }}{\text { light }}$ | Weather | Junction | Control | $\frac{\text { Crash }}{\frac{\text { Count }}{\text { coout }}}$ | $\frac{\frac{\text { Crash }}{\text { count }}}{\frac{\text { count }}{\text { sever }}}$ | $\frac{\frac{\text { Crash }}{\text { count }}}{\frac{\text { count }}{\text { minor }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ballance st |  | 1 | LESLIEST | $\underline{201545879}$ | 18/09/2015 | Fri | 22:23 | Car/Wagon1 EDB on BALLANCE ST lost control but did not leave the road, Car/Wagon1 hit fences | CAR/WAGON1, alcohol suspected, speed on straight | Dry | Dark | Fine | T Junction | Give way | 0 | 0 | 0 |
| ballance st |  | 1 | LESLIEST | $\underline{201549561}$ | 24/10/2015 | Sat | 03:00 | Car/Wagon 1 SDB on BALLANCE ST missed intersection or end of road, Car/Wagon1 hit fences | CAR/WAGON1, alcohol test above limit or test refused, lost control under braking, speed entering corner/curve, ENV: slippery road due to rain | Wet | Dark | Light <br> rain | T Junction | Give way | 0 | 0 | 0 |
| ballance st |  | 1 | WALMSLEY ST | $\underline{201033074}$ | 13/03/2010 | Sat | 03:55 | Car/Wagon1 NDB on BALLANCE ST missed intersection or end of road, Car/Wagon1 hit houses | CAR/WAGON1, alcohol test above limit or test refused, other fatigue | Dry | Dark | Fine | T <br> Junction | Give way | 0 | 0 | 0 |
| BALLANCE ST | 100m | w | WALMSLEY ST | $\underline{201434249}$ | 04/02/2014 | Tue | 22:43 | parked Car/Wagon1 EDB on BALLANCE ST ran away, Car/Wagon1 hit houses | CAR/WAGON1, other attention diverted, parking brake not fully applied, ENV: entering or leaving private house / farm | Dry | Dark | Fine | Driveway | Unknown | 0 | 0 | 0 |
| SH 3 |  | 1 | BALLANCE <br> ST | $\underline{201744193}$ | 05/07/2017 | Wed | 13:50 | Van1 NDB on SH 3 hit rear of Van2 NDB on SH 3 turning right from centre line | VAN1, swerved to avoid pedestrian | Dry | Bright <br> sun | Null | T Junction | Give way | 0 | 0 | 0 |
| SH 3 |  | 1 | BALLANCE <br> ST | $\underline{201530499}$ | 26/01/2015 | Mon | 21:25 | Car/Wagon 1 NDB on SH 3 lost control turning left, Car/Wagon1 hit fences | CAR/WAGON1, speed entering corner/curve, wrong pedal/foot slipped | Dry | Dark | Fine | T Junction | Stop | 0 | 0 | 0 |

$1-6$ of 6


## TRANSPOR <br> BCAS

Untitled query

## Saved sites

Golf Road
Crash year
2009-2019

## Plain English report

14 results from your query.
1-14 of 14

| Crash road | - Distance | Direction | $\frac{\text { side }}{\text { road }}$ | ID | Date | Day of week | Time | Description of events | Crash factors | Surface condition | Natural <br> light | Weather | Junction | Control | $\frac{\text { Crash }}{\frac{\text { count }}{\text { fatal }}}$ | $\frac{\frac{\text { Crash }}{\text { count }}}{\frac{\text { couver }}{\text { sen }}}$ | $\frac{\frac{\text { Crash }}{\frac{\text { count }}{\text { conor }}} \text { min }}{\text { mino }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| flat road |  | 1 | $\begin{aligned} & \text { GOLF } \\ & \text { ROAD } \end{aligned}$ | 201632898 | 03/02/2016 | Wed | 21:51 | Car/Wagon 1 NDB on FLAT ROAD lost control; went off road to right, Car/Wagon1 hit fences, traffic islands | CAR/WAGON1, alcohol test above limit or test refused, other lost control, too far right | Dry | Dark | Fine | T Junction | Give way | 0 | 0 | 0 |
| flat road |  | 1 | $\begin{aligned} & \text { GOLF } \\ & \text { ROAD } \end{aligned}$ | 201337372 | 27/08/2013 | Tue | 15:00 | Van1 NDB on FLAT ROAD hit Car/Wagon2 reversing along road | CAR/WAGON2, did not check/notice another party behind | Dry | Overcast | Fine | T Junction | Give way | 0 | 0 | 0 |
| GOLF ROAD |  | 1 | $\begin{aligned} & \text { FLAT } \\ & \text { ROAD } \end{aligned}$ | $\underline{201239836}$ | 03/10/2012 | Wed | 17:30 | Car/Wagon 1 WDB on GOLF ROAD hit Car/Wagon2 turning right onto AXROAD from the left | CAR/WAGON2, did not check/notice another party from other dirn, failed to give way at priority traffic control | Dry | Bright sun | Fine | T Junction | Give way | 0 | 0 | 0 |
| GOLF ROAD |  | 1 | $\begin{aligned} & \text { FLAT } \\ & \text { ROAD } \end{aligned}$ | $\underline{201830773}$ | 05/01/2018 | Fri | 18:00 | Car/Wagon1 EDB on Golf rd lost control turning right, <br> Car/Wagon1 hit guide/guard rails | CAR/WAGON1, alcohol test below limit, lost control when turning, too far left, ENV: loose material on seal | Dry | Bright sun | Fine | T Junction | Give way | 0 | 0 | 0 |
| GOLF ROAD |  | 1 | $\begin{aligned} & \text { FLAT } \\ & \text { ROAD } \end{aligned}$ | $\underline{201532214}$ | 18/02/2015 | Wed | 06:32 | Car/Wagon1 NDB on GOLF ROAD missed intersection or end of road, Car/Wagon1 hit fences, poles, traffic sign | CAR/WAGON1, failed to notice control, other lost control, speed on straight, ENV: fog or mist | Dry | Overcast | Mist or Fog | T <br> Junction | Stop | 0 | 0 | 0 |
| GOLF ROAD |  | 1 | $\begin{aligned} & \text { PARK } \\ & \text { ROAD } \end{aligned}$ | 201131478 | 14/03/2011 | Mon | 22:40 | SUV1 SDB on GOLF ROAD missed intersection or end of road, SUV1 hit fences, traffic sign, ditches, other | SUV1, lost control under braking, speed on straight | Dry | Dark | Fine | T Junction | Give way | 0 | 0 | 0 |
| GOLF ROAD |  | 1 | $\begin{aligned} & \text { PARK } \\ & \text { ROAD } \end{aligned}$ | $\underline{201037280}$ | 18/07/2010 | Sun | 03:45 | SUV1 SDB on GOLF ROAD missed intersection or end of road | SUV1, alcohol test above limit or test refused | Dry | Dark | Fine | T Junction | Give way | 0 | 0 | 0 |
| GOLF ROAD | 50 m | w | $\begin{aligned} & \text { PARK } \\ & \text { ROAD } \end{aligned}$ | $\underline{201043679}$ | 13/12/2010 | Mon | 19:18 | Car/Wagon1 WDB on GOLF ROAD lost control; went off road to right, Car/Wagon1 hit ditches | CAR/WAGON1, lost control - road conditions, ENV: loose material on seal | Dry | Overcast | Fine | Nil <br> (Default) | Nil | 0 | 0 | 0 |


| Crash road | - Distance | Direction | $\frac{\text { Side }}{\text { road }}$ | ID | Date | Day of week | Time | Description of events | Crash factors | $\begin{aligned} & \text { Surface } \\ & \text { condition } \end{aligned}$ | $\frac{\text { Natural }}{\text { Light }}$ | Weather | Junction | Control | $\frac{\text { Crash }}{\frac{\text { count }}{\text { fotal }}}$ | $\begin{aligned} & \frac{\text { Crash }}{\text { count }} \\ & \frac{\text { severe }}{} \end{aligned}$ | $\begin{aligned} & \text { Crash } \\ & \begin{array}{c} \text { count } \\ \text { conor } \end{array} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GOLF ROAD | 440 m | w | $\begin{aligned} & \text { PARK } \\ & \text { ROAD } \end{aligned}$ | $\underline{201744948}$ | 20/07/2017 | Thu | 19:40 | Car/Wagon1 EDB on Golf lost control; went off road to left, Car/Wagon1 hit ditches | CAR/WAGON1, alcohol test below limit, new driver/under instruction, too far left | Wet | Dark | Heavy rain | Nil (Default) | Unknown | 0 | 0 | 0 |
| GOLF ROAD |  | 1 | $\begin{aligned} & \text { PARK } \\ & \text { ROAD } \end{aligned}$ | $\underline{2939631}$ | 11/07/2009 | Sat | 19:10 | Car/Wagon1 SDB on GOLF ROAD missed intersection or end of road, Car/Wagon1 hit fences | CAR/WAGON1, alcohol test above limit or test refused, failed to notice control | Wet | Dark | Fine | T <br> Junction | Give way | 0 | 0 | 0 |
| Golf road | 50 m | w | PARK <br> ROAD | $\underline{2937059}$ | 01/06/2009 | Mon | 13:15 | Car/Wagon1 WDB on GOLF ROAD hit SUV2 U-turning from same direction of travel, Car/Wagon1 hit fences | SUV2, did not check/notice another party behind | Dry | Bright <br> sun | Fine | Nil <br> (Default) | Unknown | 0 | 0 | 0 |
| Golf road |  | 1 | PARK <br> ROAD | 201532828 | 07/03/2015 | Sat | 20:39 | Car/Wagon1 SDB on GOLF ROAD lost control turning left, Car/Wagon1 hit street furniture, ditches | CAR/WAGON1, lost control when turning, new driver/under instruction, wheelspins/wheelies/doughnuts/drifting | Wet | Dark | Heavy <br> rain | T Junction | Give way | 0 | 0 | 0 |
| PARK RoAd |  | 1 | $\begin{aligned} & \text { GOLF } \\ & \text { ROAD } \end{aligned}$ | 201102984 | 06/06/2011 | Mon | 21:54 | Car/Wagon1 SDB on PARK ROAD missed intersection or end of road, Car/Wagon1 hit fences, traffic islands, traffic sign, trees | CAR/WAGON1, attention diverted by cell phone, failed to notice control, worn tread on tyre, ENV: fog or mist | Wet | Dark | Mist or Fog | T Junction | Give way | 0 | 0 | 1 |
| PARK RoAd |  | 1 | $\begin{aligned} & \text { GOLF } \\ & \text { ROAD } \end{aligned}$ | 201553434 | 24/12/2015 | Thu | 11:13 | Car/Wagon1 SDB on PARK ROAD lost control turning right | CAR/WAGON1, load interferes with driver, towed vehicle or trailer too heavy or incompatible | Dry | Overcast | Fine | T Junction | Give way | 0 | 0 | 0 |

1-14 of 14


Untitled query
Saved sites
Haultain Street

## Crash year

2009-2019

## Plain English report

1 results from your query.
1-1 of 1

| Crash road | Distance | Direction | Side road | ID | Date | $\frac{\text { Day of }}{\text { week }}$ | Time | Description of events | Crash factors | $\begin{aligned} & \text { Surface } \\ & \text { condition } \end{aligned}$ | $\frac{\text { Natural }}{\text { light }}$ | Weather | Junction | Control | $\frac{\text { Crash }}{\frac{\text { Count }}{\text { count }}}$ | $\frac{\text { Crash }}{\frac{\text { count }}{\text { cever }}}$ | $\frac{\text { Crash }}{\text { Count }}$ $\frac{\text { Cinor }}{\text { min }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| haultain St |  | 1 | MCANDREW ST | 2939637 | 30/07/2009 | Thu | 19:00 | Car/Wagon 1 WDB on HAULTAIN ST lost control turning right, Car/Wagon1 hit fences | CAR/WAGON1, lost control when turning, new driver/under instruction, speed entering corner/curve | Wet | Twilight | Mist or Fog | T Junction | Nil | 0 | 0 | 0 |

1-1 of 1


Untitled query

## Saved sites

Herbert Street
Crash year
2009-2019

## Plain English report

12 results from your query.
1-12 of 12

| Crash road | - Distance | Direction | Side road | ID | Date | Day of week | Time | Description of events | Crash factors | Surface condition | $\frac{\text { Natural }}{\text { light }}$ | Weather | Junction | Control | $\begin{aligned} & \frac{\text { Crash }}{} \\ & \frac{\text { count }}{\text { fotal }} \end{aligned}$ | $\frac{\frac{\text { Crash }}{\text { count }}}{\frac{\text { count }}{\text { sever }}}$ | $\frac{\frac{\text { Crash }}{\frac{\text { count }}{\text { count }}} \text { minor }}{}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| flat road |  | 1 | HERBERT ST | $\underline{2931944}$ | 14/03/2009 | Sat | 18:10 | Truck1 NDB on FLAT ROAD hit Car/Wagon2 crossing at right angle from right | TRUCK1, did not check/notice another party from other dirn, failed to give way at priority traffic control | Dry | Overcast | Fine | Crossroads | Stop | 0 | 0 | 0 |
| flat road |  | 1 | HERBERT ST | $\underline{201105664}$ | 23/12/2011 | Fri | 12:27 | Car/Wagon1 SDB on FLAT ROAD hit Car/Wagon2 crossing at right angle from right | CAR/WAGON2, did not check/notice another party from other dirn, failed to give way at priority traffic control | Dry | Bright <br> sun | Fine | Crossroads | Stop | 0 | 0 | 1 |
| flat road |  | 1 | HERBERT ST | $\underline{201716681}$ | 24/07/2017 | Mon | 12:56 | Car/Wagon 1 EDB on Rolleston road hit Car/Wagon2 crossing at right angle from right | CAR/WAGON1, did not check/notice another party from other dirn, failed to give way at priority traffic control | Dry | Bright <br> sun | Fine | Crossroads | Stop | 0 | 0 | 1 |
| herbert st | 140 m | w | ATKINSON ST | $\underline{201642355}$ | 22/06/2016 | Wed | 17:45 | Car/Wagon1 EDB on HERBERT ST lost control; went off road to right, $\mathrm{Car} /$ Wagon 1 hit poles | CAR/WAGON1, other lost control, other vehicle controls | Wet | Dark | Fine | Nil <br> (Default) | Unknown | 0 | 0 | 0 |
| herbert st |  | 1 | FLAT ROAD | $\underline{201130800}$ | 03/02/2011 | Thu | 07:55 | Car/Wagon1 SDB on HERBERT ST hit Car/Wagon2 crossing at right angle from right, Car/Wagon2 hit stationary vehicle | CAR/WAGON1, did not check/notice another party from other dirn, failed to give way at priority traffic control | Dry | Overcast | Fine | Crossroads | Stop | 0 | 0 | 0 |
| herbert st |  | 1 | ROLLESTON ST | $\underline{201231073}$ | 26/04/2012 | Thu | 15:50 | Car/Wagon1 NDB on HERBERT ST hit Car/Wagon2 crossing at right angle from right | CAR/WAGON2, did not check/notice another party from other dirn, failed to give way at priority traffic control | Dry | Bright sun | Fine | Crossroads | Stop | 0 | 0 | 0 |
| herbert st | 120 m | w | SH3 | $\underline{201231097}$ | 03/04/2012 | Tue | 01:36 | Car/Wagon1 EDB on HERBERT ST hit Car/Wagon2 manoeuvring, Car/Wagon1 hit stationary vehicle | CAR/WAGON1, evading enforcement, intentional collision | Dry | Dark | Fine | Nil <br> (Default) | Unknown | 0 | 0 | 0 |


| Crash road | - Distance | Direction | Side road | ID | Date | $\begin{aligned} & \text { Day of } \\ & \text { week } \end{aligned}$ | Time | Description of events | Crash factors | $\begin{aligned} & \text { Surface } \\ & \text { condition } \end{aligned}$ | $\frac{\text { Natural }}{\text { Light }}$ | Weather | Junction | Control | $\frac{\text { Crash }}{\frac{\text { Count }}{\text { coont }}}$ | $\begin{aligned} & \frac{\text { Crash }}{\text { count }} \\ & \frac{\text { couer }}{\text { sen }} \end{aligned}$ | $\begin{aligned} & \frac{\text { Crash }}{\text { count }} \\ & \frac{\text { counor }}{\text { minor }} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Herbert St | 25m | w | WHITAKER ST | $\underline{2935123}$ | 14/05/2009 | Thu | 19:30 | Car/Wagon1 WDB on HERBERT ST lost control; went off road to right, Car/Wagon1 hit fences | CAR/WAGON1, alcohol test above limit or test refused | Wet | Dark | Light rain | Nil (Default) | Nil | 0 | 0 | 0 |
| herbert st | 70 m | E | WHITAKER ST | $\underline{201651706}$ | 04/11/2016 | Fri | 12:55 | Car/Wagon1 WDB on Herbert Road hit parked veh, Car/Wagon1 hit parked vehicle | CAR/WAGON1, too far left, wrong pedal/foot slipped | Dry | Bright sun | Fine | Nil (Default) | Unknown | 0 | 0 | 0 |
| ROLLESTON ST |  | 1 | HERBERT ST | $\underline{201039625}$ | 01/09/2010 | Wed | 17:00 | SUV1 WDB on ROLLESTON ST hit Car/Wagon2 crossing at right angle from right | CAR/WAGON2, attention diverted by passengers, failed to give way at priority traffic control, other visibility limited, ENV: other visibility limited | Dry | Bright <br> sun | Fine | Crossroads | Stop | 0 | 0 | 0 |
| ROLLESTON St |  | 1 | HERBERT ST | $\underline{201234403}$ | 12/07/2012 | Thu | 08:00 | Car/Wagon1 NDB on ROLLESTON ST hit Car/Wagon2 crossing at right angle from right | CAR/WAGON2, did not check/notice another party from other dirn, failed to give way at priority traffic control | Dry | Overcast | Fine | Crossroads | Stop | 0 | 0 | 0 |
| ROLLESTON ST |  | 1 | $\begin{aligned} & \text { HERBERT } \\ & \text { ST } \end{aligned}$ | $\underline{201718709}$ | 21/10/2017 | Sat | 07:32 | Car/Wagon1 EDB on Herbert street, kihikihi hit Car/Wagon2 crossing at right angle from right | CAR/WAGON1, did not stop at stop sign, failed to give way at priority traffic control, speed entering corner/curve | Dry | Twilight | Fine | Crossroads | Stop | 0 | 0 | 1 |

1-12 of 12


## Appendix B: T6 Modelling Reports

Modelling outputs for the following intersections included:

- $\quad$ State Highway 3 / Golf Road / St Leger Road
- State Highway 3 / Herbert Street / Leslie Street / Nixon Street
- State Highway 3 / Whitmore Street / Church Street / Ballance Street
- $\quad$ State Highway 3 / McAndrew Street


## LANE LEVEL OF SERVICE

## Lane Level of Service for Network Sites

## 寧贵 Network: N101 [2018_Existing_AM]

New Network
Network Category: (None)


Colour code based on Level of Service


Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Tuesday, 4 June 2019 10:17:24 AM
Project: <br>ttgroup.locallcorporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int \& Leslie SH3 Int.sip8

## NETWORK SUMMARY

章衰 Network: N101 [2018_Existing_AM]
New Network
Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) | LOS B |  |  |
| Travel Time Index | 8.67 |  |  |
| Speed Efficiency | 0.88 |  |  |
| Congestion Coefficient | 1.14 |  |  |
| Travel Speed (Average) | $52.8 \mathrm{~km} / \mathrm{h}$ |  | $52.8 \mathrm{~km} / \mathrm{h}$ |
| Travel Distance (Total) | 1330.2 veh-km/h |  | 1596.3 pers-km/h |
| Travel Time (Total) | 25.2 veh-h/h |  | 30.2 pers-h/h |
| Desired Speed | 60.0 km/h |  |  |
| Demand Flows (Total for all Sites) | 2452 veh/h |  | 2942 pers/h |
| Arrival Flows (Total for all Sites) | 2452 veh/h |  | 2942 pers/h |
| Demand Flows (Entry Total) | 1259 veh/h |  |  |
| Midblock Inflows (Total) | $7 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Outflows (Total) | -1 veh/h |  |  |
| Percent Heavy Vehicles (Demand) | 10.2 \% |  |  |
| Percent Heavy Vehicles (Arrival) | 10.2 \% |  |  |
| Degree of Saturation | 0.433 |  |  |
| Control Delay (Total) | 0.66 veh-h/h |  | 0.80 pers-h/h |
| Control Delay (Average) | 1.0 sec |  | 1.0 sec |
| Control Delay (Worst Lane) | 32.2 sec |  |  |
| Control Delay (Worst Movement) | 46.1 sec |  | 46.1 sec |
| Geometric Delay (Average) | 0.4 sec |  |  |
| Stop-Line Delay (Average) | 0.6 sec |  |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |  |
| Total Effective Stops | $146 \mathrm{veh} / \mathrm{h}$ |  | 175 pers/h |
| Effective Stop Rate | 0.06 | 0.11 per km | 0.06 |
| Proportion Queued | 0.04 |  | 0.04 |
| Performance Index | 29.0 |  | 29.0 |
| Cost (Total) | 628.37 \$/h | 0.47 \$/km | 628.37 \$/h |
| Fuel Consumption (Total) | 115.6 L/h | 86.9 mL/km |  |
| Fuel Economy | $8.7 \mathrm{~L} / 100 \mathrm{~km}$ |  |  |
| Carbon Dioxide (Total) | 278.8 kg/h | 209.6 g/km |  |
| Hydrocarbons (Total) | $0.019 \mathrm{~kg} / \mathrm{h}$ | $0.015 \mathrm{~g} / \mathrm{km}$ |  |
| Carbon Monoxide (Total) | $0.262 \mathrm{~kg} / \mathrm{h}$ | $0.197 \mathrm{~g} / \mathrm{km}$ |  |
| NOx (Total) | $0.724 \mathrm{~kg} / \mathrm{h}$ | $0.545 \mathrm{~g} / \mathrm{km}$ |  |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: $0.0 \% \quad 0.0 \% \quad 0.0 \%$
Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: Standard Left.

| Network Performance - Annual Values |  |  |
| :--- | ---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | $1,176,758 \mathrm{veh} / \mathrm{y}$ | $1,412,110 \mathrm{pers} / \mathrm{y}$ |
| Delay | $319 \mathrm{veh} / \mathrm{h} / \mathrm{y}$ | $383 \mathrm{pers-h} / \mathrm{y}$ |
| Effective Stops | $69,844 \mathrm{veh} / \mathrm{y}$ | $83,813 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $638,505 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $766,206 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $12,091 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $14,509 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $301,617 \mathrm{l} / \mathrm{y}$ | $301,617 \mathrm{l} / \mathrm{y}$ |
| Fuel Consumption | $55,503 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $133,811 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $9 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $126 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $348 \mathrm{~kg} / \mathrm{y}$ |  |

## SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN \& TAYLOR | Processed: Tuesday, 4 June 2019 10:17:24 AM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int \& Leslie SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service for Network Sites

戠章 Network: N101 [2018_Existing_PM]
New Network
Network Category: (None)


Colour code based on Level of Service

| LOS A | LOS B | LOS C | LOS D | LOS E | LOS F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Tuesday, 4 June 2019 10:17:27 AM
Project: <br>ttgroup.locallcorporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int \& Leslie SH3 Int.sip8

## NETWORK SUMMARY

冓禺 Network: N101 [2018_Existing_PM]
New Network
Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) | LOS B |  |  |
| Travel Time Index | 8.47 |  |  |
| Speed Efficiency | 0.86 |  |  |
| Congestion Coefficient | 1.16 |  |  |
| Travel Speed (Average) | 51.8 km/h |  | 51.8 km/h |
| Travel Distance (Total) | 1350.9 veh-km/h |  | 1621.1 pers-km/h |
| Travel Time (Total) | 26.1 veh-h/h |  | 31.3 pers-h/h |
| Desired Speed | 60.0 km/h |  |  |
| Demand Flows (Total for all Sites) | 2445 veh/h |  | 2934 pers/h |
| Arrival Flows (Total for all Sites) | 2445 veh/h |  | 2934 pers/h |
| Demand Flows (Entry Total) | 1284 veh/h |  |  |
| Midblock Inflows (Total) | $1 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Outflows (Total) | -2 veh/h |  |  |
| Percent Heavy Vehicles (Demand) | 10.3 \% |  |  |
| Percent Heavy Vehicles (Arrival) | 10.3 \% |  |  |
| Degree of Saturation | 0.561 |  |  |
| Control Delay (Total) | 1.18 veh-h/h |  | 1.42 pers-h/h |
| Control Delay (Average) | 1.7 sec |  | 1.7 sec |
| Control Delay (Worst Lane) | 46.8 sec |  |  |
| Control Delay (Worst Movement) | 51.6 sec |  | 51.6 sec |
| Geometric Delay (Average) | 0.3 sec |  |  |
| Stop-Line Delay (Average) | 1.4 sec |  |  |
| Queue Storage Ratio (Worst Lane) | 0.01 |  |  |
| Total Effective Stops | 140 veh/h |  | 168 pers/h |
| Effective Stop Rate | 0.06 | 0.10 per km | 0.06 |
| Proportion Queued | 0.04 |  | 0.04 |
| Performance Index | 32.5 |  | 32.5 |
| Cost (Total) | 685.94 \$/h | 0.51 \$/km | 685.94 \$/h |
| Fuel Consumption (Total) | 118.8 L/h | 88.0 mL/km |  |
| Fuel Economy | 8.8 L/100km |  |  |
| Carbon Dioxide (Total) | $286.3 \mathrm{~kg} / \mathrm{h}$ | 211.9 g/km |  |
| Hydrocarbons (Total) | 0.020 kg/h | $0.015 \mathrm{~g} / \mathrm{km}$ |  |
| Carbon Monoxide (Total) | $0.270 \mathrm{~kg} / \mathrm{h}$ | $0.200 \mathrm{~g} / \mathrm{km}$ |  |
| NOx (Total) | $0.740 \mathrm{~kg} / \mathrm{h}$ | $0.548 \mathrm{~g} / \mathrm{km}$ |  |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: $0.0 \% \quad 0.0 \% \quad 0.0 \%$
Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: Standard Left.

| Network Performance - Annual Values |  |  |
| :--- | :---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | $1,173,726 \mathrm{veh} / \mathrm{y}$ | $1,408,472 \mathrm{pers} / \mathrm{y}$ |
| Delay | $568 \mathrm{veh} / \mathrm{h} / \mathrm{y}$ | $682 \mathrm{pers-h} / \mathrm{y}$ |
| Effective Stops | $67,213 \mathrm{veh} / \mathrm{y}$ | $80,655 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $648,445 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $778,134 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $12,528 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $15,034 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $329,252 \mathrm{\$} / \mathrm{y}$ | $329,252 \mathrm{y} / \mathrm{y}$ |
| Fuel Consumption | $57,032 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $137,430 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $10 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $130 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $355 \mathrm{~kg} / \mathrm{y}$ |  |

## SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN \& TAYLOR | Processed: Tuesday, 4 June 2019 10:17:27 AM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int \& Leslie SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service for Network Sites

事需 Network: N101 [2018_Low Dev_AM]
New Network
Network Category: (None)


Colour code based on Level of Service

| LOS A LOS B LOS C | LOS D |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Tuesday, 4 June 2019 10:17:29 AM
Project: <br>ttgroup.locallcorporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int \& Leslie SH3 Int.sip8

## NETWORK SUMMARY

衰爱 Network: N101 [2018_Low Dev_AM]
New Network
Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) | LOS B |  |  |
| Travel Time Index | 8.65 |  |  |
| Speed Efficiency | 0.88 |  |  |
| Congestion Coefficient | 1.14 |  |  |
| Travel Speed (Average) | $52.7 \mathrm{~km} / \mathrm{h}$ |  | $52.7 \mathrm{~km} / \mathrm{h}$ |
| Travel Distance (Total) | 1370.0 veh-km/h |  | 1644.0 pers-km/h |
| Travel Time (Total) | 26.0 veh-h/h |  | 31.2 pers-h/h |
| Desired Speed | 60.0 km/h |  |  |
| Demand Flows (Total for all Sites) | 2525 veh/h |  | 3030 pers/h |
| Arrival Flows (Total for all Sites) | 2525 veh/h |  | 3030 pers/h |
| Demand Flows (Entry Total) | 1289 veh/h |  |  |
| Midblock Inflows (Total) | $20 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Outflows (Total) | 0 veh/h |  |  |
| Percent Heavy Vehicles (Demand) | 10.2 \% |  |  |
| Percent Heavy Vehicles (Arrival) | 10.2 \% |  |  |
| Degree of Saturation | 0.441 |  |  |
| Control Delay (Total) | 0.74 veh-h/h |  | 0.88 pers-h/h |
| Control Delay (Average) | 1.0 sec |  | 1.0 sec |
| Control Delay (Worst Lane) | 34.4 sec |  |  |
| Control Delay (Worst Movement) | 49.8 sec |  | 49.8 sec |
| Geometric Delay (Average) | 0.4 sec |  |  |
| Stop-Line Delay (Average) | 0.7 sec |  |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |  |
| Total Effective Stops | 158 veh/h |  | 190 pers/h |
| Effective Stop Rate | 0.06 | 0.12 per km | 0.06 |
| Proportion Queued | 0.04 |  | 0.04 |
| Performance Index | 30.1 |  | 30.1 |
| Cost (Total) | 647.16 \$/h | 0.47 \$/km | 647.16 \$/h |
| Fuel Consumption (Total) | $119.2 \mathrm{~L} / \mathrm{h}$ | 87.0 mL/km |  |
| Fuel Economy | $8.7 \mathrm{~L} / 100 \mathrm{~km}$ |  |  |
| Carbon Dioxide (Total) | $287.3 \mathrm{~kg} / \mathrm{h}$ | $209.7 \mathrm{~g} / \mathrm{km}$ |  |
| Hydrocarbons (Total) | $0.020 \mathrm{~kg} / \mathrm{h}$ | $0.015 \mathrm{~g} / \mathrm{km}$ |  |
| Carbon Monoxide (Total) | $0.270 \mathrm{~kg} / \mathrm{h}$ | $0.197 \mathrm{~g} / \mathrm{km}$ |  |
| NOx (Total) | $0.745 \mathrm{~kg} / \mathrm{h}$ | $0.543 \mathrm{~g} / \mathrm{km}$ |  |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: $0.0 \% \quad 0.0 \% \quad 0.0 \%$
Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: Standard Left.

| Network Performance - Annual Values |  |  |
| :--- | :---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | $1,212,126 \mathrm{veh} / \mathrm{y}$ | $1,454,552 \mathrm{pers} / \mathrm{y}$ |
| Delay | $353 \mathrm{veh} / \mathrm{h} / \mathrm{y}$ | 424 pers-h$/ \mathrm{y}$ |
| Effective Stops | $75,808 \mathrm{veh} / \mathrm{y}$ | $90,969 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $657,587 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $789,105 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $12,473 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $14,968 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  | $310,636 \mathrm{l} / \mathrm{y}$ | $310,636 \mathrm{l} / \mathrm{y}$ |
| Cost | $57,197 \mathrm{~L} / \mathrm{y}$ |  |
| Fuel Consumption | $137,897 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Dioxide | $10 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $130 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $357 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx |  |  |

## SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN \& TAYLOR | Processed: Tuesday, 4 June 2019 10:17:29 AM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int \& Leslie SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service for Network Sites

量電 Network: N101 [2018_Low Dev_PM]
New Network
Network Category: (None)


Colour code based on Level of Service

| LOS A LOS B LOS C | LOS D |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Tuesday, 4 June 2019 10:17:31 AM
Project: <br>ttgroup.locallcorporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int \& Leslie SH3 Int.sip8

## NETWORK SUMMARY

畀 Network: N101 [2018_Low Dev_PM]
New Network
Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) | LOS B |  |  |
| Travel Time Index | 8.36 |  |  |
| Speed Efficiency | 0.85 |  |  |
| Congestion Coefficient | 1.17 |  |  |
| Travel Speed (Average) | $51.2 \mathrm{~km} / \mathrm{h}$ |  | $51.2 \mathrm{~km} / \mathrm{h}$ |
| Travel Distance (Total) | 1393.7 veh-km/h |  | 1672.4 pers-km/h |
| Travel Time (Total) | 27.2 veh-h/h |  | 32.7 pers-h/h |
| Desired Speed | 60.0 km/h |  |  |
| Demand Flows (Total for all Sites) | 2520 veh/h |  | 3024 pers/h |
| Arrival Flows (Total for all Sites) | 2520 veh/h |  | 3024 pers/h |
| Demand Flows (Entry Total) | 1322 veh/h |  |  |
| Midblock Inflows (Total) | 7 veh/h |  |  |
| Midblock Outflows (Total) | -2 veh/h |  |  |
| Percent Heavy Vehicles (Demand) | 10.3 \% |  |  |
| Percent Heavy Vehicles (Arrival) | 10.3 \% |  |  |
| Degree of Saturation | 0.661 |  |  |
| Control Delay (Total) | 1.53 veh-h/h |  | 1.84 pers-h/h |
| Control Delay (Average) | 2.2 sec |  | 2.2 sec |
| Control Delay (Worst Lane) | 56.4 sec |  |  |
| Control Delay (Worst Movement) | 62.7 sec |  | 62.7 sec |
| Geometric Delay (Average) | 0.4 sec |  |  |
| Stop-Line Delay (Average) | 1.8 sec |  |  |
| Queue Storage Ratio (Worst Lane) | 0.02 |  |  |
| Total Effective Stops | 158 veh/h |  | 189 pers/h |
| Effective Stop Rate | 0.06 | 0.11 per km | 0.06 |
| Proportion Queued | 0.04 |  | 0.04 |
| Performance Index | 35.2 |  | 35.2 |
| Cost (Total) | 717.83 \$/h | 0.52 \$/km | 717.83 \$/h |
| Fuel Consumption (Total) | $122.9 \mathrm{~L} / \mathrm{h}$ | $88.2 \mathrm{~mL} / \mathrm{km}$ |  |
| Fuel Economy | 8.8 L/100km |  |  |
| Carbon Dioxide (Total) | $296.2 \mathrm{~kg} / \mathrm{h}$ | $212.5 \mathrm{~g} / \mathrm{km}$ |  |
| Hydrocarbons (Total) | $0.021 \mathrm{~kg} / \mathrm{h}$ | $0.015 \mathrm{~g} / \mathrm{km}$ |  |
| Carbon Monoxide (Total) | $0.279 \mathrm{~kg} / \mathrm{h}$ | $0.200 \mathrm{~g} / \mathrm{km}$ |  |
| NOx (Total) | 0.761 kg/h | $0.546 \mathrm{~g} / \mathrm{km}$ |  |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: $0.0 \% \quad 0.0 \% \quad 0.0 \%$
Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: Standard Left.

| Network Performance - Annual Values |  |  |
| :--- | :---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | $1,209,600 \mathrm{veh} / \mathrm{y}$ | $1,451,520 \mathrm{pers} / \mathrm{y}$ |
| Delay | $734 \mathrm{veh} / \mathrm{h} / \mathrm{y}$ | 881 pers-h $/ \mathrm{y}$ |
| Effective Stops | $75,636 \mathrm{veh} / \mathrm{y}$ | $90,763 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $668,970 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $802,764 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $13,078 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $15,693 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $344,559 \mathrm{\$} / \mathrm{y}$ | $344,559 \mathrm{p} / \mathrm{y}$ |
| Fuel Consumption | $59,006 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $142,170 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $10 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $134 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $365 \mathrm{~kg} / \mathrm{y}$ |  |

## SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN \& TAYLOR | Processed: Tuesday, 4 June 2019 10:17:31 AM
Project: <br>ttgroup.locallcorporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int \& Leslie SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service for Network Sites

䭪 Network: N101 [2018_Hi Dev_AM]
New Network
Network Category: (None)


Colour code based on Level of Service

| LOS A LOS B LOS C | LOS D |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Tuesday, 4 June 2019 10:17:33 AM
Project: <br>ttgroup.locallcorporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int \& Leslie SH3 Int.sip8

## NETWORK SUMMARY

轉衷 Network: N101 [2018 Hi Dev_AM]
New Network
Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) | LOS B |  |  |
| Travel Time Index | 8.61 |  |  |
| Speed Efficiency | 0.88 |  |  |
| Congestion Coefficient | 1.14 |  |  |
| Travel Speed (Average) | 52.5 km/h |  | $52.5 \mathrm{~km} / \mathrm{h}$ |
| Travel Distance (Total) | 1390.1 veh-km/h |  | 1668.1 pers-km/h |
| Travel Time (Total) | 26.5 veh-h/h |  | 31.8 pers-h/h |
| Desired Speed | 60.0 km/h |  |  |
| Demand Flows (Total for all Sites) | 2562 veh/h |  | 3075 pers/h |
| Arrival Flows (Total for all Sites) | 2562 veh/h |  | 3075 pers/h |
| Demand Flows (Entry Total) | 1307 veh/h |  |  |
| Midblock Inflows (Total) | $24 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Outflows (Total) | -2 veh/h |  |  |
| Percent Heavy Vehicles (Demand) | 10.1 \% |  |  |
| Percent Heavy Vehicles (Arrival) | 10.1 \% |  |  |
| Degree of Saturation | 0.447 |  |  |
| Control Delay (Total) | 0.81 veh-h/h |  | 0.98 pers-h/h |
| Control Delay (Average) | 1.1 sec |  | 1.1 sec |
| Control Delay (Worst Lane) | 38.9 sec |  |  |
| Control Delay (Worst Movement) | 55.2 sec |  | 55.2 sec |
| Geometric Delay (Average) | 0.4 sec |  |  |
| Stop-Line Delay (Average) | 0.8 sec |  |  |
| Queue Storage Ratio (Worst Lane) | 0.01 |  |  |
| Total Effective Stops | $167 \mathrm{veh} / \mathrm{h}$ |  | 200 pers/h |
| Effective Stop Rate | 0.07 | 0.12 per km | 0.07 |
| Proportion Queued | 0.05 |  | 0.05 |
| Performance Index | 31.0 |  | 31.0 |
| Cost (Total) | 659.12 \$/h | 0.47 \$/km | 659.12 \$/h |
| Fuel Consumption (Total) | 121.0 L/h | 87.0 mL/km |  |
| Fuel Economy | $8.7 \mathrm{~L} / 100 \mathrm{~km}$ |  |  |
| Carbon Dioxide (Total) | $291.6 \mathrm{~kg} / \mathrm{h}$ | 209.8 g/km |  |
| Hydrocarbons (Total) | $0.020 \mathrm{~kg} / \mathrm{h}$ | $0.015 \mathrm{~g} / \mathrm{km}$ |  |
| Carbon Monoxide (Total) | $0.274 \mathrm{~kg} / \mathrm{h}$ | $0.197 \mathrm{~g} / \mathrm{km}$ |  |
| NOx (Total) | $0.754 \mathrm{~kg} / \mathrm{h}$ | $0.542 \mathrm{~g} / \mathrm{km}$ |  |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: $0.0 \% \quad 0.0 \% \quad 0.0 \%$
Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: Standard Left.

| Network Performance - Annual Values |  |  |
| :--- | :---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | $1,229,811 \mathrm{veh} / \mathrm{y}$ | $1,475,773 \mathrm{pers} / \mathrm{y}$ |
| Delay | $391 \mathrm{veh} / \mathrm{h} / \mathrm{y}$ | 469 pers-h $/ \mathrm{y}$ |
| Effective Stops | $80,086 \mathrm{veh} / \mathrm{y}$ | $96,104 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $667,257 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $800,708 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $12,708 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $15,250 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $316,376 / \mathrm{y}$ | $316,376 \mathrm{y} / \mathrm{y}$ |
| Fuel Consumption | $58,060 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $139,976 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $10 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $131 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $362 \mathrm{~kg} / \mathrm{y}$ |  |

## SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN \& TAYLOR | Processed: Tuesday, 4 June 2019 10:17:33 AM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int \& Leslie SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service for Network Sites

New Network
Network Category: (None)


Colour code based on Level of Service

| LOS A | LOS B | LOS C | LOS D | LOS E | LOS F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Tuesday, 4 June 2019 10:17:36 AM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRAIT6_Herbert SH3 Int \& Leslie SH3 Int.sip8

## NETWORK SUMMARY

車軎 Network: N101 [2018_Hi Dev_PM]
New Network
Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) | LOS B |  |  |
| Travel Time Index | 8.30 |  |  |
| Speed Efficiency | 0.85 |  |  |
| Congestion Coefficient | 1.18 |  |  |
| Travel Speed (Average) | 50.8 km/h |  | $50.8 \mathrm{~km} / \mathrm{h}$ |
| Travel Distance (Total) | 1422.1 veh-km/h |  | 1706.5 pers-km/h |
| Travel Time (Total) | 28.0 veh-h/h |  | 33.6 pers-h/h |
| Desired Speed | 60.0 km/h |  |  |
| Demand Flows (Total for all Sites) | 2573 veh/h |  | 3087 pers/h |
| Arrival Flows (Total for all Sites) | 2573 veh/h |  | 3087 pers/h |
| Demand Flows (Entry Total) | 1348 veh/h |  |  |
| Midblock Inflows (Total) | $9 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Outflows (Total) | -3 veh/h |  |  |
| Percent Heavy Vehicles (Demand) | 10.3 \% |  |  |
| Percent Heavy Vehicles (Arrival) | 10.3 \% |  |  |
| Degree of Saturation | 0.711 |  |  |
| Control Delay (Total) | 1.75 veh-h/h |  | 2.10 pers-h/h |
| Control Delay (Average) | 2.5 sec |  | 2.5 sec |
| Control Delay (Worst Lane) | 65.4 sec |  |  |
| Control Delay (Worst Movement) | 72.3 sec |  | 72.3 sec |
| Geometric Delay (Average) | 0.4 sec |  |  |
| Stop-Line Delay (Average) | 2.1 sec |  |  |
| Queue Storage Ratio (Worst Lane) | 0.02 |  |  |
| Total Effective Stops | 163 veh/h |  | 196 pers/h |
| Effective Stop Rate | 0.06 | 0.11 per km | 0.06 |
| Proportion Queued | 0.04 |  | 0.04 |
| Performance Index | 36.7 |  | 36.7 |
| Cost (Total) | 738.53 \$/h | 0.52 \$/km | 738.53 \$/h |
| Fuel Consumption (Total) | $125.6 \mathrm{~L} / \mathrm{h}$ | 88.4 mL/km |  |
| Fuel Economy | 8.8 L/100km |  |  |
| Carbon Dioxide (Total) | $302.7 \mathrm{~kg} / \mathrm{h}$ | $212.9 \mathrm{~g} / \mathrm{km}$ |  |
| Hydrocarbons (Total) | $0.021 \mathrm{~kg} / \mathrm{h}$ | $0.015 \mathrm{~g} / \mathrm{km}$ |  |
| Carbon Monoxide (Total) | $0.285 \mathrm{~kg} / \mathrm{h}$ | $0.200 \mathrm{~g} / \mathrm{km}$ |  |
| NOx (Total) | $0.777 \mathrm{~kg} / \mathrm{h}$ | $0.546 \mathrm{~g} / \mathrm{km}$ |  |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: $0.0 \% \quad 0.0 \% \quad 0.0 \%$
Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: Standard Left.

| Network Performance - Annual Values |  |  |
| :--- | :---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | $1,234,863 \mathrm{veh} / \mathrm{y}$ | $1,481,836 \mathrm{pers} / \mathrm{y}$ |
| Delay | $840 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $1,008 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $78,208 \mathrm{veh} / \mathrm{y}$ | $93,850 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $682,611 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $819,134 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $13,437 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $16,124 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $354,496 \$ / \mathrm{y}$ | $354,496 \$ / \mathrm{y}$ |
| Fuel Consumption | $60,310 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $145,311 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $10 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | 137 kg |  |
| NOx | $373 \mathrm{~kg} / \mathrm{y}$ |  |

## SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN \& TAYLOR | Processed: Tuesday, 4 June 2019 10:17:36 AM
Project: <br>ttgroup.locallcorporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int \& Leslie SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service for Network Sites

新毫 Network: N101 [2035_No Dev_AM]
New Network
Network Category: (None)


Colour code based on Level of Service
LOS A LOS B LOS C LOS D LOS E LOS F

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Tuesday, 4 June 2019 10:17:38 AM
Project: <br>ttgroup.locallcorporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int \& Leslie SH3 Int.sip8

## NETWORK SUMMARY

雷衷 Network: N101 [2035_No Dev_AM]
New Network
Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) | LOS C |  |  |
| Travel Time Index | 7.70 |  |  |
| Speed Efficiency | 0.79 |  |  |
| Congestion Coefficient | 1.26 |  |  |
| Travel Speed (Average) | 47.6 km/h |  | 47.6 km/h |
| Travel Distance (Total) | 1792.2 veh-km/h |  | 2150.7 pers-km/h |
| Travel Time (Total) | 37.7 veh-h/h |  | 45.2 pers-h/h |
| Desired Speed | 60.0 km/h |  |  |
| Demand Flows (Total for all Sites) | 3304 veh/h |  | 3965 pers/h |
| Arrival Flows (Total for all Sites) | 3304 veh/h |  | 3965 pers/h |
| Demand Flows (Entry Total) | 1684 veh/h |  |  |
| Midblock Inflows (Total) | $31 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Outflows (Total) | -1 veh/h |  |  |
| Percent Heavy Vehicles (Demand) | 10.2 \% |  |  |
| Percent Heavy Vehicles (Arrival) | 10.2 \% |  |  |
| Degree of Saturation | 1.052 |  |  |
| Control Delay (Total) | 4.57 veh-h/h |  | 5.48 pers-h/h |
| Control Delay (Average) | 5.0 sec |  | 5.0 sec |
| Control Delay (Worst Lane) | 301.0 sec |  |  |
| Control Delay (Worst Movement) | 318.4 sec |  | 318.4 sec |
| Geometric Delay (Average) | 0.3 sec |  |  |
| Stop-Line Delay (Average) | 4.6 sec |  |  |
| Queue Storage Ratio (Worst Lane) | 0.04 |  |  |
| Total Effective Stops | 231 veh/h |  | 277 pers/h |
| Effective Stop Rate | 0.07 | 0.13 per km | 0.07 |
| Proportion Queued | 0.05 |  | 0.05 |
| Performance Index | 56.7 |  | 56.7 |
| Cost (Total) | 970.62 \$/h | 0.54 \$/km | 970.62 \$/h |
| Fuel Consumption (Total) | 160.4 L/h | 89.5 mL/km |  |
| Fuel Economy | $9.0 \mathrm{~L} / 100 \mathrm{~km}$ |  |  |
| Carbon Dioxide (Total) | $386.6 \mathrm{~kg} / \mathrm{h}$ | $215.7 \mathrm{~g} / \mathrm{km}$ |  |
| Hydrocarbons (Total) | $0.028 \mathrm{~kg} / \mathrm{h}$ | $0.015 \mathrm{~g} / \mathrm{km}$ |  |
| Carbon Monoxide (Total) | $0.360 \mathrm{~kg} / \mathrm{h}$ | $0.201 \mathrm{~g} / \mathrm{km}$ |  |
| NOx (Total) | $0.982 \mathrm{~kg} / \mathrm{h}$ | $0.548 \mathrm{~g} / \mathrm{km}$ |  |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: $0.0 \% \quad 0.0 \% \quad 0.0 \%$
Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: Standard Left.

| Network Performance - Annual Values |  |  |
| :--- | :---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | $1,586,021 \mathrm{veh} / \mathrm{y}$ | $1,903,225 \mathrm{pers} / \mathrm{y}$ |
| Delay | $2,194 \mathrm{veh} / \mathrm{h} / \mathrm{y}$ | $2,633 \mathrm{pers-h} / \mathrm{y}$ |
| Effective Stops | $110,813 \mathrm{veh} / \mathrm{y}$ | $132,975 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $860,279 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $1,032,335 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $18,078 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $21,693 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $465,897 \mathrm{l} / \mathrm{y}$ | $465,897 \mathrm{l} / \mathrm{y}$ |
| Fuel Consumption | $77,014 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $185,571 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $13 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $173 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $471 \mathrm{~kg} / \mathrm{y}$ |  |

## SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN \& TAYLOR | Processed: Tuesday, 4 June 2019 10:17:38 AM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int \& Leslie SH3 Int.sip8

## LANE LEVEL OF SERVICE

Lane Level of Service for Network Sites
蠰 Network: N101 [2035_No Dev_PM]
New Network
Network Category: (None)


Colour code based on Level of Service

| LOS A | LOS B | LOS C | LOS D | LOS E | LOS F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Tuesday, 4 June 2019 10:17:40 AM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int \& Leslie SH3 Int.sip8

## NETWORK SUMMARY

率戠 Network: N101 [2035_No Dev_PM]
New Network
Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) <br> Travel Time Index <br> Speed Efficiency <br> Congestion Coefficient | $\begin{array}{r} \text { LOS E } \\ 2.72 \\ 0.35 \\ 2.90 \end{array}$ |  |  |
| Travel Speed (Average) <br> Travel Distance (Total) <br> Travel Time (Total) <br> Desired Speed | 20.7 km/h 1818.7 veh-km/h 87.8 veh-h/h 60.0 km/h |  | 20.7 km/h 2182.5 pers-km/h 105.4 pers-h/h |
| Demand Flows (Total for all Sites) <br> Arrival Flows (Total for all Sites) <br> Demand Flows (Entry Total) <br> Midblock Inflows (Total) <br> Midblock Outflows (Total) <br> Percent Heavy Vehicles (Demand) <br> Percent Heavy Vehicles (Arrival) <br> Degree of Saturation | 3297 veh/h 3287 veh/h $1722 \mathrm{veh} / \mathrm{h}$ 20 veh/h 0 veh/h <br> 10.3 \% <br> 10.3 \% <br> 2.862 |  | 3956 pers/h 3944 pers/h |
| Control Delay (Total) <br> Control Delay (Average) <br> Control Delay (Worst Lane) <br> Control Delay (Worst Movement) <br> Geometric Delay (Average) <br> Stop-Line Delay (Average) | 52.40 veh-h/h <br> 57.4 sec <br> 1760.3 sec <br> 1765.9 sec <br> 0.3 sec <br> 57.1 sec |  | 62.88 pers-h/h 57.4 sec <br> 1765.9 sec |
| Queue Storage Ratio (Worst Lane) <br> Total Effective Stops <br> Effective Stop Rate <br> Proportion Queued <br> Performance Index | $\begin{aligned} & 0.29 \\ & 369 \mathrm{veh} / \mathrm{h} \\ & 0.11 \\ & 0.04 \\ & 212.8 \end{aligned}$ | 0.20 per km | $\begin{aligned} & 443 \text { pers/h } \\ & 0.11 \\ & 0.04 \\ & 212.8 \end{aligned}$ |
| Cost (Total) <br> Fuel Consumption (Total) <br> Fuel Economy <br> Carbon Dioxide (Total) <br> Hydrocarbons (Total) <br> Carbon Monoxide (Total) <br> NOx (Total) | $2718.08 ~ \$ / h$ $224.3 \mathrm{~L} / \mathrm{h}$ $12.3 \mathrm{~L} / 100 \mathrm{~km}$ $536.8 \mathrm{~kg} / \mathrm{h}$ $0.046 \mathrm{~kg} / \mathrm{h}$ $0.461 \mathrm{~kg} / \mathrm{h}$ $1.039 \mathrm{~kg} / \mathrm{h}$ | $\begin{gathered} 1.49 \mathrm{\$} / \mathrm{km} \\ 123.3 \mathrm{~mL} / \mathrm{km} \\ 295.1 \mathrm{~g} / \mathrm{km} \\ 0.026 \mathrm{~g} / \mathrm{km} \\ 0.253 \mathrm{~g} / \mathrm{km} \\ 0.572 \mathrm{~g} / \mathrm{km} \end{gathered}$ | 2718.08 \$/h |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0\% 0.0\% 0.0\%
Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: Standard Left.

| Network Performance - Annual Values |  |  |
| :--- | :---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | $1,582,484 \mathrm{veh} / \mathrm{y}$ | $1,898,981 \mathrm{pers} / \mathrm{y}$ |
| Delay | $25,152 \mathrm{veh} / \mathrm{h} / \mathrm{y}$ | $30,182 \mathrm{pers-h} / \mathrm{y}$ |
| Effective Stops | $177,350 \mathrm{veh} / \mathrm{y}$ | 21,820 pers $/ \mathrm{y}$ |
| Travel Distance | $872,996 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $1,047,596 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $42,163 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $50,595 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $1,304,680 \mathrm{\$} / \mathrm{y}$ | $1,304,680 \mathrm{l} / \mathrm{y}$ |
| Fuel Consumption | $107,643 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $257,663 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $22 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $221 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $499 \mathrm{~kg} / \mathrm{y}$ |  |

## SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN \& TAYLOR | Processed: Tuesday, 4 June 2019 10:17:40 AM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRAIT6_Herbert SH3 Int \& Leslie SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service for Network Sites

Network: N101 [2035_Low Dev_AM]
New Network
Network Category: (None)


Colour code based on Level of Service

| LOS A | LOS B | LOS C | LOS D | LOS E | LOS F |
| :--- | :--- | :--- | :--- | :--- | :--- |

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Tuesday, 4 June 2019 10:17:42 AM
Project: <br>ttgroup.locallcorporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int \& Leslie SH3 Int.sip8

## NETWORK SUMMARY

雴衰 Network: N101 [2035_Low Dev_AM]
New Network
Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) | LOS C |  |  |
| Travel Time Index | 7.39 |  |  |
| Speed Efficiency | 0.76 |  |  |
| Congestion Coefficient | 1.31 |  |  |
| Travel Speed (Average) | $45.9 \mathrm{~km} / \mathrm{h}$ |  | $45.9 \mathrm{~km} / \mathrm{h}$ |
| Travel Distance (Total) | 1806.5 veh-km/h |  | 2167.8 pers-km/h |
| Travel Time (Total) | 39.4 veh-h/h |  | 47.2 pers-h/h |
| Desired Speed | 60.0 km/h |  |  |
| Demand Flows (Total for all Sites) | 3331 veh/h |  | 3997 pers/h |
| Arrival Flows (Total for all Sites) | 3329 veh/h |  | 3995 pers/h |
| Demand Flows (Entry Total) | $1708 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Inflows (Total) | $12 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Outflows (Total) | -3 veh/h |  |  |
| Percent Heavy Vehicles (Demand) | 10.2 \% |  |  |
| Percent Heavy Vehicles (Arrival) | 10.2 \% |  |  |
| Degree of Saturation | 1.179 |  |  |
| Control Delay (Total) | 5.84 veh-h/h |  | 7.00 pers-h/h |
| Control Delay (Average) | 6.3 sec |  | 6.3 sec |
| Control Delay (Worst Lane) | 392.5 sec |  |  |
| Control Delay (Worst Movement) | 409.7 sec |  | 409.7 sec |
| Geometric Delay (Average) | 0.4 sec |  |  |
| Stop-Line Delay (Average) | 5.9 sec |  |  |
| Queue Storage Ratio (Worst Lane) | 0.05 |  |  |
| Total Effective Stops | 251 veh/h |  | 301 pers/h |
| Effective Stop Rate | 0.08 | 0.14 per km | 0.08 |
| Proportion Queued | 0.05 |  | 0.05 |
| Performance Index | 64.7 |  | 64.7 |
| Cost (Total) | 1028.07 \$/h | 0.57 \$/km | 1028.07 \$/h |
| Fuel Consumption (Total) | $163.3 \mathrm{~L} / \mathrm{h}$ | 90.4 mL/km |  |
| Fuel Economy | $9.0 \mathrm{~L} / 100 \mathrm{~km}$ |  |  |
| Carbon Dioxide (Total) | $393.4 \mathrm{~kg} / \mathrm{h}$ | 217.7 g/km |  |
| Hydrocarbons (Total) | $0.028 \mathrm{~kg} / \mathrm{h}$ | $0.016 \mathrm{~g} / \mathrm{km}$ |  |
| Carbon Monoxide (Total) | $0.365 \mathrm{~kg} / \mathrm{h}$ | $0.202 \mathrm{~g} / \mathrm{km}$ |  |
| NOx (Total) | $0.988 \mathrm{~kg} / \mathrm{h}$ | $0.547 \mathrm{~g} / \mathrm{km}$ |  |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: $0.0 \% \quad 0.0 \% \quad 0.0 \%$
Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: Standard Left.

| Network Performance - Annual Values |  |  |
| :--- | :---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | $1,598,653 \mathrm{veh} / \mathrm{y}$ | $1,918,383 \mathrm{pers} / \mathrm{y}$ |
| Delay | $2,802 \mathrm{veh} / \mathrm{h} / \mathrm{y}$ | $3,362 \mathrm{pers-h} / \mathrm{y}$ |
| Effective Stops | $120,599 \mathrm{veh} / \mathrm{y}$ | $144,718 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $867,138 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $1,040,566 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $18,894 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | 22,672 pers-h/y |
|  |  |  |
| Cost | $493,474 \mathrm{\$} / \mathrm{y}$ | $493,474 \mathrm{l} / \mathrm{y}$ |
| Fuel Consumption | $78,386 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $188,808 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $14 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $175 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $474 \mathrm{~kg} / \mathrm{y}$ |  |

## SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN \& TAYLOR | Processed: Tuesday, 4 June 2019 10:17:42 AM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int \& Leslie SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service for Network Sites

亶暲 Network: N101 [2035_Low Dev_PM]
New Network
Network Category: (None)


Colour code based on Level of Service

| LOS A LOS B LOS C | LOS D |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Tuesday, 4 June 2019 10:17:45 AM
Project: <br>ttgroup.locallcorporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int \& Leslie SH3 Int.sip8

## NETWORK SUMMARY

東 Network: N101 [2035_Low Dev_PM]
New Network
Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) | LOS F |  |  |
| Travel Time Index | 2.16 |  |  |
| Speed Efficiency | 0.29 |  |  |
| Congestion Coefficient | 3.40 |  |  |
| Travel Speed (Average) | 17.6 km/h |  | 17.6 km/h |
| Travel Distance (Total) | 1857.0 veh-km/h |  | 2228.5 pers-km/h |
| Travel Time (Total) | 105.3 veh-h/h |  | 126.3 pers-h/h |
| Desired Speed | 60.0 km/h |  |  |
| Demand Flows (Total for all Sites) | 3368 veh/h |  | 4042 pers/h |
| Arrival Flows (Total for all Sites) | 3357 veh/h |  | 4029 pers/h |
| Demand Flows (Entry Total) | 1765 veh/h |  |  |
| Midblock Inflows (Total) | $11 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Outflows (Total) | -3 veh/h |  |  |
| Percent Heavy Vehicles (Demand) | 10.3 \% |  |  |
| Percent Heavy Vehicles (Arrival) | 10.3 \% |  |  |
| Degree of Saturation | 3.464 |  |  |
| Control Delay (Total) | 68.54 veh-h/h |  | 82.24 pers-h/h |
| Control Delay (Average) | 73.5 sec |  | 73.5 sec |
| Control Delay (Worst Lane) | 2305.2 sec |  |  |
| Control Delay (Worst Movement) | 2310.6 sec |  | 2310.6 sec |
| Geometric Delay (Average) | 0.3 sec |  |  |
| Stop-Line Delay (Average) | 73.2 sec |  |  |
| Queue Storage Ratio (Worst Lane) | 0.32 |  |  |
| Total Effective Stops | 357 veh/h |  | 429 pers/h |
| Effective Stop Rate | 0.11 | 0.19 per km | 0.11 |
| Proportion Queued | 0.04 |  | 0.04 |
| Performance Index | 242.8 |  | 242.8 |
| Cost (Total) | 3306.27 \$/h | 1.78 \$/km | 3306.27 \$/h |
| Fuel Consumption (Total) | 247.7 L/h | 133.4 mL/km |  |
| Fuel Economy | $13.3 \mathrm{~L} / 100 \mathrm{~km}$ |  |  |
| Carbon Dioxide (Total) | $592.2 \mathrm{~kg} / \mathrm{h}$ | 318.9 g/km |  |
| Hydrocarbons (Total) | $0.053 \mathrm{~kg} / \mathrm{h}$ | $0.029 \mathrm{~g} / \mathrm{km}$ |  |
| Carbon Monoxide (Total) | $0.499 \mathrm{~kg} / \mathrm{h}$ | $0.269 \mathrm{~g} / \mathrm{km}$ |  |
| NOx (Total) | $1.073 \mathrm{~kg} / \mathrm{h}$ | $0.578 \mathrm{~g} / \mathrm{km}$ |  |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0\% 0.0\% 0.0\%
Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: Standard Left.

| Network Performance - Annual Values |  |  |
| :--- | :---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | $1,616,842 \mathrm{veh} / \mathrm{y}$ | $1,940,211 \mathrm{pers} / \mathrm{y}$ |
| Delay | $32,898 \mathrm{veh} / \mathrm{h} / \mathrm{y}$ | 39,478 pers-h$/ \mathrm{y}$ |
| Effective Stops | $171,544 \mathrm{veh} / \mathrm{y}$ | $205,852 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $891,380 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $1,069,656 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $50,526 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $60,631 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $1,587,009 \mathrm{l} / \mathrm{y}$ | $1,587,009 \mathrm{l} / \mathrm{y}$ |
| Fuel Consumption | $118,901 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $284,235 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $25 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $239 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $515 \mathrm{~kg} / \mathrm{y}$ |  |

## SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN \& TAYLOR | Processed: Tuesday, 4 June 2019 10:17:45 AM
Project: \Ittgroup.locallcorporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int \& Leslie SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service for Network Sites

蛼 Network: N101 [2035_Hi Dev_AM]
New Network
Network Category: (None)


Colour code based on Level of Service
LOS A LOS B LOS C LOS D LOS E LOS F

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Tuesday, 4 June 2019 10:17:47 AM
Project: <br>ttgroup.locallcorporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int \& Leslie SH3 Int.sip8

## NETWORK SUMMARY

倬衷 Network: N101 [2035_Hi Dev_AM]
New Network
Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) | LOS C |  |  |
| Travel Time Index | 7.02 |  |  |
| Speed Efficiency | 0.73 |  |  |
| Congestion Coefficient | 1.37 |  |  |
| Travel Speed (Average) | $43.9 \mathrm{~km} / \mathrm{h}$ |  | $43.9 \mathrm{~km} / \mathrm{h}$ |
| Travel Distance (Total) | 1837.5 veh-km/h |  | 2205.0 pers-km/h |
| Travel Time (Total) | 41.9 veh-h/h |  | 50.2 pers-h/h |
| Desired Speed | 60.0 km/h |  |  |
| Demand Flows (Total for all Sites) | 3388 veh/h |  | 4066 pers/h |
| Arrival Flows (Total for all Sites) | 3387 veh/h |  | 4064 pers/h |
| Demand Flows (Entry Total) | $1733 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Inflows (Total) | $23 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Outflows (Total) | -3 veh/h |  |  |
| Percent Heavy Vehicles (Demand) | 10.2 \% |  |  |
| Percent Heavy Vehicles (Arrival) | 10.2 \% |  |  |
| Degree of Saturation | 1.342 |  |  |
| Control Delay (Total) | 7.60 veh-h/h |  | 9.12 pers-h/h |
| Control Delay (Average) | 8.1 sec |  | 8.1 sec |
| Control Delay (Worst Lane) | 523.3 sec |  |  |
| Control Delay (Worst Movement) | 540.2 sec |  | 540.2 sec |
| Geometric Delay (Average) | 0.4 sec |  |  |
| Stop-Line Delay (Average) | 7.7 sec |  |  |
| Queue Storage Ratio (Worst Lane) | 0.07 |  |  |
| Total Effective Stops | 270 veh/h |  | 325 pers/h |
| Effective Stop Rate | 0.08 | 0.15 per km | 0.08 |
| Proportion Queued | 0.05 |  | 0.05 |
| Performance Index | 74.4 |  | 74.4 |
| Cost (Total) | 1106.60 \$/h | 0.60 \$/km | 1106.60 \$/h |
| Fuel Consumption (Total) | 168.3 L/h | $91.6 \mathrm{~mL} / \mathrm{km}$ |  |
| Fuel Economy | $9.2 \mathrm{~L} / 100 \mathrm{~km}$ |  |  |
| Carbon Dioxide (Total) | $405.4 \mathrm{~kg} / \mathrm{h}$ | 220.6 g/km |  |
| Hydrocarbons (Total) | $0.029 \mathrm{~kg} / \mathrm{h}$ | $0.016 \mathrm{~g} / \mathrm{km}$ |  |
| Carbon Monoxide (Total) | $0.375 \mathrm{~kg} / \mathrm{h}$ | $0.204 \mathrm{~g} / \mathrm{km}$ |  |
| NOx (Total) | $1.005 \mathrm{~kg} / \mathrm{h}$ | $0.547 \mathrm{~g} / \mathrm{km}$ |  |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: $0.0 \% \quad 0.0 \% \quad 0.0 \%$
Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: Standard Left.

| Network Performance - Annual Values |  |  |
| :--- | :---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | $1,626,442 \mathrm{veh} / \mathrm{y}$ | $1,951,731 \mathrm{pers} / \mathrm{y}$ |
| Delay | $3,648 \mathrm{veh} / \mathrm{h} / \mathrm{y}$ | 4,378 pers-h$/ \mathrm{y}$ |
| Effective Stops | $129,835 \mathrm{veh} / \mathrm{y}$ | $155,803 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $882,016 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $1,058,419 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $20,097 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $24,116 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $531,166 \mathrm{\$} / \mathrm{y}$ | $531,166 \mathrm{p} / \mathrm{y}$ |
| Fuel Consumption | $80,800 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $194,571 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $14 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $180 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $482 \mathrm{~kg} / \mathrm{y}$ |  |

## SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN \& TAYLOR | Processed: Tuesday, 4 June 2019 10:17:47 AM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRAIT6 Herbert SH3 Int \& Leslie SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service for Network Sites

䗆 Network: N101 [2035_Hi Dev_PM]
New Network
Network Category: (None)


Colour code based on Level of Service
LOS A LOS B LOS C LOS D LOS E LOS F

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Tuesday, 4 June 2019 10:17:49 AM
Project: <br>ttgroup.locallcorporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int \& Leslie SH3 Int.sip8

## NETWORK SUMMARY

点裹 Network: N101 [2035_Hi Dev_PM]

## New Network

Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) | LOS F |  |  |
| Travel Time Index | 2.03 |  |  |
| Speed Efficiency | 0.28 |  |  |
| Congestion Coefficient | 3.54 |  |  |
| Travel Speed (Average) | $16.9 \mathrm{~km} / \mathrm{h}$ |  | $16.9 \mathrm{~km} / \mathrm{h}$ |
| Travel Distance (Total) | 1875.2 veh-km/h |  | 2250.3 pers-km/h |
| Travel Time (Total) | 110.7 veh-h/h |  | 132.9 pers-h/h |
| Desired Speed | 60.0 km/h |  |  |
| Demand Flows (Total for all Sites) | 3402 veh/h |  | 4083 pers/h |
| Arrival Flows (Total for all Sites) | 3391 veh/h |  | 4069 pers/h |
| Demand Flows (Entry Total) | $1783 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Inflows (Total) | $9 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Outflows (Total) | -2 veh/h |  |  |
| Percent Heavy Vehicles (Demand) | 10.3 \% |  |  |
| Percent Heavy Vehicles (Arrival) | 10.3 \% |  |  |
| Degree of Saturation | 3.649 |  |  |
| Control Delay (Total) | 73.49 veh-h/h |  | 88.19 pers-h/h |
| Control Delay (Average) | 78.0 sec |  | 78.0 sec |
| Control Delay (Worst Lane) | 2471.9 sec |  |  |
| Control Delay (Worst Movement) | 2477.4 sec |  | 2477.4 sec |
| Geometric Delay (Average) | 0.3 sec |  |  |
| Stop-Line Delay (Average) | 77.7 sec |  |  |
| Queue Storage Ratio (Worst Lane) | 0.33 |  |  |
| Total Effective Stops | 358 veh/h |  | 429 pers/h |
| Effective Stop Rate | 0.11 | 0.19 per km | 0.11 |
| Proportion Queued | 0.04 |  | 0.04 |
| Performance Index | 251.5 |  | 251.5 |
| Cost (Total) | 3489.16 \$/h | 1.86 \$/km | 3489.16 \$/h |
| Fuel Consumption (Total) | $255.5 \mathrm{~L} / \mathrm{h}$ | 136.2 mL/km |  |
| Fuel Economy | 13.6 L/100km |  |  |
| Carbon Dioxide (Total) | $610.5 \mathrm{~kg} / \mathrm{h}$ | $325.5 \mathrm{~g} / \mathrm{km}$ |  |
| Hydrocarbons (Total) | $0.055 \mathrm{~kg} / \mathrm{h}$ | $0.029 \mathrm{~g} / \mathrm{km}$ |  |
| Carbon Monoxide (Total) | $0.512 \mathrm{~kg} / \mathrm{h}$ | $0.273 \mathrm{~g} / \mathrm{km}$ |  |
| NOx (Total) | $1.085 \mathrm{~kg} / \mathrm{h}$ | $0.579 \mathrm{~g} / \mathrm{km}$ |  |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: $0.0 \% \quad 0.0 \% \quad 0.0 \%$
Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: Standard Left.

| Network Performance - Annual Values |  |  |
| :--- | :---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | $1,633,011 \mathrm{veh} / \mathrm{y}$ | $1,959,613 \mathrm{pers} / \mathrm{y}$ |
| Delay | $35,275 \mathrm{veh} / \mathrm{h} / \mathrm{y}$ | 42,330 pers-h $/ \mathrm{y}$ |
| Effective Stops | $171,678 \mathrm{veh} / \mathrm{y}$ | $206,014 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $900,115 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $1,080,138 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $53,144 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $63,773 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $1,674,799 \mathrm{l} / \mathrm{y}$ | $1,674,799 \mathrm{p} / \mathrm{y}$ |
| Fuel Consumption | $122,619 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $293,023 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $27 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $246 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $521 \mathrm{~kg} / \mathrm{y}$ |  |

## SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN \& TAYLOR | Processed: Tuesday, 4 June 2019 10:17:49 AM
Project: \Ittgroup.locallcorporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Herbert SH3 Int \& Leslie SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service for Network Sites

竟畀 Network: N101 [2018_Existing_AM]
New Network
Network Category: (None)
Colour code based on Level of Service

| LOS A | LOS B | LOS C | LOS D | LOS E | LOS F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 11:42:53 AM
Project: <br>ttgroup.local\corporate\Hamilton\Projects $\backslash 1008305 \backslash 1008305.1000$ WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int \& Whitmore SH3 Int.sip8

## NETWORK SUMMARY

新衷 Network: N101 [2018_Existing_AM]
New Network
Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) | LOS A ${ }^{3}$ |  |  |
| Travel Time Index | 11.02 |  |  |
| Speed Efficiency | 1.09 |  |  |
| Congestion Coefficient | 0.92 |  |  |
| Travel Speed (Average) | 54.6 km/h |  | 54.6 km/h |
| Travel Distance (Total) | 1282.4 veh-km/h |  | 1538.9 pers-km/h |
| Travel Time (Total) | 23.5 veh-h/h |  | 28.2 pers-h/h |
| Desired Speed | 50.0 km/h |  |  |
| Demand Flows (Total for all Sites) | 2295 veh/h |  | 2754 pers/h |
| Arrival Flows (Total for all Sites) | 2295 veh/h |  | 2754 pers/h |
| Demand Flows (Entry Total) | $1292 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Inflows (Total) | $5 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Outflows (Total) | -4 veh/h |  |  |
| Percent Heavy Vehicles (Demand) | 9.1 \% |  |  |
| Percent Heavy Vehicles (Arrival) | 9.1 \% |  |  |
| Degree of Saturation | 0.611 |  |  |
| Control Delay (Total) | 1.95 veh-h/h |  | 2.34 pers-h/h |
| Control Delay (Average) | 3.1 sec |  | 3.1 sec |
| Control Delay (Worst Lane) | 26.2 sec |  |  |
| Control Delay (Worst Movement) | 26.3 sec |  | 26.3 sec |
| Geometric Delay (Average) | 1.2 sec |  |  |
| Stop-Line Delay (Average) | 1.8 sec |  |  |
| Queue Storage Ratio (Worst Lane) | 0.06 |  |  |
| Total Effective Stops | 375 veh/h |  | 450 pers/h |
| Effective Stop Rate | 0.16 | 0.29 per km | 0.16 |
| Proportion Queued | 0.15 |  | 0.15 |
| Performance Index | 33.7 |  | 33.7 |
| Cost (Total) | 660.43 \$/h | 0.52 \$/km | 660.43 \$/h |
| Fuel Consumption (Total) | $119.5 \mathrm{~L} / \mathrm{h}$ | 93.2 mL/km |  |
| Fuel Economy | $9.3 \mathrm{~L} / 100 \mathrm{~km}$ |  |  |
| Carbon Dioxide (Total) | 286.8 kg/h | $223.7 \mathrm{~g} / \mathrm{km}$ |  |
| Hydrocarbons (Total) | $0.022 \mathrm{~kg} / \mathrm{h}$ | $0.017 \mathrm{~g} / \mathrm{km}$ |  |
| Carbon Monoxide (Total) | $0.307 \mathrm{~kg} / \mathrm{h}$ | $0.239 \mathrm{~g} / \mathrm{km}$ |  |
| NOx (Total) | $0.704 \mathrm{~kg} / \mathrm{h}$ | $0.549 \mathrm{~g} / \mathrm{km}$ |  |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0\% 0.0\% 0.0\% Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: New Zealand.

3 Calculated Average Speed exceeds the specified Desired Speed.

| Network Performance - Annual Values |  |  |
| :--- | :---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | $1,101,474 \mathrm{veh} / \mathrm{y}$ | $1,321,768$ pers $/ \mathrm{y}$ |
| Delay | $937 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $1,124 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $179,885 \mathrm{veh} / \mathrm{y}$ | $215,863 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $615,543 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $738,652 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $11,275 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | 13,530 pers-h/y |
|  |  |  |
| Cost | $317,008 \mathrm{\$} / \mathrm{y}$ | $317,008 \$ / \mathrm{y}$ |
| Fuel Consumption | $57,353 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $137,678 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $11 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $147 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |

[^1]
## LANE LEVEL OF SERVICE

## Lane Level of Service for Network Sites

贵中 Network: N101 [2018_Existing_PM]
New Network
Network Category: (None)


Colour code based on Level of Service

| LOS A LOS B LOS C LOS D LOS E LOS F |
| :--- | :--- | :--- | :--- | :--- |

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 11:42:56 AM
Project: \Ittgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRAIT6_Ballance SH3 Church Int \& Whitmore SH3 Int.sip8

## NETWORK SUMMARY

䘄 Network: N101 [2018_Existing_PM]
New Network
Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) | LOS A ${ }^{3}$ |  |  |
| Travel Time Index | 11.20 |  |  |
| Speed Efficiency | 1.11 |  |  |
| Congestion Coefficient | 0.90 |  |  |
| Travel Speed (Average) | 55.4 km/h |  | $55.4 \mathrm{~km} / \mathrm{h}$ |
| Travel Distance (Total) | 1291.2 veh-km/h |  | 1549.4 pers-km/h |
| Travel Time (Total) | 23.3 veh-h/h |  | 28.0 pers-h/h |
| Desired Speed | 50.0 km/h |  |  |
| Demand Flows (Total for all Sites) | 2302 veh/h |  | 2763 pers/h |
| Arrival Flows (Total for all Sites) | 2302 veh/h |  | 2763 pers/h |
| Demand Flows (Entry Total) | 1301 veh/h |  |  |
| Midblock Inflows (Total) | $9 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Outflows (Total) | -9 veh/h |  |  |
| Percent Heavy Vehicles (Demand) | 9.1 \% |  |  |
| Percent Heavy Vehicles (Arrival) | 9.1 \% |  |  |
| Degree of Saturation | 0.466 |  |  |
| Control Delay (Total) | 1.54 veh-h/h |  | 1.85 pers-h/h |
| Control Delay (Average) | 2.4 sec |  | 2.4 sec |
| Control Delay (Worst Lane) | 23.4 sec |  |  |
| Control Delay (Worst Movement) | 23.5 sec |  | 23.5 sec |
| Geometric Delay (Average) | 1.2 sec |  |  |
| Stop-Line Delay (Average) | 1.3 sec |  |  |
| Queue Storage Ratio (Worst Lane) | 0.03 |  |  |
| Total Effective Stops | 328 veh/h |  | 394 pers/h |
| Effective Stop Rate | 0.14 | 0.25 per km | 0.14 |
| Proportion Queued | 0.13 |  | 0.13 |
| Performance Index | 31.1 |  | 31.1 |
| Cost (Total) | 669.99 \$/h | 0.52 \$/km | 669.99 \$/h |
| Fuel Consumption (Total) | 120.4 L/h | $93.2 \mathrm{~mL} / \mathrm{km}$ |  |
| Fuel Economy | $9.3 \mathrm{~L} / 100 \mathrm{~km}$ |  |  |
| Carbon Dioxide (Total) | $288.9 \mathrm{~kg} / \mathrm{h}$ | 223.8 g/km |  |
| Hydrocarbons (Total) | $0.022 \mathrm{~kg} / \mathrm{h}$ | $0.017 \mathrm{~g} / \mathrm{km}$ |  |
| Carbon Monoxide (Total) | $0.309 \mathrm{~kg} / \mathrm{h}$ | $0.239 \mathrm{~g} / \mathrm{km}$ |  |
| NOx (Total) | $0.717 \mathrm{~kg} / \mathrm{h}$ | $0.555 \mathrm{~g} / \mathrm{km}$ |  |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0\% 0.0\% 0.0\% Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: New Zealand.

3 Calculated Average Speed exceeds the specified Desired Speed.

| Network Performance - Annual Values |  |  |
| :--- | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | $1,105,011 \mathrm{veh} / \mathrm{y}$ | $1,326,013 \mathrm{pers} / \mathrm{y}$ |
| Delay | $740 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $888 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $157,557 \mathrm{veh} / \mathrm{y}$ | $189,069 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $619,760 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $743,712 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $11,187 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $13,424 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $321,596 \$ / \mathrm{y}$ | $321,596 \$ / \mathrm{y}$ |
| Fuel Consumption | $57,781 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $138,676 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | 11 kg y |  |
| Carbon Monoxide | $148 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |

[^2]
## LANE LEVEL OF SERVICE

## Lane Level of Service for Network Sites

幛 Network: N101 [2018_Low Dev_AM]
New Network
Network Category: (None)
Colour code based on Level of Service
LOS A LOS B LOS C LOS D LOS E LOS F

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 11:42:58 AM
Project: \Ittgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRAIT6_Ballance SH3 Church Int \& Whitmore SH3 Int.sip8

## NETWORK SUMMARY

事事 Network: N101 [2018_Low Dev_AM]
New Network
Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) | LOS A ${ }^{3}$ |  |  |
| Travel Time Index | 11.00 |  |  |
| Speed Efficiency | 1.09 |  |  |
| Congestion Coefficient | 0.92 |  |  |
| Travel Speed (Average) | $54.5 \mathrm{~km} / \mathrm{h}$ |  | $54.5 \mathrm{~km} / \mathrm{h}$ |
| Travel Distance (Total) | 1300.2 veh-km/h |  | 1560.2 pers-km/h |
| Travel Time (Total) | 23.9 veh-h/h |  | 28.6 pers-h/h |
| Desired Speed | 50.0 km/h |  |  |
| Demand Flows (Total for all Sites) | 2325 veh/h |  | 2790 pers/h |
| Arrival Flows (Total for all Sites) | 2325 veh/h |  | 2790 pers/h |
| Demand Flows (Entry Total) | 1307 veh/h |  |  |
| Midblock Inflows (Total) | $6 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Outflows (Total) | -4 veh/h |  |  |
| Percent Heavy Vehicles (Demand) | 9.1 \% |  |  |
| Percent Heavy Vehicles (Arrival) | 9.1 \% |  |  |
| Degree of Saturation | 0.629 |  |  |
| Control Delay (Total) | 2.03 veh-h/h |  | 2.44 pers-h/h |
| Control Delay (Average) | 3.1 sec |  | 3.1 sec |
| Control Delay (Worst Lane) | 27.3 sec |  |  |
| Control Delay (Worst Movement) | 27.4 sec |  | 27.4 sec |
| Geometric Delay (Average) | 1.2 sec |  |  |
| Stop-Line Delay (Average) | 1.9 sec |  |  |
| Queue Storage Ratio (Worst Lane) | 0.07 |  |  |
| Total Effective Stops | 381 veh/h |  | 457 pers/h |
| Effective Stop Rate | 0.16 | 0.29 per km | 0.16 |
| Proportion Queued | 0.16 |  | 0.16 |
| Performance Index | 34.4 |  | 34.4 |
| Cost (Total) | 671.47 \$/h | 0.52 \$/km | 671.47 \$/h |
| Fuel Consumption (Total) | $121.2 \mathrm{~L} / \mathrm{h}$ | $93.2 \mathrm{~mL} / \mathrm{km}$ |  |
| Fuel Economy | $9.3 \mathrm{~L} / 100 \mathrm{~km}$ |  |  |
| Carbon Dioxide (Total) | $291.0 \mathrm{~kg} / \mathrm{h}$ | 223.8 g/km |  |
| Hydrocarbons (Total) | $0.022 \mathrm{~kg} / \mathrm{h}$ | $0.017 \mathrm{~g} / \mathrm{km}$ |  |
| Carbon Monoxide (Total) | $0.311 \mathrm{~kg} / \mathrm{h}$ | $0.239 \mathrm{~g} / \mathrm{km}$ |  |
| NOx (Total) | $0.714 \mathrm{~kg} / \mathrm{h}$ | $0.549 \mathrm{~g} / \mathrm{km}$ |  |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: $0.0 \% \quad 0.0 \% \quad 0.0 \%$ Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: New Zealand.
3 Calculated Average Speed exceeds the specified Desired Speed.

| Network Performance - Annual Values |  |  |
| :--- | :---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | $1,116,126 \mathrm{veh} / \mathrm{y}$ | $1,339,352 \mathrm{pers} / \mathrm{y}$ |
| Delay | $976 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | 1,171 |
| pers-h$/ \mathrm{y}$ |  |  |
| Effective Stops | $182,730 \mathrm{veh} / \mathrm{y}$ | $219,276 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $624,079 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $748,894 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $11,455 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $13,745 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $322,304 \mathrm{\$} / \mathrm{y}$ | $322,304 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $58,194 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $139,699 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $11 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $149 \mathrm{~kg} / \mathrm{y}$ |  |

[^3]
## LANE LEVEL OF SERVICE

## Lane Level of Service for Network Sites

車需 Network: N101 [2018_Low Dev_PM]
New Network
Network Category: (None)


Colour code based on Level of Service

| LOS A LOS B LOS C LOS D LOS E LOS F |
| :--- | :--- | :--- | :--- | :--- |

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 11:43:00 AM
Project: \Ittgroup.locallcorporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRAIT6_Ballance SH3 Church Int \& Whitmore SH3 Int.sip8

## NETWORK SUMMARY

悹軲 Network: N101 [2018_Low Dev_PM]
New Network
Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) | LOS A ${ }^{3}$ |  |  |
| Travel Time Index | 11.18 |  |  |
| Speed Efficiency | 1.11 |  |  |
| Congestion Coefficient | 0.90 |  |  |
| Travel Speed (Average) | $55.3 \mathrm{~km} / \mathrm{h}$ |  | $55.3 \mathrm{~km} / \mathrm{h}$ |
| Travel Distance (Total) | 1317.9 veh-km/h |  | 1581.5 pers-km/h |
| Travel Time (Total) | 23.8 veh-h/h |  | 28.6 pers-h/h |
| Desired Speed | 50.0 km/h |  |  |
| Demand Flows (Total for all Sites) | 2351 veh/h |  | 2821 pers/h |
| Arrival Flows (Total for all Sites) | 2351 veh/h |  | 2821 pers/h |
| Demand Flows (Entry Total) | 1327 veh/h |  |  |
| Midblock Inflows (Total) | $6 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Outflows (Total) | -9 veh/h |  |  |
| Percent Heavy Vehicles (Demand) | 9.1 \% |  |  |
| Percent Heavy Vehicles (Arrival) | 9.1 \% |  |  |
| Degree of Saturation | 0.476 |  |  |
| Control Delay (Total) | 1.61 veh-h/h |  | 1.94 pers-h/h |
| Control Delay (Average) | 2.5 sec |  | 2.5 sec |
| Control Delay (Worst Lane) | 24.6 sec |  |  |
| Control Delay (Worst Movement) | 24.8 sec |  | 24.8 sec |
| Geometric Delay (Average) | 1.1 sec |  |  |
| Stop-Line Delay (Average) | 1.3 sec |  |  |
| Queue Storage Ratio (Worst Lane) | 0.03 |  |  |
| Total Effective Stops | $332 \mathrm{veh} / \mathrm{h}$ |  | 399 pers/h |
| Effective Stop Rate | 0.14 | 0.25 per km | 0.14 |
| Proportion Queued | 0.13 |  | 0.13 |
| Performance Index | 32.0 |  | 32.0 |
| Cost (Total) | 685.98 \$/h | 0.52 \$/km | 685.98 \$/h |
| Fuel Consumption (Total) | 123.0 L/h | 93.4 mL/km |  |
| Fuel Economy | $9.3 \mathrm{~L} / 100 \mathrm{~km}$ |  |  |
| Carbon Dioxide (Total) | $295.3 \mathrm{~kg} / \mathrm{h}$ | $224.1 \mathrm{~g} / \mathrm{km}$ |  |
| Hydrocarbons (Total) | $0.023 \mathrm{~kg} / \mathrm{h}$ | $0.017 \mathrm{~g} / \mathrm{km}$ |  |
| Carbon Monoxide (Total) | $0.315 \mathrm{~kg} / \mathrm{h}$ | $0.239 \mathrm{~g} / \mathrm{km}$ |  |
| NOx (Total) | $0.736 \mathrm{~kg} / \mathrm{h}$ | $0.558 \mathrm{~g} / \mathrm{km}$ |  |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: $0.0 \% \quad 0.0 \% \quad 0.0 \%$ Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: New Zealand.

3 Calculated Average Speed exceeds the specified Desired Speed.

| Network Performance - Annual Values |  |  |
| :--- | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | $1,128,253 \mathrm{veh} / \mathrm{y}$ | $1,353,903 \mathrm{pers} / \mathrm{y}$ |
| Delay | $774 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $929 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $159,483 \mathrm{veh} / \mathrm{y}$ | $191,380 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $632,602 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $759,122 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $11,435 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | 13,722 pers-h/y |
|  |  |  |
| Cost | $329,268 \mathrm{\$} / \mathrm{y}$ | $329,268 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $59,063 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $141,760 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $11 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $151 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |

[^4]
## LANE LEVEL OF SERVICE

Lane Level of Service for Network Sites
需 Network: N101 [2018_Hi Dev_AM]
New Network
Network Category: (None)
Colour code based on Level of Service
LOS A LOS B LOS C LOS D LOS E LOS F

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 11:43:02 AM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRAIT6_Ballance SH3 Church Int \& Whitmore SH3 Int.sip8

## NETWORK SUMMARY

鼻需 Network: N101 [2018 Hi Dev_AM]
New Network
Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) | LOS A ${ }^{3}$ |  |  |
| Travel Time Index | 10.96 |  |  |
| Speed Efficiency | 1.09 |  |  |
| Congestion Coefficient | 0.92 |  |  |
| Travel Speed (Average) | 54.3 km/h |  | $54.3 \mathrm{~km} / \mathrm{h}$ |
| Travel Distance (Total) | 1319.0 veh-km/h |  | 1582.8 pers-km/h |
| Travel Time (Total) | 24.3 veh-h/h |  | 29.1 pers-h/h |
| Desired Speed | $50.0 \mathrm{~km} / \mathrm{h}$ |  |  |
| Demand Flows (Total for all Sites) | 2357 veh/h |  | 2828 pers/h |
| Arrival Flows (Total for all Sites) | 2357 veh/h |  | 2828 pers/h |
| Demand Flows (Entry Total) | 1323 veh/h |  |  |
| Midblock Inflows (Total) | $15 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Outflows (Total) | -4 veh/h |  |  |
| Percent Heavy Vehicles (Demand) | 9.1 \% |  |  |
| Percent Heavy Vehicles (Arrival) | 9.1 \% |  |  |
| Degree of Saturation | 0.649 |  |  |
| Control Delay (Total) | 2.14 veh-h/h |  | 2.57 pers-h/h |
| Control Delay (Average) | 3.3 sec |  | 3.3 sec |
| Control Delay (Worst Lane) | 28.5 sec |  |  |
| Control Delay (Worst Movement) | 28.7 sec |  | 28.7 sec |
| Geometric Delay (Average) | 1.3 sec |  |  |
| Stop-Line Delay (Average) | 2.0 sec |  |  |
| Queue Storage Ratio (Worst Lane) | 0.07 |  |  |
| Total Effective Stops | 392 veh/h |  | 470 pers/h |
| Effective Stop Rate | 0.17 | 0.30 per km | 0.17 |
| Proportion Queued | 0.16 |  | 0.16 |
| Performance Index | 35.4 |  | 35.4 |
| Cost (Total) | 684.91 \$/h | 0.52 \$/km | 684.91 \$/h |
| Fuel Consumption (Total) | $123.3 \mathrm{~L} / \mathrm{h}$ | $93.5 \mathrm{~mL} / \mathrm{km}$ |  |
| Fuel Economy | $9.3 \mathrm{~L} / 100 \mathrm{~km}$ |  |  |
| Carbon Dioxide (Total) | 296.0 kg/h | $224.4 \mathrm{~g} / \mathrm{km}$ |  |
| Hydrocarbons (Total) | $0.023 \mathrm{~kg} / \mathrm{h}$ | $0.017 \mathrm{~g} / \mathrm{km}$ |  |
| Carbon Monoxide (Total) | $0.316 \mathrm{~kg} / \mathrm{h}$ | $0.240 \mathrm{~g} / \mathrm{km}$ |  |
| NOx (Total) | $0.726 \mathrm{~kg} / \mathrm{h}$ | $0.550 \mathrm{~g} / \mathrm{km}$ |  |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: $0.0 \% \quad 0.0 \% \quad 0.0 \%$ Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: New Zealand.
3 Calculated Average Speed exceeds the specified Desired Speed.

| Network Performance - Annual Values |  |  |
| :--- | :---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | $1,131,284 \mathrm{veh} / \mathrm{y}$ | $1,357,541 \mathrm{pers} / \mathrm{y}$ |
| Delay | $1,030 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $1,235 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $188,048 \mathrm{veh} / \mathrm{y}$ | $225,658 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $633,113 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $759,736 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $11,659 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | 13,990 pers-h/y |
|  |  |  |
| Cost | $328,755 \mathrm{\$} / \mathrm{y}$ | $328,755 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $59,190 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $142,081 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $11 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $152 \mathrm{~kg} / \mathrm{y}$ |  |

[^5]
## LANE LEVEL OF SERVICE

## Lane Level of Service for Network Sites

串貫 Network: N101 [2018_Hi Dev_PM]
New Network
Network Category: (None)
Colour code based on Level of Service
LOS A LOS B LOS C LOS D LOS E LOS F

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 11:43:05 AM
Project: \ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterialTraffic\Modelling\SIDRAIT6_Ballance SH3 Church Int \& Whitmore SH3 Int.sip8

## NETWORK SUMMARY

点裹 Network: N101 [2018_Hi Dev_PM]

## New Network

Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) | LOS A ${ }^{3}$ |  |  |
| Travel Time Index | 11.17 |  |  |
| Speed Efficiency | 1.11 |  |  |
| Congestion Coefficient | 0.90 |  |  |
| Travel Speed (Average) | $55.3 \mathrm{~km} / \mathrm{h}$ |  | $55.3 \mathrm{~km} / \mathrm{h}$ |
| Travel Distance (Total) | 1345.5 veh-km/h |  | 1614.5 pers-km/h |
| Travel Time (Total) | 24.3 veh-h/h |  | 29.2 pers-h/h |
| Desired Speed | $50.0 \mathrm{~km} / \mathrm{h}$ |  |  |
| Demand Flows (Total for all Sites) | 2398 veh/h |  | 2877 pers/h |
| Arrival Flows (Total for all Sites) | 2398 veh/h |  | 2877 pers/h |
| Demand Flows (Entry Total) | 1353 veh/h |  |  |
| Midblock Inflows (Total) | $5 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Outflows (Total) | -9 veh/h |  |  |
| Percent Heavy Vehicles (Demand) | 9.2 \% |  |  |
| Percent Heavy Vehicles (Arrival) | 9.2 \% |  |  |
| Degree of Saturation | 0.487 |  |  |
| Control Delay (Total) | 1.68 veh-h/h |  | 2.01 pers-h/h |
| Control Delay (Average) | 2.5 sec |  | 2.5 sec |
| Control Delay (Worst Lane) | 26.0 sec |  |  |
| Control Delay (Worst Movement) | 26.1 sec |  | 26.1 sec |
| Geometric Delay (Average) | 1.1 sec |  |  |
| Stop-Line Delay (Average) | 1.4 sec |  |  |
| Queue Storage Ratio (Worst Lane) | 0.03 |  |  |
| Total Effective Stops | 335 veh/h |  | 402 pers/h |
| Effective Stop Rate | 0.14 | 0.25 per km | 0.14 |
| Proportion Queued | 0.13 |  | 0.13 |
| Performance Index | 32.9 |  | 32.9 |
| Cost (Total) | 700.41 \$/h | 0.52 \$/km | 700.41 \$/h |
| Fuel Consumption (Total) | $125.6 \mathrm{~L} / \mathrm{h}$ | 93.3 mL/km |  |
| Fuel Economy | $9.3 \mathrm{~L} / 100 \mathrm{~km}$ |  |  |
| Carbon Dioxide (Total) | $301.4 \mathrm{~kg} / \mathrm{h}$ | $224.0 \mathrm{~g} / \mathrm{km}$ |  |
| Hydrocarbons (Total) | $0.023 \mathrm{~kg} / \mathrm{h}$ | $0.017 \mathrm{~g} / \mathrm{km}$ |  |
| Carbon Monoxide (Total) | $0.322 \mathrm{~kg} / \mathrm{h}$ | $0.239 \mathrm{~g} / \mathrm{km}$ |  |
| NOx (Total) | $0.752 \mathrm{~kg} / \mathrm{h}$ | $0.559 \mathrm{~g} / \mathrm{km}$ |  |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: $0.0 \% \quad 0.0 \% \quad 0.0 \%$ Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: New Zealand.
3 Calculated Average Speed exceeds the specified Desired Speed.

| Network Performance - Annual Values |  |  |
| :--- | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | $1,150,990$ veh $/ \mathrm{y}$ | $1,381,187 \mathrm{pers} / \mathrm{y}$ |
| Delay | $805 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $966 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $160,996 \mathrm{veh} / \mathrm{y}$ | $193,195 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $645,816 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $774,980 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $11,685 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | 14,022 pers-h/y |
|  |  |  |
| Cost | $336,195 \mathrm{\$} / \mathrm{y}$ | $336,195 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $60,267 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $144,661 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $11 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $155 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |

[^6]
## LANE LEVEL OF SERVICE

## Lane Level of Service for Network Sites

韹 Network: N101 [2035_No Dev_AM]
New Network
Network Category: (None)
Colour code based on Level of Service
LOS A LOS B LOS C LOS D LOS E LOS F

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 11:43:07 AM
Project: \ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\raffic\Modelling\SIDRAIT6_Ballance SH3 Church Int \& Whitmore SH3 Int.sip8

## NETWORK SUMMARY

暲 Network: N101 [2035_No Dev_AM]
New Network
Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) <br> Travel Time Index <br> Speed Efficiency <br> Congestion Coefficient | $\begin{array}{r} \text { LOS E } \\ 3.71 \\ 0.43 \\ 2.30 \end{array}$ |  |  |
| Travel Speed (Average) <br> Travel Distance (Total) <br> Travel Time (Total) <br> Desired Speed | $21.7 \mathrm{~km} / \mathrm{h}$ $1716.6 \mathrm{veh}-\mathrm{km} / \mathrm{h}$ $79.1 \mathrm{veh}-\mathrm{h} / \mathrm{h}$ $50.0 \mathrm{~km} / \mathrm{h}$ |  | 21.7 km/h 2059.9 pers-km/h 94.9 pers-h/h |
| Demand Flows (Total for all Sites) <br> Arrival Flows (Total for all Sites) <br> Demand Flows (Entry Total) <br> Midblock Inflows (Total) <br> Midblock Outflows (Total) <br> Percent Heavy Vehicles (Demand) <br> Percent Heavy Vehicles (Arrival) <br> Degree of Saturation | 3074 veh/h <br> 3073 veh/h <br> $1729 \mathrm{veh} / \mathrm{h}$ <br> 7 veh/h <br> -6 veh/h <br> $9.1 \%$ <br> 9.1 \% <br> 1.782 |  | 3688 pers/h 3687 pers/h |
| Control Delay (Total) <br> Control Delay (Average) <br> Control Delay (Worst Lane) <br> Control Delay (Worst Movement) <br> Geometric Delay (Average) <br> Stop-Line Delay (Average) | 49.51 veh-h/h 58.0 sec 742.4 sec 742.5 sec 1.2 sec 56.8 sec |  | $\begin{aligned} & 59.41 \text { pers-h/h } \\ & 58.0 \mathrm{sec} \\ & 742.5 \mathrm{sec} \end{aligned}$ |
| Queue Storage Ratio (Worst Lane) <br> Total Effective Stops <br> Effective Stop Rate <br> Proportion Queued <br> Performance Index | $\begin{aligned} & 1.59 \\ & 1260 \mathrm{veh} / \mathrm{h} \\ & 0.41 \\ & 0.20 \\ & 206.5 \end{aligned}$ | 0.73 per km | $\begin{aligned} & 1512 \text { pers } / \mathrm{h} \\ & 0.41 \\ & 0.20 \\ & 206.5 \end{aligned}$ |
| Cost (Total) <br> Fuel Consumption (Total) <br> Fuel Economy <br> Carbon Dioxide (Total) <br> Hydrocarbons (Total) <br> Carbon Monoxide (Total) <br> NOx (Total) | $2533.61 \mathrm{\$} / \mathrm{h}$ $223.4 \mathrm{~L} / \mathrm{h}$ $13.0 \mathrm{~L} / 100 \mathrm{~km}$ $533.3 \mathrm{~kg} / \mathrm{h}$ $0.048 \mathrm{~kg} / \mathrm{h}$ $0.509 \mathrm{~kg} / \mathrm{h}$ $1.030 \mathrm{~kg} / \mathrm{h}$ | $\begin{gathered} 1.48 \mathrm{~S} / \mathrm{km} \\ 130.1 \mathrm{~mL} / \mathrm{km} \\ \\ 310.7 \mathrm{~g} / \mathrm{km} \\ 0.028 \mathrm{~g} / \mathrm{km} \\ 0.297 \mathrm{~g} / \mathrm{km} \\ 0.600 \mathrm{~g} / \mathrm{km} \end{gathered}$ | 2533.61 \$/h |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: 0.0\% 0.0\% 0.0\% Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: New Zealand.

| Network Performance - Annual Values |  |  |
| :--- | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | $1,475,369 \mathrm{veh} / \mathrm{y}$ | $1,770,442$ pers $/ \mathrm{y}$ |
| Delay | $23,765 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | 28,518 pers-h/y |
| Effective Stops | $604,869 \mathrm{veh} / \mathrm{y}$ | $725,842 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $823,948 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $988,737 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $37,979 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | 45,575 pers-h/y |
|  |  |  |
| Cost | $1,216,134 \$ / \mathrm{y}$ | $1,216,134 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $107,227 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $256,004 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $23 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | 244 kg |  |
| NOx | $494 \mathrm{~kg} / \mathrm{y}$ |  |

## SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 11:43:07 AM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int \& Whitmore SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service for Network Sites

贵贯 Network: N101 [2035_No Dev_PM]
New Network
Network Category: (None)
Colour code based on Level of Service

| LOS A LOS B LOS C LOS D LOS E LOS F |
| :--- | :--- | :--- | :--- | :--- |

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 11:43:10 AM
Project: \Ittgroup.locallcorporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRAIT6_Ballance SH3 Church Int \& Whitmore SH3 Int.sip8

## NETWORK SUMMARY

象電 Network: N101 [2035_No Dev_PM]
New Network
Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) | LOS A |  |  |
| Travel Time Index | 8.97 |  |  |
| Speed Efficiency | 0.91 |  |  |
| Congestion Coefficient | 1.10 |  |  |
| Travel Speed (Average) | $45.3 \mathrm{~km} / \mathrm{h}$ |  | $45.3 \mathrm{~km} / \mathrm{h}$ |
| Travel Distance (Total) | 1729.5 veh-km/h |  | 2075.5 pers-km/h |
| Travel Time (Total) | 38.1 veh-h/h |  | 45.8 pers-h/h |
| Desired Speed | $50.0 \mathrm{~km} / \mathrm{h}$ |  |  |
| Demand Flows (Total for all Sites) | 3084 veh/h |  | 3701 pers/h |
| Arrival Flows (Total for all Sites) | $3084 \mathrm{veh} / \mathrm{h}$ |  | 3701 pers/h |
| Demand Flows (Entry Total) | 1743 veh/h |  |  |
| Midblock Inflows (Total) | $11 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Outflows (Total) | -12 veh/h |  |  |
| Percent Heavy Vehicles (Demand) | 9.1 \% |  |  |
| Percent Heavy Vehicles (Arrival) | 9.1 \% |  |  |
| Degree of Saturation | 1.121 |  |  |
| Control Delay (Total) | 8.90 veh-h/h |  | 10.68 pers-h/h |
| Control Delay (Average) | 10.4 sec |  | 10.4 sec |
| Control Delay (Worst Lane) | 214.2 sec |  |  |
| Control Delay (Worst Movement) | 214.4 sec |  | 214.4 sec |
| Geometric Delay (Average) | 1.2 sec |  |  |
| Stop-Line Delay (Average) | 9.2 sec |  |  |
| Queue Storage Ratio (Worst Lane) | 0.28 |  |  |
| Total Effective Stops | $552 \mathrm{veh} / \mathrm{h}$ |  | 662 pers/h |
| Effective Stop Rate | 0.18 | 0.32 per km | 0.18 |
| Proportion Queued | 0.19 |  | 0.19 |
| Performance Index | 73.5 |  | 73.5 |
| Cost (Total) | 1160.57 \$/h | 0.67 \$/km | 1160.57 \$/h |
| Fuel Consumption (Total) | $175.7 \mathrm{~L} / \mathrm{h}$ | 101.6 mL/km |  |
| Fuel Economy | $10.2 \mathrm{~L} / 100 \mathrm{~km}$ |  |  |
| Carbon Dioxide (Total) | $421.2 \mathrm{~kg} / \mathrm{h}$ | $243.6 \mathrm{~g} / \mathrm{km}$ |  |
| Hydrocarbons (Total) | $0.034 \mathrm{~kg} / \mathrm{h}$ | $0.019 \mathrm{~g} / \mathrm{km}$ |  |
| Carbon Monoxide (Total) | $0.439 \mathrm{~kg} / \mathrm{h}$ | $0.254 \mathrm{~g} / \mathrm{km}$ |  |
| NOx (Total) | $1.041 \mathrm{~kg} / \mathrm{h}$ | $0.602 \mathrm{~g} / \mathrm{km}$ |  |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: $0.0 \% \quad 0.0 \% \quad 0.0 \%$ Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: New Zealand.

| Network Performance - Annual Values |  |  |
| :--- | :---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | $1,480,421 \mathrm{veh} / \mathrm{y}$ | $1,776,505 \mathrm{pers} / \mathrm{y}$ |
| Delay | $4,272 \mathrm{veh} / \mathrm{h} / \mathrm{y}$ | $5,127 \mathrm{pers-h} / \mathrm{y}$ |
| Effective Stops | $264,730 \mathrm{veh} / \mathrm{y}$ | $317,675 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $830,180 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $996,216 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $18,307 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $21,968 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $557,074 \mathrm{\$} / \mathrm{y}$ | $557,074 \mathrm{p} / \mathrm{y}$ |
| Fuel Consumption | $84,349 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $202,194 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $16 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $211 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $499 \mathrm{~kg} / \mathrm{y}$ |  |

## SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 11:43:10 AM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int \& Whitmore SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service for Network Sites

障 Network: N101 [2035_Low Dev_AM]
New Network
Network Category: (None)
Colour code based on Level of Service
LOS A LOS B LOS C LOS D LOS E LOS F

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 11:43:12 AM
Project: \Ittgroup.locallcorporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRAIT6_Ballance SH3 Church Int \& Whitmore SH3 Int.sip8

## NETWORK SUMMARY

率衷 Network: N101 [2035_Low Dev_AM]
New Network
Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) | LOS E |  |  |
| Travel Time Index | 3.50 |  |  |
| Speed Efficiency | 0.41 |  |  |
| Congestion Coefficient | 2.41 |  |  |
| Travel Speed (Average) | 20.7 km/h |  | 20.7 km/h |
| Travel Distance (Total) | 1733.4 veh-km/h |  | 2080.1 pers-km/h |
| Travel Time (Total) | 83.6 veh-h/h |  | 100.3 pers-h/h |
| Desired Speed | $50.0 \mathrm{~km} / \mathrm{h}$ |  |  |
| Demand Flows (Total for all Sites) | 3104 veh/h |  | 3725 pers/h |
| Arrival Flows (Total for all Sites) | $3103 \mathrm{veh} / \mathrm{h}$ |  | 3724 pers/h |
| Demand Flows (Entry Total) | $1745 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Inflows (Total) | $7 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Outflows (Total) | -6 veh/h |  |  |
| Percent Heavy Vehicles (Demand) | 9.1 \% |  |  |
| Percent Heavy Vehicles (Arrival) | 9.1 \% |  |  |
| Degree of Saturation | 1.852 |  |  |
| Control Delay (Total) | 53.64 veh-h/h |  | 64.37 pers-h/h |
| Control Delay (Average) | 62.2 sec |  | 62.2 sec |
| Control Delay (Worst Lane) | 805.3 sec |  |  |
| Control Delay (Worst Movement) | 805.4 sec |  | 805.4 sec |
| Geometric Delay (Average) | 1.2 sec |  |  |
| Stop-Line Delay (Average) | 61.0 sec |  |  |
| Queue Storage Ratio (Worst Lane) | 1.67 |  |  |
| Total Effective Stops | 1274 veh/h |  | 1528 pers/h |
| Effective Stop Rate | 0.41 | 0.73 per km | 0.41 |
| Proportion Queued | 0.20 |  | 0.20 |
| Performance Index | 216.4 |  | 216.4 |
| Cost (Total) | 2685.57 \$/h | 1.55 \$/km | 2685.57 \$/h |
| Fuel Consumption (Total) | $230.2 \mathrm{~L} / \mathrm{h}$ | 132.8 mL/km |  |
| Fuel Economy | 13.3 L/100km |  |  |
| Carbon Dioxide (Total) | $549.5 \mathrm{~kg} / \mathrm{h}$ | $317.0 \mathrm{~g} / \mathrm{km}$ |  |
| Hydrocarbons (Total) | $0.050 \mathrm{~kg} / \mathrm{h}$ | $0.029 \mathrm{~g} / \mathrm{km}$ |  |
| Carbon Monoxide (Total) | $0.521 \mathrm{~kg} / \mathrm{h}$ | $0.301 \mathrm{~g} / \mathrm{km}$ |  |
| NOx (Total) | $1.045 \mathrm{~kg} / \mathrm{h}$ | $0.603 \mathrm{~g} / \mathrm{km}$ |  |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: $0.0 \% \quad 0.0 \% \quad 0.0 \%$
Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: New Zealand.

| Network Performance - Annual Values |  |  |
| :--- | :---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | $1,490,021 \mathrm{veh} / \mathrm{y}$ | $1,788,025 \mathrm{pers} / \mathrm{y}$ |
| Delay | $25,746 \mathrm{veh} / \mathrm{h} / \mathrm{y}$ | 30,896 pers-h$/ \mathrm{y}$ |
| Effective Stops | $611,349 \mathrm{veh} / \mathrm{y}$ | $733,619 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $832,031 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $998,438 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $40,129 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $48,155 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $1,289,075 \mathrm{l} / \mathrm{y}$ | $1,289,075 \mathrm{p} / \mathrm{y}$ |
| Fuel Consumption | $110,508 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $263,764 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $24 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $250 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $501 \mathrm{~kg} / \mathrm{y}$ |  |

## SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 11:43:12 AM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int \& Whitmore SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service for Network Sites

量中 Network: N101 [2035_Low Dev_PM]
New Network
Network Category: (None)


Colour code based on Level of Service

| LOS A LOS B LOS C LOS D LOS E |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 11:43:14 AM
Project: \Ittgroup.locallcorporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRAIT6_Ballance SH3 Church Int \& Whitmore SH3 Int.sip8

## NETWORK SUMMARY

享菅 Network: N101 [2035_Low Dev_PM]
New Network
Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) <br> Travel Time Index <br> Speed Efficiency <br> Congestion Coefficient | $\begin{array}{r} \text { LOS B } \\ 8.42 \\ 0.86 \\ 1.17 \end{array}$ |  |  |
| Travel Speed (Average) <br> Travel Distance (Total) <br> Travel Time (Total) <br> Desired Speed | 42.9 km/h 1757.4 veh-km/h <br> 41.0 veh-h/h 50.0 km/h |  | 42.9 km/h 2108.9 pers-km/h 49.1 pers-h/h |
| Demand Flows (Total for all Sites) <br> Arrival Flows (Total for all Sites) <br> Demand Flows (Entry Total) <br> Midblock Inflows (Total) <br> Midblock Outflows (Total) <br> Percent Heavy Vehicles (Demand) <br> Percent Heavy Vehicles (Arrival) <br> Degree of Saturation | 3134 veh/h <br> 3134 veh/h <br> $1769 \mathrm{veh} / \mathrm{h}$ <br> $10 \mathrm{veh} / \mathrm{h}$ <br> -12 veh/h <br> $9.1 \%$ <br> $9.1 \%$ <br> 1.211 |  | 3760 pers/h <br> 3760 pers/h |
| Control Delay (Total) <br> Control Delay (Average) <br> Control Delay (Worst Lane) <br> Control Delay (Worst Movement) <br> Geometric Delay (Average) <br> Stop-Line Delay (Average) | 11.16 veh-h/h 12.8 sec 283.7 sec 283.9 sec <br> 1.1 sec <br> 11.7 sec |  | $\begin{aligned} & 13.39 \mathrm{pers}-\mathrm{h} / \mathrm{h} \\ & 12.8 \mathrm{sec} \\ & 283.9 \mathrm{sec} \end{aligned}$ |
| Queue Storage Ratio (Worst Lane) <br> Total Effective Stops <br> Effective Stop Rate <br> Proportion Queued <br> Performance Index | $\begin{aligned} & 0.37 \\ & 581 \mathrm{veh} / \mathrm{h} \\ & 0.19 \\ & 0.19 \\ & 83.8 \end{aligned}$ | 0.33 per km | $\begin{aligned} & 697 \text { pers/h } \\ & 0.19 \\ & 0.19 \\ & 83.8 \end{aligned}$ |
| Cost (Total) <br> Fuel Consumption (Total) <br> Fuel Economy <br> Carbon Dioxide (Total) <br> Hydrocarbons (Total) <br> Carbon Monoxide (Total) <br> NOx (Total) | $1256.28 ~ \$ / \mathrm{h}$ $181.7 \mathrm{~L} / \mathrm{h}$ $10.3 \mathrm{~L} / 100 \mathrm{~km}$ $435.4 \mathrm{~kg} / \mathrm{h}$ $0.035 \mathrm{~kg} / \mathrm{h}$ $0.452 \mathrm{~kg} / \mathrm{h}$ $1.066 \mathrm{~kg} / \mathrm{h}$ | 0.71 \$/km $103.4 \mathrm{~mL} / \mathrm{km}$ <br> $247.7 \mathrm{~g} / \mathrm{km}$ <br> $0.020 \mathrm{~g} / \mathrm{km}$ <br> $0.257 \mathrm{~g} / \mathrm{km}$ <br> $0.606 \mathrm{~g} / \mathrm{km}$ | 1256.28 \$/h |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: $0.0 \% \quad 0.0 \% \quad 0.0 \%$
Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: New Zealand.

| Network Performance - Annual Values |  |  |
| :--- | :---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | $1,504,169 \mathrm{veh} / \mathrm{y}$ | $1,805,002 \mathrm{pers} / \mathrm{y}$ |
| Delay | $5,356 \mathrm{veh} / \mathrm{h} / \mathrm{y}$ | 6,427 |
| pers-h $/ \mathrm{y}$ |  |  |
| Effective Stops | $278,724 \mathrm{veh} / \mathrm{y}$ | $334,469 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $843,568 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $1,012,281 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $19,658 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | 23,590 pers-h/y |
|  |  |  |
| Cost | $603,016 \mathrm{l} / \mathrm{y}$ | $603,016 \$ / \mathrm{y}$ |
| Fuel Consumption | $87,205 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $208,989 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $17 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $217 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $511 \mathrm{~kg} / \mathrm{y}$ |  |

## SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 11:43:14 AM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int \& Whitmore SH3 Int.sip8

## LANE LEVEL OF SERVICE

Lane Level of Service for Network Sites
野䓬 Network: N101 [2035_Hi Dev_AM]
New Network
Network Category: (None)
Colour code based on Level of Service
LOS A LOS B LOS C LOS D LOS E LOS F

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 11:43:16 AM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRAIT6_Ballance SH3 Church Int \& Whitmore SH3 Int.sip8

## NETWORK SUMMARY

車軎 Network: N101 [2035_Hi Dev_AM]
New Network
Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) | LOS E |  |  |
| Travel Time Index | 3.25 |  |  |
| Speed Efficiency | 0.39 |  |  |
| Congestion Coefficient | 2.54 |  |  |
| Travel Speed (Average) | 19.6 km/h |  | 19.6 km/h |
| Travel Distance (Total) | 1752.6 veh-km/h |  | 2103.2 pers-km/h |
| Travel Time (Total) | 89.2 veh-h/h |  | 107.0 pers-h/h |
| Desired Speed | $50.0 \mathrm{~km} / \mathrm{h}$ |  |  |
| Demand Flows (Total for all Sites) | $3139 \mathrm{veh} / \mathrm{h}$ |  | 3767 pers/h |
| Arrival Flows (Total for all Sites) | $3138 \mathrm{veh} / \mathrm{h}$ |  | 3766 pers/h |
| Demand Flows (Entry Total) | 1764 veh/h |  |  |
| Midblock Inflows (Total) | $6 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Outflows (Total) | -6 veh/h |  |  |
| Percent Heavy Vehicles (Demand) | 9.1 \% |  |  |
| Percent Heavy Vehicles (Arrival) | 9.1 \% |  |  |
| Degree of Saturation | 1.940 |  |  |
| Control Delay (Total) | 58.83 veh-h/h |  | 70.60 pers-h/h |
| Control Delay (Average) | 67.5 sec |  | 67.5 sec |
| Control Delay (Worst Lane) | 884.2 sec |  |  |
| Control Delay (Worst Movement) | 884.4 sec |  | 884.4 sec |
| Geometric Delay (Average) | 1.3 sec |  |  |
| Stop-Line Delay (Average) | 66.2 sec |  |  |
| Queue Storage Ratio (Worst Lane) | 1.75 |  |  |
| Total Effective Stops | 1288 veh/h |  | 1546 pers/h |
| Effective Stop Rate | 0.41 | 0.74 per km | 0.41 |
| Proportion Queued | 0.20 |  | 0.20 |
| Performance Index | 228.5 |  | 228.5 |
| Cost (Total) | 2877.36 \$/h | 1.64 \$/km | 2877.36 \$/h |
| Fuel Consumption (Total) | 238.9 L/h | 136.3 mL/km |  |
| Fuel Economy | 13.6 L/100km |  |  |
| Carbon Dioxide (Total) | $570.0 \mathrm{~kg} / \mathrm{h}$ | $325.2 \mathrm{~g} / \mathrm{km}$ |  |
| Hydrocarbons (Total) | $0.053 \mathrm{~kg} / \mathrm{h}$ | $0.030 \mathrm{~g} / \mathrm{km}$ |  |
| Carbon Monoxide (Total) | $0.537 \mathrm{~kg} / \mathrm{h}$ | $0.306 \mathrm{~g} / \mathrm{km}$ |  |
| NOx (Total) | $1.064 \mathrm{~kg} / \mathrm{h}$ | $0.607 \mathrm{~g} / \mathrm{km}$ |  |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: $0.0 \% \quad 0.0 \% \quad 0.0 \%$
Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: New Zealand.

| Network Performance - Annual Values |  |  |
| :--- | :---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | $1,506,695 \mathrm{veh} / \mathrm{y}$ | $1,808,034 \mathrm{pers} / \mathrm{y}$ |
| Delay | $28,240 \mathrm{veh} / \mathrm{h} / \mathrm{y}$ | 33,888 pers-h$/ \mathrm{y}$ |
| Effective Stops | $618,479 \mathrm{veh} / \mathrm{y}$ | $742,175 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $841,266 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $1,009,519 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $42,820 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $51,383 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $1,381,131 \mathrm{\$} / \mathrm{y}$ | $1,381,131 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $114,667 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $273,593 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $25 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $258 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $511 \mathrm{~kg} / \mathrm{y}$ |  |

## SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 11:43:16 AM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int \& Whitmore SH3 Int.sip8

## LANE LEVEL OF SERVICE

Lane Level of Service for Network Sites
中䨐 Network: N101 [2035_Hi Dev_PM]
New Network
Network Category: (None)
Colour code based on Level of Service
LOS A LOS B LOS C LOS D LOS E LOS F

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 11:43:18 AM
Project: \Ittgroup.locallcorporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRAIT6_Ballance SH3 Church Int \& Whitmore SH3 Int.sip8

## NETWORK SUMMARY

㝢車 Network: N101 [2035_Hi Dev_PM]
New Network
Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) | LOS C |  |  |
| Travel Time Index | 7.70 |  |  |
| Speed Efficiency | 0.79 |  |  |
| Congestion Coefficient | 1.26 |  |  |
| Travel Speed (Average) | 39.6 km/h |  | 39.6 km/h |
| Travel Distance (Total) | 1786.3 veh-km/h |  | 2143.6 pers-km/h |
| Travel Time (Total) | 45.1 veh-h/h |  | 54.1 pers-h/h |
| Desired Speed | $50.0 \mathrm{~km} / \mathrm{h}$ |  |  |
| Demand Flows (Total for all Sites) | $3186 \mathrm{veh} / \mathrm{h}$ |  | 3824 pers/h |
| Arrival Flows (Total for all Sites) | $3186 \mathrm{veh} / \mathrm{h}$ |  | 3823 pers/h |
| Demand Flows (Entry Total) | 1801 veh/h |  |  |
| Midblock Inflows (Total) | $3 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Outflows (Total) | -13 veh/h |  |  |
| Percent Heavy Vehicles (Demand) | 9.1 \% |  |  |
| Percent Heavy Vehicles (Arrival) | 9.1 \% |  |  |
| Degree of Saturation | 1.342 |  |  |
| Control Delay (Total) | 14.67 veh-h/h |  | 17.60 pers-h/h |
| Control Delay (Average) | 16.6 sec |  | 16.6 sec |
| Control Delay (Worst Lane) | 393.2 sec |  |  |
| Control Delay (Worst Movement) | 393.5 sec |  | 393.5 sec |
| Geometric Delay (Average) | 1.1 sec |  |  |
| Stop-Line Delay (Average) | 15.4 sec |  |  |
| Queue Storage Ratio (Worst Lane) | 0.49 |  |  |
| Total Effective Stops | 620 veh/h |  | 744 pers/h |
| Effective Stop Rate | 0.19 | 0.35 per km | 0.19 |
| Proportion Queued | 0.24 |  | 0.24 |
| Performance Index | 100.8 |  | 100.8 |
| Cost (Total) | 1420.00 \$/h | 0.79 \$/km | 1420.00 \$/h |
| Fuel Consumption (Total) | $194.3 \mathrm{~L} / \mathrm{h}$ | 108.8 mL/km |  |
| Fuel Economy | $10.9 \mathrm{~L} / 100 \mathrm{~km}$ |  |  |
| Carbon Dioxide (Total) | $465.5 \mathrm{~kg} / \mathrm{h}$ | $260.6 \mathrm{~g} / \mathrm{km}$ |  |
| Hydrocarbons (Total) | $0.038 \mathrm{~kg} / \mathrm{h}$ | $0.021 \mathrm{~g} / \mathrm{km}$ |  |
| Carbon Monoxide (Total) | $0.476 \mathrm{~kg} / \mathrm{h}$ | $0.266 \mathrm{~g} / \mathrm{km}$ |  |
| NOx (Total) | $1.156 \mathrm{~kg} / \mathrm{h}$ | $0.647 \mathrm{~g} / \mathrm{km}$ |  |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: $0.0 \% \quad 0.0 \% \quad 0.0 \%$
Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: New Zealand.

| Network Performance - Annual Values |  |  |
| :--- | :---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | $1,529,432 \mathrm{veh} / \mathrm{y}$ | $1,835,318 \mathrm{pers} / \mathrm{y}$ |
| Delay | $7,041 \mathrm{veh} / \mathrm{h} / \mathrm{y}$ | $8,449 \mathrm{pers-h} / \mathrm{y}$ |
| Effective Stops | $297,633 \mathrm{veh} / \mathrm{y}$ | 357,160 pers $/ \mathrm{y}$ |
| Travel Distance | $857,434 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $1,028,921 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $21,637 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | 25,964 pers-h/y |
|  |  |  |
| Cost | $681,599 \mathrm{\$} / \mathrm{y}$ | $681,599 \$ / \mathrm{y}$ |
| Fuel Consumption | $93,283 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $223,421 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $18 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $229 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $555 \mathrm{~kg} / \mathrm{y}$ |  |

## SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 11:43:18 AM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_Ballance SH3 Church Int \& Whitmore SH3 Int.sip8

## INTERSECTION SUMMARY

## Site: 101 [2018_Existing_AM]

New Site
Site Category: (None)
Stop (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 59.6 km/h | 59.6 km/h |
| Travel Distance (Total) | 1019.7 veh-km/h | 1223.6 pers-km/h |
| Travel Time (Total) | 17.1 veh-h/h | 20.5 pers-h/h |
| Demand Flows (Total) | 1009 veh/h | 1211 pers/h |
| Percent Heavy Vehicles (Demand) | 10.7 \% |  |
| Degree of Saturation | 0.354 |  |
| Practical Spare Capacity | 176.6 \% |  |
| Effective Intersection Capacity | 2849 veh/h |  |
| Control Delay (Total) | 0.10 veh-h/h | 0.12 pers-h/h |
| Control Delay (Average) | 0.3 sec | 0.3 sec |
| Control Delay (Worst Lane) | 10.6 sec |  |
| Control Delay (Worst Movement) | 12.8 sec | 12.8 sec |
| Geometric Delay (Average) | 0.2 sec |  |
| Stop-Line Delay (Average) | 0.2 sec |  |
| Idling Time (Average) | 0.1 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.1 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 1.0 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $22 \mathrm{veh} / \mathrm{h}$ | 27 pers/h |
| Effective Stop Rate | 0.02 | 0.02 |
| Proportion Queued | 0.02 | 0.02 |
| Performance Index | 17.5 | 17.5 |
| Cost (Total) | 396.54 \$/h | 396.54 \$/h |
| Fuel Consumption (Total) | 84.1 L/h |  |
| Carbon Dioxide (Total) | 203.3 kg/h |  |
| Hydrocarbons (Total) | $0.014 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.219 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.549 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 3 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 70.4\% $1.1 \% \quad 0.0 \%$

| Intersection Performance - Annual Values |  |  |
| :--- | ---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $484,547 \mathrm{veh} / \mathrm{y}$ | $581,457 \mathrm{pers} / \mathrm{y}$ |
| Delay | $46 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $56 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $10,789 \mathrm{veh} / \mathrm{y}$ | $12,947 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $489,437 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $587,325 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $8,216 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $9,860 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  | $190,338 \mathrm{\$} / \mathrm{y}$ | $190,338 \mathrm{\$} / \mathrm{y}$ |
| Cost | $40,365 \mathrm{~L} / \mathrm{y}$ |  |
| Fuel Consumption | $97,596 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Dioxide | $7 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $105 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $263 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx |  |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Monday, 13 May 2019 4:44:57 PM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

Site: 101 [2018_Existing_AM]
New Site
Site Category: (None)
Stop (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | South | North | West |  |
| LOS | NA | NA | B | NA |

"



Colour code based on Level of Service

| LOS A LOS B LOS C LOS D LOS E LOS F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Organisation: TONKIN \& TAYLOR | Processed: Monday, 13 May 2019 4:44:57 PM
Project: \lttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

## INTERSECTION SUMMARY

Site: 101 [2018_Existing_PM]
New Site
Site Category: (None)
Stop (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 59.5 km/h | 59.5 km/h |
| Travel Distance (Total) | 1013.3 veh-km/h | 1215.9 pers-km/h |
| Travel Time (Total) | 17.0 veh-h/h | 20.4 pers-h/h |
| Demand Flows (Total) | 1003 veh/h | 1204 pers/h |
| Percent Heavy Vehicles (Demand) | 10.6 \% |  |
| Degree of Saturation | 0.400 |  |
| Practical Spare Capacity | 145.1 \% |  |
| Effective Intersection Capacity | $2509 \mathrm{veh} / \mathrm{h}$ |  |
| Control Delay (Total) | 0.09 veh-h/h | 0.11 pers-h/h |
| Control Delay (Average) | 0.3 sec | 0.3 sec |
| Control Delay (Worst Lane) | 9.6 sec |  |
| Control Delay (Worst Movement) | 12.8 sec | 12.8 sec |
| Geometric Delay (Average) | 0.2 sec |  |
| Stop-Line Delay (Average) | 0.1 sec |  |
| Idling Time (Average) | 0.0 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.3 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 2.2 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $23 \mathrm{veh} / \mathrm{h}$ | 28 pers/h |
| Effective Stop Rate | 0.02 | 0.02 |
| Proportion Queued | 0.03 | 0.03 |
| Performance Index | 17.6 | 17.6 |
| Cost (Total) | 399.56 \$/h | 399.56 \$/h |
| Fuel Consumption (Total) | 84.6 L/h |  |
| Carbon Dioxide (Total) | 204.5 kg/h |  |
| Hydrocarbons (Total) | $0.015 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.220 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.556 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 3 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 68.0\% $1.1 \% \quad 0.0 \%$

| Intersection Performance - Annual Values |  |  |
| :--- | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $481,516 \mathrm{veh} / \mathrm{y}$ | $577,819 \mathrm{pers} / \mathrm{y}$ |
| Delay | $43 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $52 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $11,062 \mathrm{veh} / \mathrm{y}$ | $13,275 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $486,366 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $583,639 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $8,168 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $9,802 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $191,790 \mathrm{\$} / \mathrm{y}$ | $191,790 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $40,618 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $98,175 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $7 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $106 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $267 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Monday, 13 May 2019 4:44:57 PM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

## Site： 101 ［2018＿Existing＿PM］

New Site
Site Category：（None）
Stop（Two－Way）

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | South | North | West |  |
|  | NA | NA | A | NA |

ベ


Colour code based on Level of Service

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| LOS A B B B | LOS | LOS D | LOS E | LOS F |  |

Site Level of Service（LOS）Method：Delay（SIDRA）．Site LOS Method is specified in the Parameter Settings dialog（Site tab）． NA（TWSC）：Level of Service is not defined for major road approaches or the intersection as a whole for Two－Way Sign Control （HCM LOS rule）．
SIDRA Standard Delay Model is used．Control Delay includes Geometric Delay．

Organisation: TONKIN \& TAYLOR | Processed: Monday, 13 May 2019 4:44:57 PM
Project: \lttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

## INTERSECTION SUMMARY

Site: 101 [2018_Low Dev_AM]
New Site
Site Category: (None)
Stop (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 59.5 km/h | 59.5 km/h |
| Travel Distance (Total) | 1032.4 veh-km/h | 1238.9 pers-km/h |
| Travel Time (Total) | 17.3 veh-h/h | 20.8 pers-h/h |
| Demand Flows (Total) | 1022 veh/h | 1227 pers/h |
| Percent Heavy Vehicles (Demand) | 10.7 \% |  |
| Degree of Saturation | 0.355 |  |
| Practical Spare Capacity | 175.7 \% |  |
| Effective Intersection Capacity | 2875 veh/h |  |
| Control Delay (Total) | 0.11 veh-h/h | 0.13 pers-h/h |
| Control Delay (Average) | 0.4 sec | 0.4 sec |
| Control Delay (Worst Lane) | 10.5 sec |  |
| Control Delay (Worst Movement) | 13.0 sec | 13.0 sec |
| Geometric Delay (Average) | 0.2 sec |  |
| Stop-Line Delay (Average) | 0.2 sec |  |
| Idling Time (Average) | 0.1 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.2 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 1.2 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $26 \mathrm{veh} / \mathrm{h}$ | 31 pers/h |
| Effective Stop Rate | 0.03 | 0.03 |
| Proportion Queued | 0.02 | 0.02 |
| Performance Index | 17.8 | 17.8 |
| Cost (Total) | 402.28 \$/h | 402.28 \$/h |
| Fuel Consumption (Total) | $85.2 \mathrm{~L} / \mathrm{h}$ |  |
| Carbon Dioxide (Total) | $205.9 \mathrm{~kg} / \mathrm{h}$ |  |
| Hydrocarbons (Total) | $0.015 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.222 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.554 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 3 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 70.0\% $1.1 \% \quad 0.0 \%$

| Intersection Performance - Annual Values |  |  |
| :--- | ---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $490,611 \mathrm{veh} / \mathrm{y}$ | $588,733 \mathrm{pers} / \mathrm{y}$ |
| Delay | $52 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $63 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $12,441 \mathrm{veh} / \mathrm{y}$ | $14,930 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $495,570 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $594,683 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $8,326 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $9,991 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  | $193,096 \mathrm{\$} / \mathrm{y}$ | $193,096 \mathrm{\$} / \mathrm{y}$ |
| Cost | $40,880 \mathrm{~L} / \mathrm{y}$ |  |
| Fuel Consumption | $98,831 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Dioxide | $7 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $106 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $266 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx |  |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 4:39:12 PM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRAIT6_McAndrew SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

Site: 101 [2018_Low Dev_AM]
New Site
Site Category: (None)
Stop (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | South | North | West |  |
| LOS | NA | NA | B | NA |

"



Colour code based on Level of Service

| LOS A | LOS B | LOS C | LOS D | LOS E | LOS F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 4:39:12 PM
Project: \lttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

## INTERSECTION SUMMARY

Site: 101 [2018_Low Dev_PM]
New Site
Site Category: (None)
Stop (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 59.5 km/h | 59.5 km/h |
| Travel Distance (Total) | 1034.6 veh-km/h | 1241.5 pers-km/h |
| Travel Time (Total) | 17.4 veh-h/h | 20.9 pers-h/h |
| Demand Flows (Total) | 1024 veh/h | 1229 pers/h |
| Percent Heavy Vehicles (Demand) | 10.6 \% |  |
| Degree of Saturation | 0.408 |  |
| Practical Spare Capacity | 140.2 \% |  |
| Effective Intersection Capacity | 2511 veh/h |  |
| Control Delay (Total) | 0.10 veh-h/h | 0.12 pers-h/h |
| Control Delay (Average) | 0.4 sec | 0.4 sec |
| Control Delay (Worst Lane) | 8.7 sec |  |
| Control Delay (Worst Movement) | 13.2 sec | 13.2 sec |
| Geometric Delay (Average) | 0.2 sec |  |
| Stop-Line Delay (Average) | 0.1 sec |  |
| Idling Time (Average) | 0.0 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.3 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 2.3 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $26 \mathrm{veh} / \mathrm{h}$ | 31 pers/h |
| Effective Stop Rate | 0.03 | 0.03 |
| Proportion Queued | 0.03 | 0.03 |
| Performance Index | 18.0 | 18.0 |
| Cost (Total) | 408.65 \$/h | 408.65 \$/h |
| Fuel Consumption (Total) | 86.4 L/h |  |
| Carbon Dioxide (Total) | 208.8 kg/h |  |
| Hydrocarbons (Total) | $0.015 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.225 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.565 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 3 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 61.8\% $1.1 \% \quad 0.0 \%$

| Intersection Performance - Annual Values |  |  |
| :--- | :--- | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $491,621 \mathrm{veh} / \mathrm{y}$ | $589,945 \mathrm{pers} / \mathrm{y}$ |
| Delay | $48 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $58 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $12,541 \mathrm{veh} / \mathrm{y}$ | $15,049 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $496,587 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $595,905 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $8,345 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $10,014 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  | $196,150 \mathrm{\$} / \mathrm{y}$ | $196,150 \mathrm{\$} / \mathrm{y}$ |
| Cost | $41,476 \mathrm{~L} / \mathrm{y}$ |  |
| Fuel Consumption | $100,239 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Dioxide | $7 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $108 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $271 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx |  |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 4:40:10 PM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRAIT6_McAndrew SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

## Site： 101 ［2018＿Low Dev＿PM］

New Site
Site Category：（None）
Stop（Two－Way）

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | South | North | West |  |
|  | NA | NA | A | NA |

ベ


Colour code based on Level of Service

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| LOS A B B B | LOS | LOS D | LOS E | LOS F |  |

Site Level of Service（LOS）Method：Delay（SIDRA）．Site LOS Method is specified in the Parameter Settings dialog（Site tab）． NA（TWSC）：Level of Service is not defined for major road approaches or the intersection as a whole for Two－Way Sign Control （HCM LOS rule）．
SIDRA Standard Delay Model is used．Control Delay includes Geometric Delay．

Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 4:40:10 PM
Project: \lttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

## INTERSECTION SUMMARY

Site: 101 [2018_Hi Dev_AM]
New Site
Site Category: (None)
Stop (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 59.5 km/h | 59.5 km/h |
| Travel Distance (Total) | 1044.1 veh-km/h | 1253.0 pers-km/h |
| Travel Time (Total) | 17.6 veh-h/h | 21.1 pers-h/h |
| Demand Flows (Total) | 1034 veh/h | 1240 pers/h |
| Percent Heavy Vehicles (Demand) | 10.6 \% |  |
| Degree of Saturation | 0.356 |  |
| Practical Spare Capacity | 175.2 \% |  |
| Effective Intersection Capacity | 2903 veh/h |  |
| Control Delay (Total) | 0.13 veh-h/h | 0.15 pers-h/h |
| Control Delay (Average) | 0.4 sec | 0.4 sec |
| Control Delay (Worst Lane) | 10.7 sec |  |
| Control Delay (Worst Movement) | 13.1 sec | 13.1 sec |
| Geometric Delay (Average) | 0.2 sec |  |
| Stop-Line Delay (Average) | 0.2 sec |  |
| Idling Time (Average) | 0.1 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.2 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 1.4 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $30 \mathrm{veh} / \mathrm{h}$ | 36 pers/h |
| Effective Stop Rate | 0.03 | 0.03 |
| Proportion Queued | 0.03 | 0.03 |
| Performance Index | 18.1 | 18.1 |
| Cost (Total) | 408.35 \$/h | 408.35 \$/h |
| Fuel Consumption (Total) | $86.3 \mathrm{~L} / \mathrm{h}$ |  |
| Carbon Dioxide (Total) | $208.5 \mathrm{~kg} / \mathrm{h}$ |  |
| Hydrocarbons (Total) | $0.015 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.224 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.560 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 3 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 70.5\% $\quad 1.4 \% \quad 0.0 \%$

| Intersection Performance - Annual Values |  |  |
| :--- | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $496,168 \mathrm{veh} / \mathrm{y}$ | $595,402 \mathrm{pers} / \mathrm{y}$ |
| Delay | $61 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $74 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $14,518 \mathrm{veh} / \mathrm{y}$ | $17,422 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $501,189 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $601,426 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $8,430 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $10,116 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $196,009 \mathrm{\$} / \mathrm{y}$ | $196,009 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $41,401 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $100,077 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $7 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $108 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $269 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 4:41:57 PM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRAIT6 McAndrew SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

## Site: 101 [2018_Hi Dev_AM]

New Site
Site Category: (None)
Stop (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | South | North | West |  |
| LOS | NA | NA | B | NA |

$1 N$



Colour code based on Level of Service

| LOS A | LOS B | LOS C | LOS D | LOS E | LOS F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 4:41:57 PM
Project: \lttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

## INTERSECTION SUMMARY

Site: 101 [2018_Hi Dev_PM]
New Site
Site Category: (None)
Stop (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 59.5 km/h | 59.5 km/h |
| Travel Distance (Total) | 1056.9 veh-km/h | 1268.3 pers-km/h |
| Travel Time (Total) | 17.8 veh-h/h | 21.3 pers-h/h |
| Demand Flows (Total) | 1046 veh/h | 1256 pers/h |
| Percent Heavy Vehicles (Demand) | 10.6 \% |  |
| Degree of Saturation | 0.417 |  |
| Practical Spare Capacity | 135.1 \% |  |
| Effective Intersection Capacity | 2510 veh/h |  |
| Control Delay (Total) | 0.11 veh-h/h | 0.14 pers-h/h |
| Control Delay (Average) | 0.4 sec | 0.4 sec |
| Control Delay (Worst Lane) | 9.1 sec |  |
| Control Delay (Worst Movement) | 13.6 sec | 13.6 sec |
| Geometric Delay (Average) | 0.2 sec |  |
| Stop-Line Delay (Average) | 0.1 sec |  |
| Idling Time (Average) | 0.0 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.3 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 2.5 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $29 \mathrm{veh} / \mathrm{h}$ | 35 pers/h |
| Effective Stop Rate | 0.03 | 0.03 |
| Proportion Queued | 0.04 | 0.04 |
| Performance Index | 18.5 | 18.5 |
| Cost (Total) | 418.40 \$/h | 418.40 \$/h |
| Fuel Consumption (Total) | 88.4 L/h |  |
| Carbon Dioxide (Total) | $213.5 \mathrm{~kg} / \mathrm{h}$ |  |
| Hydrocarbons (Total) | $0.015 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.230 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.577 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 3 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 64.7\% $\quad 1.1 \% \quad 0.0 \%$

| Intersection Performance - Annual Values |  |  |
| :--- | ---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $502,232 \mathrm{veh} / \mathrm{y}$ | $602,678 \mathrm{pers} / \mathrm{y}$ |
| Delay | $54 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $65 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $13,886 \mathrm{veh} / \mathrm{y}$ | $16,663 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $507,310 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $608,772 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $8,531 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $10,237 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  | $200,834 \mathrm{\$} / \mathrm{y}$ | $200,834 \mathrm{\$} / \mathrm{y}$ |
| Cost | $42,409 \mathrm{~L} / \mathrm{y}$ |  |
| Fuel Consumption | $102,483 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Dioxide | $7 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $110 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $277 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx |  |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 4:43:48 PM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

## Site: 101 [2018_Hi Dev_PM]

New Site
Site Category: (None)
Stop (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | South | North | West |  |
| LOS | NA | NA | A | NA |

ベ


McAndrew

Colour code based on Level of Service

| LOS A LOS B LOS C LOS D LOS E LOS F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay

Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 4:43:48 PM
Project: \lttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

## INTERSECTION SUMMARY

Site: 101 [2035_No Dev_AM]
New Site
Site Category: (None)
Stop (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | $59.4 \mathrm{~km} / \mathrm{h}$ | 59.4 km/h |
| Travel Distance (Total) | 1365.2 veh-km/h | 1638.3 pers-km/h |
| Travel Time (Total) | 23.0 veh-h/h | 27.6 pers-h/h |
| Demand Flows (Total) | 1352 veh/h | 1622 pers/h |
| Percent Heavy Vehicles (Demand) | 10.7 \% |  |
| Degree of Saturation | 0.475 |  |
| Practical Spare Capacity | 106.3 \% |  |
| Effective Intersection Capacity | 2845 veh/h |  |
| Control Delay (Total) | 0.20 veh-h/h | 0.24 pers-h/h |
| Control Delay (Average) | 0.5 sec | 0.5 sec |
| Control Delay (Worst Lane) | 15.9 sec |  |
| Control Delay (Worst Movement) | 21.5 sec | 21.5 sec |
| Geometric Delay (Average) | 0.2 sec |  |
| Stop-Line Delay (Average) | 0.4 sec |  |
| Idling Time (Average) | 0.2 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.3 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 2.1 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $33 \mathrm{veh} / \mathrm{h}$ | 40 pers/h |
| Effective Stop Rate | 0.02 | 0.02 |
| Proportion Queued | 0.03 | 0.03 |
| Performance Index | 23.8 | 23.8 |
| Cost (Total) | 534.40 \$/h | 534.40 \$/h |
| Fuel Consumption (Total) | 112.9 L/h |  |
| Carbon Dioxide (Total) | 273.0 kg/h |  |
| Hydrocarbons (Total) | $0.019 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.293 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.738 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 3 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 83.0\% 2.1\% 0.0\%

| Intersection Performance - Annual Values |  |  |
| :--- | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $648,758 \mathrm{veh} / \mathrm{y}$ | $778,510 \mathrm{pers} / \mathrm{y}$ |
| Delay | $96 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $116 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $15,901 \mathrm{veh} / \mathrm{y}$ | $19,081 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $655,304 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $786,365 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $11,039 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $13,246 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $256,514 \mathrm{\$} / \mathrm{y}$ | $256,514 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $54,198 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $131,037 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $9 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $141 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $354 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Monday, 13 May 2019 4:44:59 PM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

Site: 101 [2035_No Dev_AM]
New Site
Site Category: (None)
Stop (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | South | North | West |  |
|  | NA | NA | C | NA |

"


McAndrew
STOF
$\stackrel{m}{\sim}$
$\stackrel{m}{\square}$

Colour code based on Level of Service

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| LOS A | LOS B | LOS C | LOS D | LOS E | LOS F |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Organisation: TONKIN \& TAYLOR | Processed: Monday, 13 May 2019 4:44:59 PM
Project: \lttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

## INTERSECTION SUMMARY

Site: 101 [2035_No Dev_PM]
New Site
Site Category: (None)
Stop (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 59.4 km/h | 59.4 km/h |
| Travel Distance (Total) | 1359.9 veh-km/h | 1631.9 pers-km/h |
| Travel Time (Total) | 22.9 veh-h/h | 27.5 pers-h/h |
| Demand Flows (Total) | 1346 veh/h | 1616 pers/h |
| Percent Heavy Vehicles (Demand) | 10.6 \% |  |
| Degree of Saturation | 0.538 |  |
| Practical Spare Capacity | 82.0 \% |  |
| Effective Intersection Capacity | 2500 veh/h |  |
| Control Delay (Total) | 0.18 veh-h/h | 0.22 pers-h/h |
| Control Delay (Average) | 0.5 sec | 0.5 sec |
| Control Delay (Worst Lane) | 11.9 sec |  |
| Control Delay (Worst Movement) | 22.2 sec | 22.2 sec |
| Geometric Delay (Average) | 0.2 sec |  |
| Stop-Line Delay (Average) | 0.3 sec |  |
| Idling Time (Average) | 0.0 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.7 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 5.2 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $34 \mathrm{veh} / \mathrm{h}$ | 41 pers/h |
| Effective Stop Rate | 0.03 | 0.03 |
| Proportion Queued | 0.05 | 0.05 |
| Performance Index | 24.2 | 24.2 |
| Cost (Total) | 541.83 \$/h | 541.83 \$/h |
| Fuel Consumption (Total) | 114.4 L/h |  |
| Carbon Dioxide (Total) | $276.5 \mathrm{~kg} / \mathrm{h}$ |  |
| Hydrocarbons (Total) | $0.020 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.297 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.754 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 3 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 76.7\% $\quad 1.5 \% \quad 0.0 \%$

| Intersection Performance - Annual Values |  |  |
| :--- | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $646,232 \mathrm{veh} / \mathrm{y}$ | $775,478 \mathrm{pers} / \mathrm{y}$ |
| Delay | $87 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $104 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $16,485 \mathrm{veh} / \mathrm{y}$ | $19,781 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $652,757 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $783,308 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $10,987 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $13,184 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $260,080 \mathrm{\$} / \mathrm{y}$ | $260,080 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $54,924 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $132,728 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $10 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $143 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $362 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Monday, 13 May 2019 4:44:59 PM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

## Site: 101 [2035_No Dev_PM]

New Site
Site Category: (None)
Stop (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | South | North | West |  |
| LOS | NA | NA | B | NA |

ベ



Colour code based on Level of Service

| LOS A | LOS B | LOS C | LOS D | LOS E | LOS F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Organisation: TONKIN \& TAYLOR | Processed: Monday, 13 May 2019 4:44:59 PM
Project: \lttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

## INTERSECTION SUMMARY

Site: 101 [2035_Low Dev_AM]
New Site
Site Category: (None)
Stop (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 59.3 km/h | 59.3 km/h |
| Travel Distance (Total) | 1378.0 veh-km/h | 1653.6 pers-km/h |
| Travel Time (Total) | 23.2 veh-h/h | 27.9 pers-h/h |
| Demand Flows (Total) | 1364 veh/h | 1637 pers/h |
| Percent Heavy Vehicles (Demand) | 10.7 \% |  |
| Degree of Saturation | 0.476 |  |
| Practical Spare Capacity | 106.0 \% |  |
| Effective Intersection Capacity | 2868 veh/h |  |
| Control Delay (Total) | 0.22 veh-h/h | 0.27 pers-h/h |
| Control Delay (Average) | 0.6 sec | 0.6 sec |
| Control Delay (Worst Lane) | 16.2 sec |  |
| Control Delay (Worst Movement) | 21.9 sec | 21.9 sec |
| Geometric Delay (Average) | 0.2 sec |  |
| Stop-Line Delay (Average) | 0.4 sec |  |
| Idling Time (Average) | 0.2 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.3 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 2.5 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $37 \mathrm{veh} / \mathrm{h}$ | 44 pers/h |
| Effective Stop Rate | 0.03 | 0.03 |
| Proportion Queued | 0.03 | 0.03 |
| Performance Index | 24.2 | 24.2 |
| Cost (Total) | 540.49 \$/h | 540.49 \$/h |
| Fuel Consumption (Total) | 114.0 L/h |  |
| Carbon Dioxide (Total) | 275.6 kg/h |  |
| Hydrocarbons (Total) | $0.020 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.296 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.744 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 3 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 83.3\% 2.1\% 0.0\%

| Intersection Performance - Annual Values |  |  |
| :--- | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $654,821 \mathrm{veh} / \mathrm{y}$ | $785,785 \mathrm{pers} / \mathrm{y}$ |
| Delay | $107 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $128 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $17,787 \mathrm{veh} / \mathrm{y}$ | $21,345 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $661,434 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $793,721 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $11,152 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $13,383 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $259,433 \mathrm{\$} / \mathrm{y}$ | $259,433 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $54,721 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $132,291 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $9 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $142 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $357 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 4:44:58 PM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

Site: 101 [2035_Low Dev_AM]
New Site
Site Category: (None)
Stop (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | South | North | West |  |
|  | NA | NA | C | NA |

"



Colour code based on Level of Service

| LOS A | LOS B | LOS C | LOS D | LOS E | LOS F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 4:44:58 PM
Project: \lttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

## INTERSECTION SUMMARY

Site: 101 [2035_Low Dev_PM]
New Site
Site Category: (None)
Stop (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 59.4 km/h | 59.4 km/h |
| Travel Distance (Total) | 1380.1 veh-km/h | 1656.1 pers-km/h |
| Travel Time (Total) | 23.2 veh-h/h | 27.9 pers-h/h |
| Demand Flows (Total) | 1366 veh/h | 1640 pers/h |
| Percent Heavy Vehicles (Demand) | 10.6 \% |  |
| Degree of Saturation | 0.547 |  |
| Practical Spare Capacity | 79.3 \% |  |
| Effective Intersection Capacity | 2499 veh/h |  |
| Control Delay (Total) | 0.19 veh-h/h | 0.23 pers-h/h |
| Control Delay (Average) | 0.5 sec | 0.5 sec |
| Control Delay (Worst Lane) | 13.0 sec |  |
| Control Delay (Worst Movement) | 23.2 sec | 23.2 sec |
| Geometric Delay (Average) | 0.2 sec |  |
| Stop-Line Delay (Average) | 0.3 sec |  |
| Idling Time (Average) | 0.1 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.7 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 5.3 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $35 \mathrm{veh} / \mathrm{h}$ | 42 pers/h |
| Effective Stop Rate | 0.03 | 0.03 |
| Proportion Queued | 0.05 | 0.05 |
| Performance Index | 24.6 | 24.6 |
| Cost (Total) | 550.26 \$/h | 550.26 \$/h |
| Fuel Consumption (Total) | 116.1 L/h |  |
| Carbon Dioxide (Total) | $280.7 \mathrm{~kg} / \mathrm{h}$ |  |
| Hydrocarbons (Total) | $0.020 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.301 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.765 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 3 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 79.2\% $\quad 1.5 \% \quad 0.0 \%$

| Intersection Performance - Annual Values |  |  |
| :--- | ---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $655,832 \mathrm{veh} / \mathrm{y}$ | $786,998 \mathrm{pers} / \mathrm{y}$ |
| Delay | $92 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $110 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $16,975 \mathrm{veh} / \mathrm{y}$ | $20,370 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $662,452 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $794,943 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $11,154 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $13,385 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $264,123 \mathrm{\$} / \mathrm{y}$ | $264,123 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $55,752 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $134,728 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $10 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $145 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $367 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 4:46:21 PM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

## Site: 101 [2035_Low Dev_PM]

New Site
Site Category: (None)
Stop (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | South | North | West |  |
| LOS | NA | NA | B | NA |

"



Colour code based on Level of Service

| LOS A | LOS B | LOS C | LOS D | LOS E | LOS F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 4:46:21 PM
Project: \lttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

## INTERSECTION SUMMARY

Site: 101 [2035_Hi Dev_AM]
New Site
Site Category: (None)
Stop (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 59.2 km/h | 59.2 km/h |
| Travel Distance (Total) | 1390.8 veh-km/h | 1668.9 pers-km/h |
| Travel Time (Total) | 23.5 veh-h/h | 28.2 pers-h/h |
| Demand Flows (Total) | 1377 veh/h | 1652 pers/h |
| Percent Heavy Vehicles (Demand) | 10.6 \% |  |
| Degree of Saturation | 0.477 |  |
| Practical Spare Capacity | 105.5 \% |  |
| Effective Intersection Capacity | 2888 veh/h |  |
| Control Delay (Total) | 0.25 veh-h/h | 0.30 pers-h/h |
| Control Delay (Average) | 0.7 sec | 0.7 sec |
| Control Delay (Worst Lane) | 16.1 sec |  |
| Control Delay (Worst Movement) | 22.3 sec | 22.3 sec |
| Geometric Delay (Average) | 0.2 sec |  |
| Stop-Line Delay (Average) | 0.5 sec |  |
| Idling Time (Average) | 0.3 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.4 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 2.7 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $42 \mathrm{veh} / \mathrm{h}$ | 50 pers/h |
| Effective Stop Rate | 0.03 | 0.03 |
| Proportion Queued | 0.03 | 0.03 |
| Performance Index | 24.6 | 24.6 |
| Cost (Total) | 547.62 \$/h | 547.62 \$/h |
| Fuel Consumption (Total) | $115.3 \mathrm{~L} / \mathrm{h}$ |  |
| Carbon Dioxide (Total) | 278.6 kg/h |  |
| Hydrocarbons (Total) | $0.020 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.299 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.750 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 3 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 83.2\% 2.6\% 0.0\%

| Intersection Performance - Annual Values |  |  |
| :--- | ---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $660,884 \mathrm{veh} / \mathrm{y}$ | $793,061 \mathrm{pers} / \mathrm{y}$ |
| Delay | $121 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $145 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $19,980 \mathrm{veh} / \mathrm{y}$ | $23,976 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $667,566 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $801,080 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $11,270 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $13,524 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $262,857 \mathrm{~m} / \mathrm{y}$ | $262,857 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $55,321 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $133,726 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $10 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $144 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $360 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 4:47:34 PM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRAIT6 McAndrew SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

Site: 101 [2035_Hi Dev_AM]
New Site
Site Category: (None)
Stop (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | South | North | West |  |
| LOS | NA | NA | C | NA |

"


McAndrew
STOF
$\stackrel{m}{\sim}$
$\stackrel{m}{\square}$

Colour code based on Level of Service

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| LOS A | LOS B | LOS C | LOS D | LOS E | LOS F |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 4:47:34 PM
Project: \lttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

## INTERSECTION SUMMARY

Site: 101 [2035_Hi Dev_PM]
New Site
Site Category: (None)
Stop (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 59.3 km/h | 59.3 km/h |
| Travel Distance (Total) | 1400.3 veh-km/h | 1680.4 pers-km/h |
| Travel Time (Total) | 23.6 veh-h/h | 28.3 pers-h/h |
| Demand Flows (Total) | 1386 veh/h | 1664 pers/h |
| Percent Heavy Vehicles (Demand) | 10.6 \% |  |
| Degree of Saturation | 0.555 |  |
| Practical Spare Capacity | 76.5 \% |  |
| Effective Intersection Capacity | 2497 veh/h |  |
| Control Delay (Total) | 0.21 veh-h/h | 0.25 pers-h/h |
| Control Delay (Average) | 0.5 sec | 0.5 sec |
| Control Delay (Worst Lane) | 14.5 sec |  |
| Control Delay (Worst Movement) | 24.1 sec | 24.1 sec |
| Geometric Delay (Average) | 0.2 sec |  |
| Stop-Line Delay (Average) | 0.3 sec |  |
| Idling Time (Average) | 0.1 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.7 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 5.7 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $38 \mathrm{veh} / \mathrm{h}$ | 46 pers/h |
| Effective Stop Rate | 0.03 | 0.03 |
| Proportion Queued | 0.05 | 0.05 |
| Performance Index | 25.1 | 25.1 |
| Cost (Total) | 559.70 \$/h | 559.70 \$/h |
| Fuel Consumption (Total) | 118.0 L/h |  |
| Carbon Dioxide (Total) | 285.1 kg/h |  |
| Hydrocarbons (Total) | $0.020 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.306 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.776 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 3 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 82.2\% $1.6 \% \quad 0.0 \%$

| Intersection Performance - Annual Values |  |  |
| :--- | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $665,432 \mathrm{veh} / \mathrm{y}$ | $798,518 \mathrm{pers} / \mathrm{y}$ |
| Delay | $101 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $122 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $18,443 \mathrm{veh} / \mathrm{y}$ | $22,132 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $672,155 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $806,585 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $11,326 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $13,591 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  | $268,655 \mathrm{\$} / \mathrm{y}$ | $268,655 \mathrm{\$} / \mathrm{y}$ |
| Cost | $56,631 \mathrm{~L} / \mathrm{y}$ |  |
| Fuel Consumption | $136,842 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Dioxide | $10 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $147 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $373 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx |  |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 4:48:55 PM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRAIT6_McAndrew SH3 Int.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

## Site: 101 [2035_Hi Dev_PM]

New Site
Site Category: (None)
Stop (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | South | North | West |  |
|  | NA | NA | B | NA |

$4 N$



Colour code based on Level of Service

| LOS A | LOS B | LOS C | LOS D | LOS E | LOS F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 4:48:55 PM
Project: \lttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T6_McAndrew SH3 Int.sip8

## Appendix C: T11 CAS Outputs

CAS outputs for the following roads included:

- Cambridge Road

Also included as reference for the high-level assessment of State Highway 3:

- $\quad$ State Highway 3 / Cambridge Road / Arawata Street intersection


## Untitled query

Saved sites
Cambridge Road
Crash year
2009-2019

Plain English report
17 results from your query.
1-17 of 17

| Crash road | Distance | Direction | Side road | ID | Date | Day of week | Time | Description of events | Crash factors | $\begin{aligned} & \text { Surface } \\ & \text { condition } \end{aligned}$ | Natural Light | Weather | Junction | Control | $\frac{\text { Crash }}{\frac{\text { Count }}{\text { colal }}}$ | $\frac{\text { Crash }}{\frac{\text { count }}{\text { counter }}}$ | $\frac{\text { Crash }}{\frac{\text { Count }}{\text { Count }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CAMBRIDGE ROAD | 200 m | E | GLENEAGLES DRIVE | $\underline{201410731}$ | 22/03/2014 | Sat | 15:58 | Car/Wagon1 WDB on CAMBRIDGE ROAD overtaking Motorcycle2 | MOTORCYCLE2, misjudged another vehicle, other overtaking CAR/WAGON1, misjudged another vehicle, other overtaking | Dry | Bright sun | Fine | Nil (Default) | Nil | 0 | 0 | 1 |
| CAMBrIDGE ROAD | 200 m | w | GLENEAGLES DRIVE | $\underline{201417293}$ | 04/11/2014 | Tue | 16:20 | Car/Wagon1 entering/leaving driveway hit Wheeled pedestrian (wheelchairs, mobility scooters, etc)\&CR;\&LF;2 (Age 83) walking on footpath | CAR/WAGON1, did not check/notice another party behind, other visibility limited, WHEELED PEDESTRIAN (WHEELCHAIRS, MOBILITY SCOOTERS2, other did not see or look for other party, ENV: entering or leaving private house / farm, visibility limited by hedge or fence | Dry | Bright <br> sun | Fine | Driveway | Unknown | 0 | 0 | 1 |
| CAMBrIDGE ROAD | 210 m | E | GLENEAGLES DRIVE | $\underline{201848679}$ | 04/09/2018 | Tue | 17:42 | Car/Wagon1 EDB on CAMBRIDGE ROAD changing lanes to left hit Car/Wagon2 | CAR/WAGON1, alcohol suspected, cut in after overtaking, emotionally upset/road rage | Wet | Overcast | $\begin{aligned} & \text { Light } \\ & \text { rain } \end{aligned}$ | Nil (Default) | Unknown | 0 | 0 | 0 |
| CAMBrIDGE ROAD | 300 m | w | GLENEAGLES DRIVE | $\underline{201618865}$ | 17/12/2016 | Sat | 16:10 | Car/Wagon1 WDB on Cambridge hit rear of left turning Car/Wagon2 WDB on Cambridge | CAR/WAGON1, following too closely | Dry | Bright <br> sun | Fine | Driveway | Nil | 0 | 0 | 1 |
| CAMBrIDGE ROAD | 400m | w | $\begin{aligned} & \text { MCLARNON } \\ & \text { ROAD } \end{aligned}$ | $\underline{201043676}$ | 14/12/2010 | Tue | 18:45 | Car/Wagon1 NDB on CAMBRIDGE ROAD lost control turning right, Car/Wagon1 hit fences | CAR/WAGON1, lost control when turning, speed entering corner/curve, ENV: heavy rain, slippery road due to rain | Wet | Overcast | Heavy rain | Nil (Default) | Nil | 0 | 0 | 0 |
| CAMBrIDGE ROAD | 140 m | w | PEKERAU CRESCENT | $\underline{201233052}$ | 01/06/2012 | Fri | 12:05 | Car/Wagon1 EDB on CAMBRIDGE ROAD sideswiped by Car/Wagon2 EDB on CAMBRIDGE ROAD turning left | CAR/WAGON2, turned from incorrect position on road CAR/WAGON1, misjudged intentions of another party, ENV: entering or leaving private house / farm | Dry | Bright <br> sun | Fine | Driveway | Unknown | 0 | 0 | 0 |
| CAMBrIDGE ROAD | 220 m | E | PEKERAU CRESCENT | $\underline{201303100}$ | 13/06/2013 | Thu | 05:57 | Car/Wagon2 turning right hit by oncoming Cycle1 WDB on CAMBRIDGE ROAD | CAR/WAGON2, did not check/notice another party from other dirn, failed to give way turning to non-turning traffic, ENV: entering or leaving shopping complex | Dry | Dark | Fine | Driveway | Unknown | 0 | 0 | 2 |


| Crash road | Distance | Direction | Side road | ID | Date | Day of | Time | Description of events | Crash factors | $\begin{aligned} & \text { Surface } \\ & \text { condition } \end{aligned}$ | $\frac{\text { Natural }}{\text { light }}$ | Weather | Junction | Control | $\frac{\text { Crash }}{\frac{\text { Count }}{\text { fotal }}}$ | $\frac{\text { Crash }}{\frac{\text { count }}{\text { severe }}}$ | $\frac{\text { Crash }}{\frac{\text { Count }}{\text { Count }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CAMBridge road | 90 m | w | PEKERAU CRESCENT | $\underline{201750817}$ | 30/09/2017 | Sat | 11:45 | Van1 EDB on Cambridge Rd Te Awamutu hit Van2 U-turning from same direction of travel | VAN2, blind spot, did not check/notice another party behind | Dry | Bright <br> sun | Fine | Nil (Default) | Unknown | 0 | 0 | 0 |
| CAMBridge road | 120 m | E | PEKERAU CRESCENT | $\underline{201813695}$ | 19/04/2018 | Thu | 18:25 | Car/Wagon1 EDB on Cambridge Rd hit Pedestrian2 (Age 65) crossing road from right side | CAR/WAGON1, alcohol test below limit, did not check/notice another party from other dirn, failed to see another party wearing dark clothing, ENV: street lighting inadequate | Dry | Dark | Fine | Nil (Default) | Unknown | 0 | 0 | 1 |
| CAMBridge road | 25m | E | pekerau CRESCENT | $\underline{201034521}$ | 02/05/2010 | Sun | 10:11 | Car/Wagon1 WDB on CAMBRIDGE ROAD lost control but did not leave the road | CAR/WAGON1, puncture or blowout | Dry | Bright sun | Fine | Nil (Default) | Nil | 0 | 0 | 0 |
| CAMBridge road |  | 1 | PEKERAU CRESCENT | $\underline{201139432}$ | 28/12/2011 | Wed | 15:20 | Truck1 WDB on CAMBRIDGE ROAD lost control turning right, Truck1 hit kerbing, poles | TRUCK1, attention diverted by other traffic, lost control when turning | Dry | Overcast | Fine | T Junction | Stop | 0 | 0 | 0 |
| CAMBridge road | 140 m | w | PEKERAU CRESCENT | $\underline{201717837}$ | 29/09/2017 | Fri | 16:20 | Car/Wagon1 WDB on Cambridge rd hit rear of left turning Van2 WDB on Cambridge rd | CAR/WAGON1, following too closely, other attention diverted | Dry | Bright sun | Fine | Driveway | Nil | 0 | 0 | 1 |
| CAMbridge road | 120 m | E | PEKERAU CRESCENT | $\underline{201754051}$ | 02/11/2017 | Thu | 12:15 | SUV1 WDB on Cambridge hit parked veh, SUV1 hit parked vehicle | SUV1, attention diverted by food, cigarettes, beverages, too far left | Dry | Bright sun | Fine | Nil <br> (Default) | Unknown | 0 | 0 | 0 |
| CAMbridge road | 100 m | E | PEKERAU CRESCENT | $\underline{201814989}$ | 12/06/2018 | Tue | 14:30 | Car/Wagon1 WDB on Cambridge Road hit parked veh, Car/Wagon1 hit parked vehicle | CAR/WAGON1, alcohol test below limit, too far left | Wet | Overcast | Light rain | Nil (Default) | Unknown | 0 | 0 | 1 |
| CAMbridge road | 110 m | w | PICQUET HILL ROAD | $\underline{201418710}$ | 23/12/2014 | Tue | 07:42 | Car/Wagon1 WDB on CAMBRIDGE ROAD lost control on straight and hit SUV2 head on, Car/Wagon1 hit fences | CAR/WAGON1, fatigue due to lack of sleep, other inattentive, other lost control | Dry | Bright sun | Fine | Nil <br> (Default) | Unknown | 0 | 1 | 1 |
| CAMBridge road |  | 1 | THORNCOMBE ROAD | $\underline{201358128}$ | 16/11/2013 | Sat | 17:35 | Car/Wagon 1 SDB on CAMBRIDGE ROAD lost control turning right, Car/Wagon1 hit parked vehicle | CAR/WAGON1, alcohol test above limit or test refused, wheelspins/wheelies/doughnuts/drifting | Dry | Bright <br> sun | Fine | T Junction | Give way | 0 | 0 | 0 |
| CAMbridge road |  | 1 | THORNCOMBE ROAD | 201443014 | 14/08/2014 | Thu | 15:14 | Car/Wagon1 SDB on CAMBRIDGE ROAD missed intersection or end of road | CAR/WAGON1, alcohol test above limit or test refused, did not stop at stop sign, new driver/under instruction, other lost control | Dry | Bright <br> sun | Fine | T Junction | Stop | 0 | 0 | 0 |

1-17 of 17


Untitled query
Crash year
2009-2019

## Saved sites

SH3 RAB Te Awamutu

## Plain English report

38 results from your query
Showing 20100 results at once.
1-38 of 38

| Crash road | - Distance | Direction | Side road | ID | Date | Day of week | Time | Description of events | Crash factors | $\begin{aligned} & \text { Surface } \\ & \text { condition } \end{aligned}$ | Natural light | Weather | Junction | Control | $\begin{aligned} & \frac{\text { Crash }}{} \\ & \frac{\text { count }}{\text { fotal }} \end{aligned}$ | Crash count severe | $\begin{aligned} & \frac{\text { Crash }}{\text { Count }} \\ & \begin{array}{c} \text { Coont } \\ \hline \text { minor } \end{array} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 003-0016 |  | 1 | ARAWATA ST | $\underline{201897617}$ | 24/07/2018 | Tue | 16:10 | Car/Wagon1 DIRN on 003-0016 sideswiped by Unknown2 DIRN on 003-0016 turning left | UNKNOWN2, turned right from incorrect lane | Dry | Bright <br> sun | Fine | Roundabout | Give way | 0 | 0 | 0 |
| 003-0016 |  | 1 | CAMBRIDGE <br> ROAD | $\underline{201895902}$ | 22/11/2018 | Thu | 17:00 | Car/Wagon1 NDB on 003-0016 overtaking SUV2 | CAR/WAGON1, too far left | Dry | Overcast | Fine | Roundabout | Give way | 0 | 0 | 0 |
| Arawata st |  | 1 | SH3 | $\underline{201239396}$ | 19/10/2012 | Fri | 07:05 | Van1 NDB on ARAWATA ST hit Van2 crossing at right angle from right | VAN1, did not check/notice another party from other dirn, failed to give way at priority traffic control, ENV: slippery road due to rain | Wet | Bright sun | Light rain | Roundabout | Give way | 0 | 0 | 0 |
| Arawata st |  | 1 | SH3 | $\underline{201736211}$ | 07/04/2017 | Fri | 07:00 | Car/Wagon1 NDB on ARAWATA ST hit rear end of Car/Wagon2 stop/slow for cross traffic | CAR/WAGON1, following too closely CAR/WAGON2, suddenly braked | Dry | Twilight | Null | Roundabout | Give way | 0 | 0 | 0 |
| arawata st |  | 1 | SH3 | $\underline{201138354}$ | 03/11/2011 | Thu | 15:30 | Car/Wagon1 EDB on ARAWATA ST sideswiped by SUV2 EDB on ARAWATA ST turning left | SUV2, turned right from incorrect lane | Dry | Bright sun | Fine | Roundabout | Give way | 0 | 0 | 0 |
| arawata st |  | 1 | SH3 | $\underline{201139354}$ | 28/12/2011 | Wed | 10:10 | Van1 EDB on ARAWATA ST sideswiped by Car/Wagon2 EDB on ARAWATA ST turning left | CAR/WAGON2, turned right from incorrect lane | Dry | Overcast | Fine | Roundabout | Give way | 0 | 0 | 0 |
| arawata st |  | 1 | SH3 | $\underline{201440078}$ | 04/07/2014 | Fri | 16:55 | Car/Wagon1 NDB on ARAWATA ST hit Car/Wagon2 crossing at right angle from right | CAR/WAGON1, failed to give way at priority traffic control | Dry | Bright <br> sun | Fine | Roundabout | Give way | 0 | 0 | 0 |
| Arawata st |  | 1 | SH3 | $\underline{201652520}$ | 15/09/2016 | Thu | 18:45 | Car/Wagon 1 NDB on ARAWATA ST hit Car/Wagon2 crossing at right angle from right | CAR/WAGON1, failed to give way at priority traffic control | Wet | Dark | Fine | Roundabout | Give way | 0 | 0 | 0 |


| Crash road | - Distance | Direction | Side road | ID | Date | Day of week | Time | Description of events | Crash factors | Surface condition | $\frac{\text { Natural }}{\text { light }}$ | Weather | Junction | Control | $\frac{\text { Crash }}{\frac{\text { Count }}{\text { coout }}}$ | $\begin{aligned} & \frac{\text { Crash }}{\text { Count }} \\ & \text { cevere } \end{aligned}$ | $\begin{aligned} & \frac{\text { Crash }}{} \\ & \frac{\text { count }}{\text { Conor }} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bond road |  | 1 | OHAUPO <br> ROAD | $\underline{201637035}$ | 28/04/2016 | Thu | 11:00 | Truck1 and Truck2 both SDB on BOND ROAD and turning; collided | TRUCK1, alcohol test below limit, too far left TRUCK2, alcohol test below limit | Dry | Bright sun | Fine | T Junction | Give way | 0 | 0 | 0 |
| bond road |  | 1 | SH3 | $\underline{201837764}$ | 07/04/2018 | Sat | 12:30 | Car/Wagon2 turning right hit by oncoming Car/Wagon 1 SDB on Ohaupo | CAR/WAGON1, other wrong lane or position CAR/WAGON2, failed to give way when waved through by other dri | Dry | Bright sun | Fine | T Junction | Give way | 0 | 0 | 0 |
| Bond road |  | 1 | SH3 | $\underline{201233687}$ | 21/06/2012 | Thu | 16:30 | Truck1 and Van2 both SDB on BOND ROAD and turning; collided | TRUCK1, blind spot VAN2, failed to notice indication of vehicle in front | Dry | Bright <br> sun | Fine | T Junction | Give way | 0 | 0 | 0 |
| CAMBridge road |  | 1 | OHAUPO <br> ROAD | $\underline{201631734}$ | 21/01/2016 | Thu | 00:00 | Car/Wagon1 EDB on CAMBRIDGE ROAD changing lanes to left hit Car/Wagon2 | CAR/WAGON1, alcohol test below limit, did not check/notice another party from other dirn, other inattentive, overtaking on left without due care CAR/WAGON2, alcohol test below limit | Dry | Bright sun | Fine | Roundabout | Give way | 0 | 0 | 0 |
| CAMBridge road |  | 1 | SH3 | $\underline{201836605}$ | 03/04/2018 | Tue | 18:15 | Van1 SDB on CAMBRIDGE ROAD hit Car/Wagon2 merging from the left | CAR/WAGON2, failed to give way at priority traffic control | Dry | Bright <br> sun | Fine | Roundabout | Give way | 0 | 0 | 0 |
| CAMbridge road |  | 1 | SH3 | $\underline{201836607}$ | 27/02/2018 | Tue | 16:00 | Car/Wagon1 SDB on CAMBRIDGE ROAD sideswiped by Van2 SDB on CAMBRIDGE ROAD turning left | VAN2, failed to give way at priority traffic control | Dry | Twilight | Fine | Roundabout | Give way | 0 | 0 | 0 |
| CAMBridge road |  | 1 | SH3 | $\underline{201040618}$ | 24/09/2010 | Fri | 19:00 | Car/Wagon1 SDB on CAMBRIDGE ROAD hit Car/Wagon2 merging from the left | CAR/WAGON2, alcohol suspected, failed to give way at priority traffic control | Dry | Dark | Fine | Roundabout | Give way | 0 | 0 | 0 |
| CAMBridge road |  | 1 | SH3 | $\underline{201356469}$ | 01/11/2013 | Fri | 08:13 | Car/Wagon1 NDB on CAMBRIDGE ROAD hit Motorcycle2 crossing at right angle from right | CAR/WAGON1, alcohol test above limit or test refused, did not check/notice another party from other dirn, failed to give way at priority traffic control | Dry | Overcast | Fine | Roundabout | Give way | 0 | 0 | 0 |
| CAMBridge road |  | 1 | SH3 | $\underline{201435253}$ | 21/03/2014 | Fri | 16:06 | Van1 SDB on CAMBRIDGE ROAD hit Car/Wagon2 merging from the right | CAR/WAGON2, failed to give way at priority traffic control | Dry | Bright <br> sun | Fine | Roundabout | Give way | 0 | 0 | 0 |
| CAMBridge road |  | 1 | SH 3 <br> ALBERT <br> PARK | $\underline{201138015}$ | 05/10/2011 | Wed | 21:15 | Car/Wagon1 WDB on CAMBRIDGE ROAD hit Car/Wagon2 turning right onto AXROAD from the left | CAR/WAGON2, failed to give way at priority traffic control, misjudged intentions of another party | Wet | Dark | Fine | Roundabout | Give way | 0 | 0 | 0 |
| CAMBridge road |  | 1 | SH3 <br> ALBERT <br> PARK DRIVE | $\underline{201547700}$ | 24/09/2015 | Thu | 09:47 | Car/Wagon1 WDB on CAMBRIDGE ROAD hit Car/Wagon2 crossing at right angle from right | CAR/WAGON2, attn diverted by scenery/persons outside vehicle | Dry | Overcast | Fine | Roundabout | Give way | 0 | 0 | 0 |
| ROGERS PLACE | 50 m | E | $\begin{aligned} & \text { BOND } \\ & \text { ROAD } \end{aligned}$ | $\underline{201640974}$ | 26/05/2016 | Thu | 14:36 | Car/Wagon1 WDB on ROGERS PLACE hit Car/Wagon2 turning into angle park | CAR/WAGON2, did not check/notice another party behind | Dry | Bright <br> sun | Null | Nil (Default) | Unknown | 0 | 0 | 0 |


| Crash road | Distance | Direction | Side road | ID | Date | Day of week | Time | Description of events | Crash factors | Surface condition | Natural Light | Weather | Junction | Control | $\begin{aligned} & \frac{\text { Crash }}{\text { Count }} \\ & \begin{array}{c} \text { coutal } \end{array} \\ & \hline \text { fate } \end{aligned}$ | $\frac{\text { Crash }}{\frac{\text { count }}{\text { severe }}}$ | $\frac{\frac{\text { Crash }}{}}{\frac{\text { count }}{\text { coonor }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ROGERS PLACE | 60 m | w | TE RAHU ROAD | $\underline{201746939}$ | 04/08/2017 | Fri | 11:30 | Car/Wagon1 NDB on Rogers place hit VEHB manoeuvring, Car/Wagon1 hit houses | CAR/WAGON1, wrong pedal/foot slipped | Dry | Overcast | Fine | Nil (Default) | Unknown | 0 | 0 | 0 |
| SH 3 |  | 1 | ARAWATA ST | $\underline{201833163}$ | 02/02/2018 | Fri | 11:50 | Car/Wagon1 SDB on SH 3 hit rear end of Car/Wagon2 stopped/moving slowly | CAR/WAGON1, following too closely | Dry | Bright sun | Fine | Roundabout | Give way | 0 | 0 | 0 |
| SH 3 |  | 1 | ARAWATA <br> ST | $\underline{201302009}$ | 13/03/2013 | Wed | 20:19 | Car/Wagon1 EDB on SH 3 lost control turning right, Car/Wagon1 hit traffic islands, parked vehicle, stationary vehicle | CAR/WAGON1, alcohol test above limit or test refused, driver overreacted, lost control when turning, speed entering corner/curve | Dry | Dark | Fine | Roundabout | Give way | 0 | 1 | 1 |
| SH 3 |  | । | ARAWATA ST | $\underline{201339127}$ | 30/09/2013 | Mon | 18:20 | Car/Wagonl EDB on SH 3 hit SUV2 crossing at right angle from right | CAR/WAGON1, failed to give way at priority traffic control, failed to notice control | Wet | Overcast | $\begin{aligned} & \text { Light } \\ & \text { rain } \end{aligned}$ | Roundabout | Give way | 0 | 0 | 0 |
| SH 3 |  | । | ARAWATA <br> ST | $\underline{201642318}$ | 29/06/2016 | Wed | 11:52 | Car/Wagon1 SDB on SH 3 hit Car/Wagon2 crossing at right angle from right | CAR/WAGON2, alcohol test below limit CAR/WAGON1, alcohol test below limit, did not check/notice another party from other dirn, failed to give way at priority traffic control | Wet | Overcast | Heavy <br> rain | Roundabout | Give way | 0 | 0 | 0 |
| SH 3 |  | 1 | ARAWATA ST | $\underline{201752650}$ | 10/10/2017 | Tue | 13:15 | Car/Wagon1 SDB on SH 3 changing lanes to left hit Car/Wagon2 | CAR/WAGON1, following too closely | Dry | Bright <br> sun | Fine | Roundabout | Give way | 0 | 0 | 0 |
| SH 3 |  | 1 | ARAWATA ST | $\underline{201440072}$ | 04/07/2014 | Fri | 14:00 | Car/Wagon1 NDB on SH 3 hit rear of Car/Wagon 2 NDB on SH 3 turning right from left side | CAR/WAGON1, travelled straight ahead from turning lane or flus | Dry | Bright <br> sun | Fine | Roundabout | Give way | 0 | 0 | 0 |
| SH 3 |  | । | ARAWATA ST | $\underline{201039448}$ | 08/09/2010 | Wed | 08:00 | Car/Wagon1 WDB on SH 3 overtaking hit Car/Wagon2 WDB on SH 3 turning right | CAR/WAGON2, turned right from incorrect lane | Dry | Overcast | Fine | Roundabout | Give way | 0 | 0 | 0 |
| SH 3 |  | 1 | ARAWATA <br> ST | 201201043 | 19/01/2012 | Thu | 22:17 | Motorcycle2 turning right hit by oncoming SUV1 NDB on SH 3 | SUV1, failed to give way at priority traffic control, misjudged intentions of another party | Dry | Dark | Fine | Roundabout | Give way | 0 | 0 | 1 |
| SH 3 |  | 1 | ARAWATA <br> ST | 201039388 | 03/09/2010 | Fri | 08:30 | Car/Wagon 1 SDB on SH 3 hit Car/Wagon2 merging from the left | CAR/WAGON1, failed to give way at priority traffic control | Dry | Overcast | Fine | Roundabout | Give way | 0 | 0 | 0 |
| SH 3 |  | 1 | ARAWATA <br> ST | $\underline{201848911}$ | 25/09/2018 | Tue | 16:20 | Car/Wagon 1 NDB on ARAWATA STREET, TE AWAMUTU, WAIPA sideswiped by Van2 NDB on ARAWATA STREET, TE AWAMUTU, WAIPA turning left | VAN2, alcohol test below limit, other wrong lane or position CAR/WAGON1, alcohol test below limit | Dry | Bright sun | Fine | Roundabout | Give way | 0 | 0 | 0 |
| SH 3 | 5 m | S | $\begin{aligned} & \text { BOND } \\ & \text { ROAD } \end{aligned}$ | 2936728 | 16/05/2009 | Sat | 09:34 | SUV1 SDB on SH 3 hit rear end of Car/Wagon2 stop/slow for queue | SUV1, failed to notice car slowing, stopping/stationary, following too closely, ENV: slippery road due to rain | Wet | Overcast | Light <br> rain | T Junction | Give way | 0 | 0 | 0 |


| Crash road | - Distance | Direction | Side road | ID | Date | Day of week | Time | Description of events | Crash factors | Surface condition | Natural light | Weather | Junction | Control | $\frac{\text { Crash }}{\frac{\text { Count }}{\text { coout }}} \begin{aligned} & \text { fatat } \end{aligned}$ | $\frac{\frac{\text { Crash }}{\text { count }}}{\frac{\text { countere }}{\text { seve }}}$ | $\frac{\text { Crash }}{\frac{\text { count }}{\text { coont }} \text { minor }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SH 3 |  | 1 | $\begin{aligned} & \text { BOND } \\ & \text { ROAD } \end{aligned}$ | $\underline{201519543}$ | 23/12/2015 | Wed | 14:40 | Car/Wagon2 turning right hit by oncoming SUV1 SDB on SH 3 | CAR/WAGON2, didnt look/notice other party - visibility obstruc, failed to give way turning to nonturning traffic SUV1, failed to give way when waved through by other dri | Dry | Bright sun | Null | T Junction | Give way | 0 | 0 | 1 |
| SH 3 |  | 1 | CAMBRIDGE <br> ROAD | $\underline{201335938}$ | 08/08/2013 | Thu | 14:00 | Car/Wagon1 SDB on SH 3 hit Car/Wagon2 merging from the left | CAR/WAGON1, failed to give way at priority traffic control, other inattentive | Dry | Overcast | Fine | Roundabout | Give way | 0 | 0 | 0 |
| SH 3 |  | 1 | CAMBRIDGE <br> ROAD | $\underline{201530394}$ | 06/01/2015 | Tue | 08:00 | Van1 EDB on SH 3 sideswiped by Car/Wagon2 EDB on SH 3 turning left | VAN1, other inattentive, turned right from incorrect lane | Dry | Bright <br> sun | Fine | Roundabout | Give way | 0 | 0 | 0 |
| SH 3 |  | 1 | CAMBRIDGE <br> ROAD | $\underline{201650354}$ | 26/09/2016 | Mon | 15:40 | Car/Wagon 1 SDB on SH 3 sideswiped by Car/Wagon2 SDB on SH 3 turning left | CAR/WAGON1, travelled straight ahead from turning lane or flus | Dry | Overcast | Fine | Roundabout | Give way | 0 | 0 | 0 |
| SH 3 |  | 1 | $\begin{aligned} & \text { CAMBRIDGE } \\ & \text { ROAD } \end{aligned}$ | $\underline{201652816}$ | 18/11/2016 | Fri | 14:45 | Van1 EDB on Ohaupo Road sideswiped by Car/Wagon2 EDB on Ohaupo Road turning left | CAR/WAGON2, turned right from incorrect lane | Dry | Bright <br> sun | Fine | Roundabout | Nil | 0 | 0 | 0 |
| SH 3 |  | 1 | SH3 | $\underline{201739448}$ | 15/05/2017 | Mon | 14:50 | Car/Wagon1 EDB on Ohaupo road sideswiped by Car/Wagon2 EDB on Ohaupo road turning left | CAR/WAGON2, did not check/notice another party behind, non-compliance with regulatory device with sign or, turned right from incorrect lane | Dry | Overcast | Fine | Roundabout | Give way | 0 | 0 | 0 |

1-38 of 38

## Appendix D: T11 Modelling Reports

Modelling outputs for the following intersections included:

- Proposed Access 1
- Proposed Access 2
- Proposed Access 3
- Gleneagles Road

Also included as reference for the high-level assessment of State Highway 3:

- State Highway 3 / Cambridge Road / Arawata Street intersectio


## INTERSECTION SUMMARY

## Site: 101 [2018_Low Dev_Access 1_AM]

New Site
Site Category: (None)
Giveway / Yield (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 49.5 km/h | 49.5 km/h |
| Travel Distance (Total) | 521.7 veh-km/h | 626.1 pers-km/h |
| Travel Time (Total) | 10.5 veh-h/h | 12.7 pers-h/h |
| Demand Flows (Total) | 518 veh/h | 621 pers/h |
| Percent Heavy Vehicles (Demand) | 1.0 \% |  |
| Degree of Saturation | 0.173 |  |
| Practical Spare Capacity | 466.9 \% |  |
| Effective Intersection Capacity | 2996 veh/h |  |
| Control Delay (Total) | 0.09 veh-h/h | 0.11 pers-h/h |
| Control Delay (Average) | 0.6 sec | 0.6 sec |
| Control Delay (Worst Lane) | 7.7 sec |  |
| Control Delay (Worst Movement) | 7.7 sec | 7.7 sec |
| Geometric Delay (Average) | 0.5 sec |  |
| Stop-Line Delay (Average) | 0.2 sec |  |
| Idling Time (Average) | 0.0 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.1 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 0.6 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $31 \mathrm{veh} / \mathrm{h}$ | 37 pers/h |
| Effective Stop Rate | 0.06 | 0.06 |
| Proportion Queued | 0.04 | 0.04 |
| Performance Index | 10.8 | 10.8 |
| Cost (Total) | 165.94 \$/h | 165.94 \$/h |
| Fuel Consumption (Total) | $32.3 \mathrm{~L} / \mathrm{h}$ |  |
| Carbon Dioxide (Total) | $76.3 \mathrm{~kg} / \mathrm{h}$ |  |
| Hydrocarbons (Total) | $0.005 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.059 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.040 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 1.2 \%
Number of Iterations: 4 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 28.0\% $1.6 \% \quad 0.8 \%$

| Intersection Performance - Annual Values |  |  |
| :--- | ---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $248,590 \mathrm{veh} / \mathrm{y}$ | $298,307 \mathrm{pers} / \mathrm{y}$ |
| Delay | $44 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $52 \mathrm{pers-h} / \mathrm{y}$ |
| Effective Stops | $14,679 \mathrm{veh} / \mathrm{y}$ | $17,614 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $250,434 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $300,521 \mathrm{pers-km} / \mathrm{y}$ |
| Travel Time | $5,062 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $6,075 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  | $79,650 \mathrm{~S} / \mathrm{y}$ |
| Cost | $79,650 \mathrm{\$} / \mathrm{y}$ |  |
| Fuel Consumption | $15,521 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $36,617 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $2 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $28 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $19 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 31 May 2019 1:42:52 PM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

## Site: 101 [2018_Low Dev_Access 1_AM]

New Site
Site Category: (None)
Giveway / Yield (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | South | East | West |  |
| LOS | A | NA | NA | NA |



Colour code based on Level of Service

| LOS A | LOS B |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule)
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

## INTERSECTION SUMMARY

Site: 101 [2018_Low Dev_Access 1_PM]
New Site
Site Category: (None)
Giveway / Yield (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 49.5 km/h | 49.5 km/h |
| Travel Distance (Total) | 521.7 veh-km/h | 626.1 pers-km/h |
| Travel Time (Total) | 10.5 veh-h/h | 12.6 pers-h/h |
| Demand Flows (Total) | 518 veh/h | 621 pers/h |
| Percent Heavy Vehicles (Demand) | 1.0 \% |  |
| Degree of Saturation | 0.172 |  |
| Practical Spare Capacity | 471.0 \% |  |
| Effective Intersection Capacity | 3017 veh/h |  |
| Control Delay (Total) | 0.08 veh-h/h | 0.09 pers-h/h |
| Control Delay (Average) | 0.5 sec | 0.5 sec |
| Control Delay (Worst Lane) | 7.8 sec |  |
| Control Delay (Worst Movement) | 7.8 sec | 7.8 sec |
| Geometric Delay (Average) | 0.5 sec |  |
| Stop-Line Delay (Average) | 0.1 sec |  |
| Idling Time (Average) | 0.0 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.1 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 0.5 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $28 \mathrm{veh} / \mathrm{h}$ | 34 pers/h |
| Effective Stop Rate | 0.05 | 0.05 |
| Proportion Queued | 0.02 | 0.02 |
| Performance Index | 10.8 | 10.8 |
| Cost (Total) | 217.50 \$/h | 217.50 \$/h |
| Fuel Consumption (Total) | 32.3 L/h |  |
| Carbon Dioxide (Total) | $76.1 \mathrm{~kg} / \mathrm{h}$ |  |
| Hydrocarbons (Total) | $0.005 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.059 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.040 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.6 \%
Number of Iterations: 3 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 63.7\% $\quad 13.7 \% \quad 0.6 \%$

| Intersection Performance - Annual Values |  |  |
| :--- | ---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $248,590 \mathrm{veh} / \mathrm{y}$ | $298,307 \mathrm{pers} / \mathrm{y}$ |
| Delay | $38 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $45 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $13,465 \mathrm{veh} / \mathrm{y}$ | $16,158 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $250,428 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $300,513 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $5,057 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $6,068 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $104,400 \mathrm{\$} / \mathrm{y}$ | $104,400 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $15,503 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $36,544 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $2 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $28 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $19 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 31 May 2019 1:42:52 PM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

## Site: 101 [2018_Low Dev_Access 1_PM]

New Site
Site Category: (None)
Giveway / Yield (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | South | East | West |  |
| LOS | A | NA | NA | NA |



Colour code based on Level of Service

| LOS A | LOS B |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule)
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

## INTERSECTION SUMMARY

## Site: 101 [2035_Hi Dev_Access 1_AM]

New Site
Site Category: (None)
Giveway / Yield (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 49.3 km/h | 49.3 km/h |
| Travel Distance (Total) | 720.9 veh-km/h | 865.1 pers-km/h |
| Travel Time (Total) | 14.6 veh-h/h | 17.6 pers-h/h |
| Demand Flows (Total) | 719 veh/h | 863 pers/h |
| Percent Heavy Vehicles (Demand) | 1.0 \% |  |
| Degree of Saturation | 0.233 |  |
| Practical Spare Capacity | 320.4 \% |  |
| Effective Intersection Capacity | 3084 veh/h |  |
| Control Delay (Total) | 0.18 veh-h/h | 0.22 pers-h/h |
| Control Delay (Average) | 0.9 sec | 0.9 sec |
| Control Delay (Worst Lane) | 9.6 sec |  |
| Control Delay (Worst Movement) | 9.6 sec | 9.6 sec |
| Geometric Delay (Average) | 0.6 sec |  |
| Stop-Line Delay (Average) | 0.3 sec |  |
| Idling Time (Average) | 0.1 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.2 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 1.2 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $61 \mathrm{veh} / \mathrm{h}$ | 73 pers/h |
| Effective Stop Rate | 0.09 | 0.09 |
| Proportion Queued | 0.06 | 0.06 |
| Performance Index | 15.2 | 15.2 |
| Cost (Total) | 233.25 \$/h | 233.25 \$/h |
| Fuel Consumption (Total) | $45.1 \mathrm{~L} / \mathrm{h}$ |  |
| Carbon Dioxide (Total) | $106.5 \mathrm{~kg} / \mathrm{h}$ |  |
| Hydrocarbons (Total) | $0.006 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.082 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.057 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 1.7 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 3.0\% $\quad 1.5 \% \quad 0.7 \%$

| Intersection Performance - Annual Values |  |  |
| :--- | ---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $345,095 \mathrm{veh} / \mathrm{y}$ | $414,114 \mathrm{pers} / \mathrm{y}$ |
| Delay | $88 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $106 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $29,348 \mathrm{veh} / \mathrm{y}$ | $35,217 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $346,050 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $415,260 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $7,025 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $8,431 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $111,961 \mathrm{\$} / \mathrm{y}$ | $111,961 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $21,672 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $51,126 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $3 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $39 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $27 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 31 May 2019 1:42:57 PM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

## Site: 101 [2035_Hi Dev_Access 1_AM]

New Site
Site Category: (None)
Giveway / Yield (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | South | East | West |  |
| LOS | A | NA | NA | NA |



Colour code based on Level of Service

| LOS A | LOS B | LOS C | LOS D | LOS E | LOS F |
| :--- | :--- | :--- | :--- | :--- | :--- |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule)
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

## INTERSECTION SUMMARY

## Site: 101 [2035_Hi Dev_Access 1_PM]

New Site
Site Category: (None)
Giveway / Yield (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 49.3 km/h | 49.3 km/h |
| Travel Distance (Total) | 720.9 veh-km/h | 865.1 pers-km/h |
| Travel Time (Total) | 14.6 veh-h/h | 17.5 pers-h/h |
| Demand Flows (Total) | 719 veh/h | 863 pers/h |
| Percent Heavy Vehicles (Demand) | 1.0 \% |  |
| Degree of Saturation | 0.230 |  |
| Practical Spare Capacity | 326.4 \% |  |
| Effective Intersection Capacity | 3128 veh/h |  |
| Control Delay (Total) | 0.15 veh-h/h | 0.18 pers-h/h |
| Control Delay (Average) | 0.8 sec | 0.8 sec |
| Control Delay (Worst Lane) | 9.8 sec |  |
| Control Delay (Worst Movement) | 9.8 sec | 9.8 sec |
| Geometric Delay (Average) | 0.6 sec |  |
| Stop-Line Delay (Average) | 0.1 sec |  |
| Idling Time (Average) | 0.0 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.1 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 1.0 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $53 \mathrm{veh} / \mathrm{h}$ | 63 pers/h |
| Effective Stop Rate | 0.07 | 0.07 |
| Proportion Queued | 0.04 | 0.04 |
| Performance Index | 15.1 | 15.1 |
| Cost (Total) | 303.70 \$/h | 303.70 \$/h |
| Fuel Consumption (Total) | $45.1 \mathrm{~L} / \mathrm{h}$ |  |
| Carbon Dioxide (Total) | $106.2 \mathrm{~kg} / \mathrm{h}$ |  |
| Hydrocarbons (Total) | $0.006 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.082 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.056 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.9 \%
Number of Iterations: 4 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 18.2\% $1.2 \% \quad 0.6 \%$

| Intersection Performance - Annual Values |  |  |
| :--- | ---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $345,095 \mathrm{veh} / \mathrm{y}$ | $414,114 \mathrm{pers} / \mathrm{y}$ |
| Delay | $73 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $87 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $25,317 \mathrm{veh} / \mathrm{y}$ | $30,380 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $346,036 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $415,243 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $7,012 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $8,415 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $145,777 \mathrm{~m} / \mathrm{y}$ | $145,777 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $21,633 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $50,993 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $3 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $39 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $27 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 31 May 2019 1:42:57 PM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

## Site: 101 [2035_Hi Dev_Access 1_PM]

New Site
Site Category: (None)
Giveway / Yield (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | South | East | West |  |
| LOS | A | NA | NA | NA |



Colour code based on Level of Service

| LOS A | LOS B | LOS C | LOS D | LOS E | LOS F |
| :--- | :--- | :--- | :--- | :--- | :--- |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule)
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

## INTERSECTION SUMMARY

## Site: 101 [2018_Low Dev_Access 2_AM]

New Site
Site Category: (None)
Giveway / Yield (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 49.3 km/h | 49.3 km/h |
| Travel Distance (Total) | 210.1 veh-km/h | 252.2 pers-km/h |
| Travel Time (Total) | 4.3 veh-h/h | 5.1 pers-h/h |
| Demand Flows (Total) | 496 veh/h | 595 pers/h |
| Percent Heavy Vehicles (Demand) | 1.0 \% |  |
| Degree of Saturation | 0.168 |  |
| Practical Spare Capacity | 483.8 \% |  |
| Effective Intersection Capacity | 2954 veh/h |  |
| Control Delay (Total) | 0.05 veh-h/h | 0.06 pers-h/h |
| Control Delay (Average) | 0.4 sec | 0.4 sec |
| Control Delay (Worst Lane) | 6.2 sec |  |
| Control Delay (Worst Movement) | 7.7 sec | 7.7 sec |
| Geometric Delay (Average) | 0.3 sec |  |
| Stop-Line Delay (Average) | 0.1 sec |  |
| Idling Time (Average) | 0.0 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.1 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 0.6 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $18 \mathrm{veh} / \mathrm{h}$ | 21 pers/h |
| Effective Stop Rate | 0.04 | 0.04 |
| Proportion Queued | 0.02 | 0.02 |
| Performance Index | 4.5 | 4.5 |
| Cost (Total) | 71.45 \$/h | 71.45 \$/h |
| Fuel Consumption (Total) | $13.2 \mathrm{~L} / \mathrm{h}$ |  |
| Carbon Dioxide (Total) | $31.2 \mathrm{~kg} / \mathrm{h}$ |  |
| Hydrocarbons (Total) | $0.002 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.024 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.017 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.9 \%
Number of Iterations: 3 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 49.9\% $27.9 \% \quad 0.9 \%$

| Intersection Performance - Annual Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | 237,979 veh/y | 285,575 pers/y |
| Delay | 25 veh-h/y | 30 pers-h/y |
| Effective Stops | 8,569 veh/y | 10,283 pers/y |
| Travel Distance | 100,865 veh-km/y | 121,037 pers-km/y |
| Travel Time | 2,047 veh-h/y | 2,457 pers-h/y |
| Cost | 34,296 \$/y | 34,296 \$/y |
| Fuel Consumption | 6,341 L/y |  |
| Carbon Dioxide | 14,956 kg/y |  |
| Hydrocarbons | $1 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $12 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $8 \mathrm{~kg} / \mathrm{y}$ |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 31 May 2019 1:42:53 PM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

## Site: 101 [2018_Low Dev_Access 2_AM]

New Site
Site Category: (None)
Giveway / Yield (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | South | East | West |  |
| LOS | A | NA | NA | NA |



Colour code based on Level of Service

| LOS A | LOS B | LOS C | LOS D | LOS E | LOS F |
| :--- | :--- | :--- | :--- | :--- | :--- |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 31 May 2019 1:42:53 PM
Project: \lttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

## INTERSECTION SUMMARY

Site: 101 [2018_Low Dev_Access 2_PM]
New Site
Site Category: (None)
Giveway / Yield (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 49.3 km/h | 49.3 km/h |
| Travel Distance (Total) | 210.1 veh-km/h | 252.1 pers-km/h |
| Travel Time (Total) | 4.3 veh-h/h | 5.1 pers-h/h |
| Demand Flows (Total) | 496 veh/h | 595 pers/h |
| Percent Heavy Vehicles (Demand) | 1.0 \% |  |
| Degree of Saturation | 0.167 |  |
| Practical Spare Capacity | 487.5 \% |  |
| Effective Intersection Capacity | 2972 veh/h |  |
| Control Delay (Total) | 0.05 veh-h/h | 0.06 pers-h/h |
| Control Delay (Average) | 0.3 sec | 0.3 sec |
| Control Delay (Worst Lane) | 5.9 sec |  |
| Control Delay (Worst Movement) | 7.7 sec | 7.7 sec |
| Geometric Delay (Average) | 0.3 sec |  |
| Stop-Line Delay (Average) | 0.0 sec |  |
| Idling Time (Average) | 0.0 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.0 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 0.3 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $16 \mathrm{veh} / \mathrm{h}$ | 20 pers/h |
| Effective Stop Rate | 0.03 | 0.03 |
| Proportion Queued | 0.01 | 0.01 |
| Performance Index | 4.4 | 4.4 |
| Cost (Total) | 87.53 \$/h | 87.53 \$/h |
| Fuel Consumption (Total) | $13.2 \mathrm{~L} / \mathrm{h}$ |  |
| Carbon Dioxide (Total) | $31.1 \mathrm{~kg} / \mathrm{h}$ |  |
| Hydrocarbons (Total) | $0.002 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.024 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.017 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.4 \%
Number of Iterations: 3 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 47.1\% $\quad 13.3 \% \quad 0.4 \%$

| Intersection Performance - Annual Values |  |  |
| :--- | ---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $237,979 \mathrm{veh} / \mathrm{y}$ | $285,575 \mathrm{pers} / \mathrm{y}$ |
| Delay | $22 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $27 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $7,859 \mathrm{veh} / \mathrm{y}$ | $9,430 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $100,855 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $121,026 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $2,045 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $2,454 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $42,012 \mathrm{\$} / \mathrm{y}$ | $42,012 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $6,331 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $14,924 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $1 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $12 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $8 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 31 May 2019 1:42:53 PM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

Site: 101 [2018_Low Dev_Access 2_PM]
New Site
Site Category: (None)
Giveway / Yield (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | South | East | West |  |
| LOS | A | NA | NA | NA |



Colour code based on Level of Service

| LOS A | LOS B |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 31 May 2019 1:42:53 PM
Project: \lttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

## INTERSECTION SUMMARY

## Site: 101 [2035_Hi Dev_Access 2_AM]

New Site
Site Category: (None)
Giveway / Yield (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 48.8 km/h | 48.8 km/h |
| Travel Distance (Total) | 291.0 veh-km/h | 349.2 pers-km/h |
| Travel Time (Total) | 6.0 veh-h/h | 7.2 pers-h/h |
| Demand Flows (Total) | 685 veh/h | 822 pers/h |
| Percent Heavy Vehicles (Demand) | 1.0 \% |  |
| Degree of Saturation | 0.225 |  |
| Practical Spare Capacity | 334.7 \% |  |
| Effective Intersection Capacity | 3040 veh/h |  |
| Control Delay (Total) | 0.12 veh-h/h | 0.14 pers-h/h |
| Control Delay (Average) | 0.6 sec | 0.6 sec |
| Control Delay (Worst Lane) | 7.3 sec |  |
| Control Delay (Worst Movement) | 9.7 sec | 9.7 sec |
| Geometric Delay (Average) | 0.4 sec |  |
| Stop-Line Delay (Average) | 0.2 sec |  |
| Idling Time (Average) | 0.0 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.2 veh |  |
| $95 \%$ Back of Queue - Distance (Worst Lane) | 1.4 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $40 \mathrm{veh} / \mathrm{h}$ | 48 pers/h |
| Effective Stop Rate | 0.06 | 0.06 |
| Proportion Queued | 0.04 | 0.04 |
| Performance Index | 6.5 | 6.5 |
| Cost (Total) | 102.47 \$/h | 102.47 \$/h |
| Fuel Consumption (Total) | $18.7 \mathrm{~L} / \mathrm{h}$ |  |
| Carbon Dioxide (Total) | $44.1 \mathrm{~kg} / \mathrm{h}$ |  |
| Hydrocarbons (Total) | $0.003 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.034 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.024 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 1.2 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: $2.1 \% \quad 1.0 \% \quad 0.5 \%$

| Intersection Performance - Annual Values |  |  |
| :--- | ---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $328,926 \mathrm{veh} / \mathrm{y}$ | $394,712 \mathrm{pers} / \mathrm{y}$ |
| Delay | $58 \mathrm{veh} / \mathrm{h} / \mathrm{y}$ | $69 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $19,276 \mathrm{veh} / \mathrm{y}$ | $23,132 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $139,664 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $167,596 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $2,860 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $3,432 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $49,185 \mathrm{\$} / \mathrm{y}$ | $49,185 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $8,972 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $21,161 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $1 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $16 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $12 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 31 May 2019 1:42:57 PM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

## Site: 101 [2035_Hi Dev_Access 2_AM]

New Site
Site Category: (None)
Giveway / Yield (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | South | East | West |  |
| LOS | A | NA | NA | NA |



Colour code based on Level of Service

| LOS A | LOS B | LOS C | LOS D | LOS E | LOS F |
| :--- | :--- | :--- | :--- | :--- | :--- |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab) NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule)
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

## INTERSECTION SUMMARY

## Site: 101 [2035_Hi Dev_Access 2_PM]

New Site
Site Category: (None)
Giveway / Yield (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 49.0 km/h | 49.0 km/h |
| Travel Distance (Total) | 290.9 veh-km/h | 349.1 pers-km/h |
| Travel Time (Total) | 5.9 veh-h/h | 7.1 pers-h/h |
| Demand Flows (Total) | 685 veh/h | 822 pers/h |
| Percent Heavy Vehicles (Demand) | 1.0 \% |  |
| Degree of Saturation | 0.224 |  |
| Practical Spare Capacity | 336.8 \% |  |
| Effective Intersection Capacity | 3054 veh/h |  |
| Control Delay (Total) | 0.10 veh-h/h | 0.12 pers-h/h |
| Control Delay (Average) | 0.5 sec | 0.5 sec |
| Control Delay (Worst Lane) | 6.4 sec |  |
| Control Delay (Worst Movement) | 9.7 sec | 9.7 sec |
| Geometric Delay (Average) | 0.4 sec |  |
| Stop-Line Delay (Average) | 0.1 sec |  |
| Idling Time (Average) | 0.0 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.1 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 0.6 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $34 \mathrm{veh} / \mathrm{h}$ | 41 pers/h |
| Effective Stop Rate | 0.05 | 0.05 |
| Proportion Queued | 0.02 | 0.02 |
| Performance Index | 6.3 | 6.3 |
| Cost (Total) | 123.57 \$/h | 123.57 \$/h |
| Fuel Consumption (Total) | 18.6 L/h |  |
| Carbon Dioxide (Total) | $43.9 \mathrm{~kg} / \mathrm{h}$ |  |
| Hydrocarbons (Total) | $0.003 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.034 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.024 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.8 \%
Number of Iterations: 3 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 52.1\% $\quad 17.7 \% \quad 0.8 \%$

| Intersection Performance - Annual Values |  |  |
| :--- | :---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $328,926 \mathrm{veh} / \mathrm{y}$ | $394,712 \mathrm{pers} / \mathrm{y}$ |
| Delay | $46 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $56 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $16,214 \mathrm{veh} / \mathrm{y}$ | $19,457 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $139,651 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $167,582 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $2,850 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $3,421 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Cost | $59,315 \mathrm{\$} / \mathrm{y}$ | $59,315 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $8,942 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $21,080 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $1 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $16 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $12 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 31 May 2019 1:42:58 PM
Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

## Site: 101 [2035_Hi Dev_Access 2_PM]

New Site
Site Category: (None)
Giveway / Yield (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | South | East | West |  |
| LOS | A | NA | NA | NA |



Colour code based on Level of Service

| LOS A | LOS B | LOS C | LOS D | LOS E |
| :--- | :--- | :--- | :--- | :--- | LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab) NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule)
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

## INTERSECTION SUMMARY

Site: 101 [2018_Low Dev_Access 3_AM]
New Site
Site Category: (None)
Giveway / Yield (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 48.3 km/h | 48.3 km/h |
| Travel Distance (Total) | 259.4 veh-km/h | 311.3 pers-km/h |
| Travel Time (Total) | 5.4 veh-h/h | 6.4 pers-h/h |
| Demand Flows (Total) | 548 veh/h | 658 pers/h |
| Percent Heavy Vehicles (Demand) | 1.0 \% |  |
| Degree of Saturation | 0.170 |  |
| Practical Spare Capacity | 476.1 \% |  |
| Effective Intersection Capacity | 3224 veh/h |  |
| Control Delay (Total) | 0.15 veh-h/h | 0.18 pers-h/h |
| Control Delay (Average) | 1.0 sec | 1.0 sec |
| Control Delay (Worst Lane) | 6.0 sec |  |
| Control Delay (Worst Movement) | 6.7 sec | 6.7 sec |
| Geometric Delay (Average) | 0.7 sec |  |
| Stop-Line Delay (Average) | 0.3 sec |  |
| Idling Time (Average) | 0.0 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.2 veh |  |
| $95 \%$ Back of Queue - Distance (Worst Lane) | 1.4 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $50 \mathrm{veh} / \mathrm{h}$ | 60 pers/h |
| Effective Stop Rate | 0.09 | 0.09 |
| Proportion Queued | 0.08 | 0.08 |
| Performance Index | 6.2 | 6.2 |
| Cost (Total) | 113.30 \$/h | 113.30 \$/h |
| Fuel Consumption (Total) | $17.5 \mathrm{~L} / \mathrm{h}$ |  |
| Carbon Dioxide (Total) | $41.2 \mathrm{~kg} / \mathrm{h}$ |  |
| Hydrocarbons (Total) | $0.003 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.032 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.024 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 3 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 46.5\% 5.3\% 0.0\%

| Intersection Performance - Annual Values |  |  |
| :--- | ---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $263,242 \mathrm{veh} / \mathrm{y}$ | $315,891 \mathrm{pers} / \mathrm{y}$ |
| Delay | $70 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $84 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $23,864 \mathrm{veh} / \mathrm{y}$ | $28,637 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $124,532 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $149,439 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $2,576 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $3,091 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $54,385 \mathrm{\$} / \mathrm{y}$ | $54,385 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $8,385 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $19,765 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $1 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $16 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $11 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Saturday, 8 June 2019 6:13:52 PM
Project: \Ittgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

## Site: 101 [2018_Low Dev_Access 3_AM]

New Site
Site Category: (None)
Giveway / Yield (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | South | East | West |  |
| LOS | A | NA | NA | NA |



Colour code based on Level of Service


Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

## INTERSECTION SUMMARY

Site: 101 [2018_Low Dev_Access 3_PM]
New Site
Site Category: (None)
Giveway / Yield (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 48.4 km/h | 48.4 km/h |
| Travel Distance (Total) | 259.4 veh-km/h | 311.3 pers-km/h |
| Travel Time (Total) | 5.4 veh-h/h | 6.4 pers-h/h |
| Demand Flows (Total) | $548 \mathrm{veh} / \mathrm{h}$ | 658 pers/h |
| Percent Heavy Vehicles (Demand) | 1.0 \% |  |
| Degree of Saturation | 0.193 |  |
| Practical Spare Capacity | 406.6 \% |  |
| Effective Intersection Capacity | 2835 veh/h |  |
| Control Delay (Total) | 0.13 veh-h/h | 0.16 pers-h/h |
| Control Delay (Average) | 0.8 sec | 0.8 sec |
| Control Delay (Worst Lane) | 5.5 sec |  |
| Control Delay (Worst Movement) | 6.8 sec | 6.8 sec |
| Geometric Delay (Average) | 0.7 sec |  |
| Stop-Line Delay (Average) | 0.1 sec |  |
| Idling Time (Average) | 0.0 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.3 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 2.2 m |  |
| Queue Storage Ratio (Worst Lane) | 0.01 |  |
| Total Effective Stops | $46 \mathrm{veh} / \mathrm{h}$ | 55 pers/h |
| Effective Stop Rate | 0.08 | 0.08 |
| Proportion Queued | 0.06 | 0.06 |
| Performance Index | 6.2 | 6.2 |
| Cost (Total) | 100.27 \$/h | 100.27 \$/h |
| Fuel Consumption (Total) | 17.6 L/h |  |
| Carbon Dioxide (Total) | $41.5 \mathrm{~kg} / \mathrm{h}$ |  |
| Hydrocarbons (Total) | $0.003 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.033 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.024 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 3 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 41.0\% 2.7\% 0.0\%

| Intersection Performance - Annual Values |  |  |
| :--- | ---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $263,242 \mathrm{veh} / \mathrm{y}$ | $315,891 \mathrm{pers} / \mathrm{y}$ |
| Delay | $62 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $74 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $22,104 \mathrm{veh} / \mathrm{y}$ | $26,525 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $124,514 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $149,417 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $2,572 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $3,087 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Cost | $48,130 \mathrm{\$} / \mathrm{y}$ | $48,130 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $8,443 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $19,911 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $1 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $16 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $12 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Saturday, 8 June 2019 6:13:52 PM
Project: \Ittgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

Site: 101 [2018_Low Dev_Access 3_PM]
New Site
Site Category: (None)
Giveway / Yield (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | South | East | West |  |
| LOS | A | NA | NA | NA |



Colour code based on Level of Service


Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

## INTERSECTION SUMMARY

## Site: 101 [2035_Hi Dev_Access 3_AM]

New Site
Site Category: (None)
Giveway / Yield (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 47.5 km/h | 47.5 km/h |
| Travel Distance (Total) | 371.2 veh-km/h | 445.5 pers-km/h |
| Travel Time (Total) | 7.8 veh-h/h | 9.4 pers-h/h |
| Demand Flows (Total) | 791 veh/h | 949 pers/h |
| Percent Heavy Vehicles (Demand) | 1.0 \% |  |
| Degree of Saturation | 0.231 |  |
| Practical Spare Capacity | 325.1 \% |  |
| Effective Intersection Capacity | $3429 \mathrm{veh} / \mathrm{h}$ |  |
| Control Delay (Total) | 0.34 veh-h/h | 0.41 pers-h/h |
| Control Delay (Average) | 1.5 sec | 1.5 sec |
| Control Delay (Worst Lane) | 6.9 sec |  |
| Control Delay (Worst Movement) | 8.2 sec | 8.2 sec |
| Geometric Delay (Average) | 1.0 sec |  |
| Stop-Line Delay (Average) | 0.6 sec |  |
| Idling Time (Average) | 0.1 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.5 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 3.4 m |  |
| Queue Storage Ratio (Worst Lane) | 0.01 |  |
| Total Effective Stops | $112 \mathrm{veh} / \mathrm{h}$ | 134 pers/h |
| Effective Stop Rate | 0.14 | 0.14 |
| Proportion Queued | 0.13 | 0.13 |
| Performance Index | 9.7 | 9.7 |
| Cost (Total) | 171.05 \$/h | 171.05 \$/h |
| Fuel Consumption (Total) | $26.3 \mathrm{~L} / \mathrm{h}$ |  |
| Carbon Dioxide (Total) | $61.9 \mathrm{~kg} / \mathrm{h}$ |  |
| Hydrocarbons (Total) | $0.004 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.049 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.037 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 3 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 54.4\% 10.2\% 0.0\%

| Intersection Performance - Annual Values |  |  |
| :--- | :---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $379,453 \mathrm{veh} / \mathrm{y}$ | $455,343 \mathrm{pers} / \mathrm{y}$ |
| Delay | $162 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $195 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $53,537 \mathrm{veh} / \mathrm{y}$ | $64,245 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $178,181 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $213,817 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $3,750 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $4,500 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  | $82,103 \mathrm{\$} / \mathrm{y}$ |
| Cost | $82,103 \mathrm{\$} / \mathrm{y}$ |  |
| Fuel Consumption | $12,600 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $29,699 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $2 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $24 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $18 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Saturday, 8 June 2019 6:13:57 PM
Project: \Ittgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

## Site: 101 [2035_Hi Dev_Access 3_AM]

New Site
Site Category: (None)
Giveway / Yield (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | South | East | West |  |
| LOS | A | NA | NA | NA |



Colour code based on Level of Service


Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

## INTERSECTION SUMMARY

## Site: 101 [2035_Hi Dev_Access 3_PM]

New Site
Site Category: (None)
Giveway / Yield (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 47.6 km/h | 47.6 km/h |
| Travel Distance (Total) | 371.1 veh-km/h | 445.4 pers-km/h |
| Travel Time (Total) | 7.8 veh-h/h | 9.4 pers-h/h |
| Demand Flows (Total) | 791 veh/h | 949 pers/h |
| Percent Heavy Vehicles (Demand) | 1.0 \% |  |
| Degree of Saturation | 0.281 |  |
| Practical Spare Capacity | 249.3 \% |  |
| Effective Intersection Capacity | 2817 veh/h |  |
| Control Delay (Total) | 0.29 veh-h/h | 0.34 pers-h/h |
| Control Delay (Average) | 1.3 sec | 1.3 sec |
| Control Delay (Worst Lane) | 6.1 sec |  |
| Control Delay (Worst Movement) | 8.5 sec | 8.5 sec |
| Geometric Delay (Average) | 1.0 sec |  |
| Stop-Line Delay (Average) | 0.3 sec |  |
| Idling Time (Average) | 0.0 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.7 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 5.1 m |  |
| Queue Storage Ratio (Worst Lane) | 0.01 |  |
| Total Effective Stops | $95 \mathrm{veh} / \mathrm{h}$ | 114 pers/h |
| Effective Stop Rate | 0.12 | 0.12 |
| Proportion Queued | 0.11 | 0.11 |
| Performance Index | 9.7 | 9.7 |
| Cost (Total) | 154.73 \$/h | 154.73 \$/h |
| Fuel Consumption (Total) | 26.6 L/h |  |
| Carbon Dioxide (Total) | $62.7 \mathrm{~kg} / \mathrm{h}$ |  |
| Hydrocarbons (Total) | $0.004 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.050 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.039 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 3 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 48.8\% 5.0\% 0.0\%

| Intersection Performance - Annual Values |  |  |
| :--- | :--- | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $379,453 \mathrm{veh} / \mathrm{y}$ | $455,343 \mathrm{pers} / \mathrm{y}$ |
| Delay | $138 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $166 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $45,569 \mathrm{veh} / \mathrm{y}$ | $54,683 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $178,144 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $213,772 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $3,741 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $4,489 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $74,272 \mathrm{\$} / \mathrm{y}$ | $74,272 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $12,771 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $30,113 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $2 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $24 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $19 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Saturday, 8 June 2019 6:13:57 PM
Project: \Ittgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

## Site: 101 [2035_Hi Dev_Access 3_PM]

New Site
Site Category: (None)
Giveway / Yield (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | South | East | West |  |
| LOS | A | NA | NA | NA |



Colour code based on Level of Service


Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

## INTERSECTION SUMMARY

## Site: 101 [2018_Low Dev_Gleneagles_AM]

## New Site

Site Category: (None)
Giveway / Yield (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 49.0 km/h | 49.0 km/h |
| Travel Distance (Total) | 155.1 veh-km/h | 186.1 pers-km/h |
| Travel Time (Total) | 3.2 veh-h/h | 3.8 pers-h/h |
| Demand Flows (Total) | 496 veh/h | 595 pers/h |
| Percent Heavy Vehicles (Demand) | 0.9 \% |  |
| Degree of Saturation | 0.173 |  |
| Practical Spare Capacity | 467.7 \% |  |
| Effective Intersection Capacity | 2872 veh/h |  |
| Control Delay (Total) | 0.05 veh-h/h | 0.06 pers-h/h |
| Control Delay (Average) | 0.4 sec | 0.4 sec |
| Control Delay (Worst Lane) | 6.1 sec |  |
| Control Delay (Worst Movement) | 6.5 sec | 6.5 sec |
| Geometric Delay (Average) | 0.3 sec |  |
| Stop-Line Delay (Average) | 0.1 sec |  |
| Idling Time (Average) | 0.0 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.1 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 0.5 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $18 \mathrm{veh} / \mathrm{h}$ | 22 pers/h |
| Effective Stop Rate | 0.04 | 0.04 |
| Proportion Queued | 0.02 | 0.02 |
| Performance Index | 3.3 | 3.3 |
| Cost (Total) | 62.41 \$/h | 62.41 \$/h |
| Fuel Consumption (Total) | $9.9 \mathrm{~L} / \mathrm{h}$ |  |
| Carbon Dioxide (Total) | $23.3 \mathrm{~kg} / \mathrm{h}$ |  |
| Hydrocarbons (Total) | $0.001 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.018 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.011 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 2 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 0.0\% 49.4\% 0.2\%

| Intersection Performance - Annual Values |  |  |
| :--- | ---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $237,979 \mathrm{veh} / \mathrm{y}$ | $285,575 \mathrm{pers} / \mathrm{y}$ |
| Delay | $24 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $29 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $8,714 \mathrm{veh} / \mathrm{y}$ | $10,456 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $74,445 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $89,334 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $1,519 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $1,823 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  | $29,958 \mathrm{\$} / \mathrm{y}$ | $29,958 \mathrm{\$} / \mathrm{y}$ |
| Cost | $4,741 \mathrm{~L} / \mathrm{y}$ |  |
| Fuel Consumption | $11,176 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Dioxide | $1 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $9 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $5 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx |  |  |
|  |  |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Saturday, 8 June 2019 6:13:49 PM
Project: <br>ttgroup.locallcorporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

## Site: 101 [2018_Low Dev_Gleneagles_AM]

New Site
Site Category: (None)
Giveway / Yield (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | East | North | West |  |
| LOS | NA | A | NA | NA |



Cambridge Road - East

Colour code based on Level of Service

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| LOS A | LOS B | LOS C | LOS D | LOS E | LOS F |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule)
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

## INTERSECTION SUMMARY

## Site: 101 [2018_Low Dev_Gleneagles_PM]

New Site
Site Category: (None)
Giveway / Yield (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 49.1 km/h | 49.1 km/h |
| Travel Distance (Total) | 155.1 veh-km/h | 186.2 pers-km/h |
| Travel Time (Total) | 3.2 veh-h/h | 3.8 pers-h/h |
| Demand Flows (Total) | 496 veh/h | 595 pers/h |
| Percent Heavy Vehicles (Demand) | 0.9 \% |  |
| Degree of Saturation | 0.175 |  |
| Practical Spare Capacity | 460.9 \% |  |
| Effective Intersection Capacity | 2838 veh/h |  |
| Control Delay (Total) | 0.05 veh-h/h | 0.06 pers-h/h |
| Control Delay (Average) | 0.3 sec | 0.3 sec |
| Control Delay (Worst Lane) | 6.0 sec |  |
| Control Delay (Worst Movement) | 6.5 sec | 6.5 sec |
| Geometric Delay (Average) | 0.3 sec |  |
| Stop-Line Delay (Average) | 0.0 sec |  |
| Idling Time (Average) | 0.0 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.0 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 0.3 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $18 \mathrm{veh} / \mathrm{h}$ | 21 pers/h |
| Effective Stop Rate | 0.04 | 0.04 |
| Proportion Queued | 0.01 | 0.01 |
| Performance Index | 3.3 | 3.3 |
| Cost (Total) | 62.11 \$/h | 62.11 \$/h |
| Fuel Consumption (Total) | $9.9 \mathrm{~L} / \mathrm{h}$ |  |
| Carbon Dioxide (Total) | $23.3 \mathrm{~kg} / \mathrm{h}$ |  |
| Hydrocarbons (Total) | $0.001 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.018 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.011 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 2 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: $0.0 \% \quad 48.5 \% \quad 0.4 \%$

| Intersection Performance - Annual Values |  |  |
| :--- | ---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $237,979 \mathrm{veh} / \mathrm{y}$ | $285,575 \mathrm{pers} / \mathrm{y}$ |
| Delay | $22 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $27 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $8,431 \mathrm{veh} / \mathrm{y}$ | $10,117 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $74,462 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $89,355 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $1,517 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $1,821 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $29,811 \mathrm{\$} / \mathrm{y}$ | $29,811 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $4,754 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $11,206 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $1 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $9 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $6 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Saturday, 8 June 2019 6:13:50 PM
Project: <br>ttgroup.locallcorporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

## Site: 101 [2018_Low Dev_Gleneagles_PM]

New Site
Site Category: (None)
Giveway / Yield (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | East | North | West |  |
| LOS | NA | A | NA | NA |



Cambridge Road - East

Colour code based on Level of Service

| LOS A | LOS B | LOS C | LOS D | LOS E | LOS F |
| :--- | :--- | :--- | :--- | :--- | :--- |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule)
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

## INTERSECTION SUMMARY

## Site: 101 [2035_Hi Dev_Gleneagles_AM]

## New Site

Site Category: (None)
Giveway / Yield (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 48.9 km/h | 48.9 km/h |
| Travel Distance (Total) | 208.5 veh-km/h | 250.2 pers-km/h |
| Travel Time (Total) | 4.3 veh-h/h | 5.1 pers-h/h |
| Demand Flows (Total) | 666 veh/h | 800 pers/h |
| Percent Heavy Vehicles (Demand) | 0.9 \% |  |
| Degree of Saturation | 0.231 |  |
| Practical Spare Capacity | 323.5 \% |  |
| Effective Intersection Capacity | 2880 veh/h |  |
| Control Delay (Total) | 0.08 veh-h/h | 0.09 pers-h/h |
| Control Delay (Average) | 0.4 sec | 0.4 sec |
| Control Delay (Worst Lane) | 6.8 sec |  |
| Control Delay (Worst Movement) | 7.6 sec | 7.6 sec |
| Geometric Delay (Average) | 0.3 sec |  |
| Stop-Line Delay (Average) | 0.1 sec |  |
| Idling Time (Average) | 0.0 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.1 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 0.9 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $27 \mathrm{veh} / \mathrm{h}$ | 32 pers/h |
| Effective Stop Rate | 0.04 | 0.04 |
| Proportion Queued | 0.02 | 0.02 |
| Performance Index | 4.5 | 4.5 |
| Cost (Total) | 84.41 \$/h | 84.41 \$/h |
| Fuel Consumption (Total) | $13.3 \mathrm{~L} / \mathrm{h}$ |  |
| Carbon Dioxide (Total) | $31.4 \mathrm{~kg} / \mathrm{h}$ |  |
| Hydrocarbons (Total) | $0.002 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.024 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.015 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 2 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 0.0\% 56.3\% $0.3 \%$

| Intersection Performance - Annual Values |  |  |
| :--- | ---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $319,832 \mathrm{veh} / \mathrm{y}$ | $383,798 \mathrm{pers} / \mathrm{y}$ |
| Delay | $37 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $45 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $12,835 \mathrm{veh} / \mathrm{y}$ | $15,402 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $100,099 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $120,119 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $2,047 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $2,457 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $40,519 \mathrm{\$} / \mathrm{y}$ | $40,519 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $6,402 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $15,089 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $1 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $12 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $7 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Saturday, 8 June 2019 6:13:55 PM
Project: \Ittgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

## Site: 101 [2035_Hi Dev_Gleneagles_AM]

New Site
Site Category: (None)
Giveway / Yield (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | East | North | West |  |
| LOS | NA | A | NA | NA |



Cambridge Road - East

Colour code based on Level of Service

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| LOS A | LOS B | LOS C | LOS D | LOS E | LOS F |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule)
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

## INTERSECTION SUMMARY

## Site: 101 [2035_Hi Dev_Gleneagles_PM]

New Site
Site Category: (None)
Giveway / Yield (Two-Way)

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | $48.9 \mathrm{~km} / \mathrm{h}$ | 48.9 km/h |
| Travel Distance (Total) | 208.6 veh-km/h | 250.3 pers-km/h |
| Travel Time (Total) | 4.3 veh-h/h | 5.1 pers-h/h |
| Demand Flows (Total) | 666 veh/h | 800 pers/h |
| Percent Heavy Vehicles (Demand) | 0.9 \% |  |
| Degree of Saturation | 0.240 |  |
| Practical Spare Capacity | 308.3 \% |  |
| Effective Intersection Capacity | 2776 veh/h |  |
| Control Delay (Total) | 0.08 veh-h/h | 0.10 pers-h/h |
| Control Delay (Average) | 0.4 sec | 0.4 sec |
| Control Delay (Worst Lane) | 7.1 sec |  |
| Control Delay (Worst Movement) | 7.6 sec | 7.6 sec |
| Geometric Delay (Average) | 0.3 sec |  |
| Stop-Line Delay (Average) | 0.1 sec |  |
| Idling Time (Average) | 0.0 sec |  |
| Intersection Level of Service (LOS) | NA |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 0.1 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 0.7 m |  |
| Queue Storage Ratio (Worst Lane) | 0.00 |  |
| Total Effective Stops | $26 \mathrm{veh} / \mathrm{h}$ | 31 pers/h |
| Effective Stop Rate | 0.04 | 0.04 |
| Proportion Queued | 0.03 | 0.03 |
| Performance Index | 4.6 | 4.6 |
| Cost (Total) | 79.08 \$/h | 79.08 \$/h |
| Fuel Consumption (Total) | $13.5 \mathrm{~L} / \mathrm{h}$ |  |
| Carbon Dioxide (Total) | $31.8 \mathrm{~kg} / \mathrm{h}$ |  |
| Hydrocarbons (Total) | $0.002 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $0.025 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $0.016 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 3 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 59.0\% 3.2\% 0.0\%

| Intersection Performance - Annual Values |  |  |
| :--- | ---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $319,832 \mathrm{veh} / \mathrm{y}$ | $383,798 \mathrm{pers} / \mathrm{y}$ |
| Delay | $38 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $46 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $12,480 \mathrm{veh} / \mathrm{y}$ | $14,976 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $100,117 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $120,140 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $2,048 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $2,458 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  |  |  |
| Cost | $37,961 \mathrm{~S} / \mathrm{y}$ | $37,961 \mathrm{\$} / \mathrm{y}$ |
| Fuel Consumption | $6,471 \mathrm{~L} / \mathrm{y}$ |  |
| Carbon Dioxide | $15,255 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $1 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $12 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $8 \mathrm{~kg} / \mathrm{y}$ |  |
|  |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Saturday, 8 June 2019 6:13:55 PM
Project: \Ittgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

Site: 101 [2035_Hi Dev_Gleneagles_PM]
New Site
Site Category: (None)
Giveway / Yield (Two-Way)

|  | Approaches |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: |
|  | East | North | West |  |
| LOS | NA | A | NA | NA |



Cambridge Road - East

Colour code based on Level of Service

| LOS A | LOS B | LOS C | LOS D | LOS E | LOS F |
| :--- | :--- | :--- | :--- | :--- | :--- |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

## LANE LEVEL OF SERVICE

## Lane Level of Service for Network Sites

鼻衷 Network: N101 [2018_Low Dev]
New Network
Network Category: (None)


Colour code based on Level of Service


Delay model settings are specified for individual Sites forming the Network.

[^7]
## NETWORK SUMMARY

亶率 Network: N101 [2018_Low Dev]
New Network
Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) | LOS A |  |  |
| Travel Time Index | 9.64 |  |  |
| Speed Efficiency | 0.97 |  |  |
| Congestion Coefficient | 1.03 |  |  |
| Travel Speed (Average) | 48.4 km/h |  | $48.4 \mathrm{~km} / \mathrm{h}$ |
| Travel Distance (Total) | 1196.6 veh-km/h |  | 1435.9 pers-km/h |
| Travel Time (Total) | 24.7 veh-h/h |  | 29.7 pers-h/h |
| Desired Speed | $50.0 \mathrm{~km} / \mathrm{h}$ |  |  |
| Demand Flows (Total for all Sites) | 2861 veh/h |  | 3433 pers/h |
| Arrival Flows (Total for all Sites) | 2861 veh/h |  | 3433 pers/h |
| Demand Flows (Entry Total) | 918 veh/h |  |  |
| Midblock Inflows (Total) | $26 \mathrm{veh} / \mathrm{h}$ |  |  |
| Midblock Outflows (Total) | -126 veh/h |  |  |
| Percent Heavy Vehicles (Demand) | 1.0 \% |  |  |
| Percent Heavy Vehicles (Arrival) | 1.0 \% |  |  |
| Degree of Saturation | 0.233 |  |  |
| Control Delay (Total) | 0.72 veh-h/h |  | 0.86 pers-h/h |
| Control Delay (Average) | 0.9 sec |  | 0.9 sec |
| Control Delay (Worst Lane) | 9.6 sec |  |  |
| Control Delay (Worst Movement) | 9.7 sec |  | 9.7 sec |
| Geometric Delay (Average) | 0.6 sec |  |  |
| Stop-Line Delay (Average) | 0.3 sec |  |  |
| Queue Storage Ratio (Worst Lane) | 0.01 |  |  |
| Total Effective Stops | 240 veh/h |  | 287 pers/h |
| Effective Stop Rate | 0.08 | 0.20 per km | 0.08 |
| Proportion Queued | 0.07 |  | 0.07 |
| Performance Index | 28.1 |  | 28.1 |
| Cost (Total) | 566.08 \$/h | 0.47 \$/km | 566.08 \$/h |
| Fuel Consumption (Total) | 79.7 L/h | 66.6 mL/km |  |
| Fuel Economy | $6.7 \mathrm{~L} / 100 \mathrm{~km}$ |  |  |
| Carbon Dioxide (Total) | $187.9 \mathrm{~kg} / \mathrm{h}$ | $157.0 \mathrm{~g} / \mathrm{km}$ |  |
| Hydrocarbons (Total) | $0.012 \mathrm{~kg} / \mathrm{h}$ | $0.010 \mathrm{~g} / \mathrm{km}$ |  |
| Carbon Monoxide (Total) | $0.147 \mathrm{~kg} / \mathrm{h}$ | $0.123 \mathrm{~g} / \mathrm{km}$ |  |
| NOx (Total) | $0.106 \mathrm{~kg} / \mathrm{h}$ | $0.088 \mathrm{~g} / \mathrm{km}$ |  |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: $0.0 \% \quad 0.0 \% \quad 0.0 \%$
Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: New Zealand.

| Network Performance - Annual Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | 1,373,305 veh/y | 1,647,966 pers/y |
| Delay | 346 veh-h/y | 415 pers-h/y |
| Effective Stops | 114,997 veh/y | 137,996 pers/y |
| Travel Distance | 574,369 veh-km/y | 689,243 pers-km/y |
| Travel Time | 11,867 veh-h/y | 14,240 pers-h/y |
| Cost | 271,717 \$/y | 271,717 \$/y |
| Fuel Consumption | 38,270 L/y |  |
| Carbon Dioxide | $90,184 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $6 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $71 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $51 \mathrm{~kg} / \mathrm{y}$ |  |

## SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN \& TAYLOR | Processed: Saturday, 8 June 2019 6:17:29 PM
Project: \tttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service for Network Sites

䪬 Network: N102 [2035_Hi Dev]
New Network
Network Category: (None)


Colour code based on Level of Service

| LOS A | LOS B | LOS C | LOS D | LOS E | LOS F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Delay model settings are specified for individual Sites forming the Network.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Saturday, 8 June 2019 6:17:33 PM
Project: \tttgroup.locallcorporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

## NETWORK SUMMARY

幅 Network: N102 [2035_Hi Dev]
New Network
Network Category: (None)

| Network Performance - Hourly Values |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | Vehicles | Per Unit Distance | Persons |
| Network Level of Service (LOS) | LOS A |  |  |
| Travel Time Index | 9.67 |  |  |
| Speed Efficiency | 0.97 |  |  |
| Congestion Coefficient | 1.03 |  |  |
| Travel Speed (Average) | $48.5 \mathrm{~km} / \mathrm{h}$ |  | $48.5 \mathrm{~km} / \mathrm{h}$ |
| Travel Distance (Total) | 1215.8 veh-km/h |  | 1459.0 pers-km/h |
| Travel Time (Total) | 25.1 veh-h/h |  | 30.1 pers-h/h |
| Desired Speed | $50.0 \mathrm{~km} / \mathrm{h}$ |  |  |
| Demand Flows (Total for all Sites) | 2861 veh/h |  | 3433 pers/h |
| Arrival Flows (Total for all Sites) | 2861 veh/h |  | 3433 pers/h |
| Demand Flows (Entry Total) | 818 veh/h |  |  |
| Midblock Inflows (Total) | 126 veh/h |  |  |
| Midblock Outflows (Total) | -26 veh/h |  |  |
| Percent Heavy Vehicles (Demand) | 1.0 \% |  |  |
| Percent Heavy Vehicles (Arrival) | 1.0 \% |  |  |
| Degree of Saturation | 0.281 |  |  |
| Control Delay (Total) | 0.62 veh-h/h |  | 0.74 pers-h/h |
| Control Delay (Average) | 0.8 sec |  | 0.8 sec |
| Control Delay (Worst Lane) | 9.8 sec |  |  |
| Control Delay (Worst Movement) | 9.8 sec |  | 9.8 sec |
| Geometric Delay (Average) | 0.6 sec |  |  |
| Stop-Line Delay (Average) | 0.2 sec |  |  |
| Queue Storage Ratio (Worst Lane) | 0.01 |  |  |
| Total Effective Stops | 207 veh/h |  | 249 pers/h |
| Effective Stop Rate | 0.07 | 0.17 per km | 0.07 |
| Proportion Queued | 0.05 |  | 0.05 |
| Performance Index | 28.1 |  | 28.1 |
| Cost (Total) | 637.21 \$/h | 0.52 \$/km | 637.21 \$/h |
| Fuel Consumption (Total) | 81.2 L/h | 66.8 mL/km |  |
| Fuel Economy | $6.7 \mathrm{~L} / 100 \mathrm{~km}$ |  |  |
| Carbon Dioxide (Total) | $191.4 \mathrm{~kg} / \mathrm{h}$ | $157.4 \mathrm{~g} / \mathrm{km}$ |  |
| Hydrocarbons (Total) | $0.012 \mathrm{~kg} / \mathrm{h}$ | $0.010 \mathrm{~g} / \mathrm{km}$ |  |
| Carbon Monoxide (Total) | $0.150 \mathrm{~kg} / \mathrm{h}$ | $0.123 \mathrm{~g} / \mathrm{km}$ |  |
| NOx (Total) | $0.108 \mathrm{~kg} / \mathrm{h}$ | $0.089 \mathrm{~g} / \mathrm{km}$ |  |

Network Model Variability Index (Iterations 3 to N): 0.0 \%
Number of Iterations: 5 (Maximum: 10)
Largest change in Lane Degrees of Saturation or Queue Storage Ratios for the last three Network Iterations: $0.0 \% \quad 0.0 \% \quad 0.0 \%$
Network Level of Service (LOS) Method: SIDRA Speed Efficiency.
Software Setup used: New Zealand.

| Network Performance - Annual Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total for all Sites) | 1,373,305 veh/y | 1,647,966 pers/y |
| Delay | 295 veh-h/y | 354 pers-h/y |
| Effective Stops | 99,580 veh/y | 119,496 pers/y |
| Travel Distance | 583,599 veh-km/y | 700,319 pers-km/y |
| Travel Time | 12,033 veh-h/y | 14,440 pers-h/y |
| Cost | 305,861 \$/y | 305,861 \$/y |
| Fuel Consumption | 38,995 L/y |  |
| Carbon Dioxide | $91,857 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $6 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $72 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | $52 \mathrm{~kg} / \mathrm{y}$ |  |

## SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TONKIN \& TAYLOR | Processed: Saturday, 8 June 2019 6:17:33 PM
Project: \Ittgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

## INTERSECTION SUMMARY

## Q Site: 101 [2018_No Dev_Hi-Lvl Peak]

New Site
Site Category: (None)
Roundabout

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | 13.3 km/h | 13.3 km/h |
| Travel Distance (Total) | 3725.0 veh-km/h | 4470.0 pers-km/h |
| Travel Time (Total) | 279.5 veh-h/h | 335.3 pers-h/h |
| Demand Flows (Total) | $4342 \mathrm{veh} / \mathrm{h}$ | 5211 pers/h |
| Percent Heavy Vehicles (Demand) | 6.8 \% |  |
| Degree of Saturation | 1.325 |  |
| Practical Spare Capacity | -35.8 \% |  |
| Effective Intersection Capacity | 3278 veh/h |  |
| Control Delay (Total) | 207.26 veh-h/h | 248.71 pers-h/h |
| Control Delay (Average) | 171.8 sec | 171.8 sec |
| Control Delay (Worst Lane) | 317.0 sec |  |
| Control Delay (Worst Movement) | 318.7 sec | 318.7 sec |
| Geometric Delay (Average) | 3.7 sec |  |
| Stop-Line Delay (Average) | 168.1 sec |  |
| Idling Time (Average) | 118.6 sec |  |
| Intersection Level of Service (LOS) | LOS F |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 170.3 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 1304.9 m |  |
| Queue Storage Ratio (Worst Lane) | 1.12 |  |
| Total Effective Stops | 18868 veh/h | 22642 pers/h |
| Effective Stop Rate | 4.35 | 4.35 |
| Proportion Queued | 0.98 | 0.98 |
| Performance Index | 1072.3 | 1072.3 |
| Cost (Total) | 8081.36 \$/h | 8081.36 \$/h |
| Fuel Consumption (Total) | $762.2 \mathrm{~L} / \mathrm{h}$ |  |
| Carbon Dioxide (Total) | $1813.9 \mathrm{~kg} / \mathrm{h}$ |  |
| Hydrocarbons (Total) | $0.206 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $1.661 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $4.169 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Intersection LOS value for Vehicles is based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 4.7 \%
Number of Iterations: 7 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: $1.9 \% \quad 1.0 \% \quad 0.5 \%$

| Intersection Performance - Annual Values |  |  |
| :--- | :---: | ---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | $2,084,211 \mathrm{veh} / \mathrm{y}$ | $2,501,053 \mathrm{pers} / \mathrm{y}$ |
| Delay | $99,484 \mathrm{veh}-\mathrm{h} / \mathrm{y}$ | $119,381 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
| Effective Stops | $9,056,741 \mathrm{veh} / \mathrm{y}$ | $10,868,090 \mathrm{pers} / \mathrm{y}$ |
| Travel Distance | $1,787,985 \mathrm{veh}-\mathrm{km} / \mathrm{y}$ | $2,145,582 \mathrm{pers}-\mathrm{km} / \mathrm{y}$ |
| Travel Time | $134,139 \mathrm{veh} / \mathrm{h} / \mathrm{y}$ | $160,967 \mathrm{pers}-\mathrm{h} / \mathrm{y}$ |
|  | $3,879,052 \mathrm{\$} / \mathrm{y}$ |  |
| Cost | $365,868 \mathrm{~L} / \mathrm{y}$ |  |
| Fuel Consumption | $870,655 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Dioxide | $99 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $798 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $2,001 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx |  |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 7 June 2019 1:09:51 PM
Project: <br>ttgroup.locallcorporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_SH3 RAB.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

## (7) Site: 101 [2018_No Dev_Hi-Lvl Peak]

New Site
Site Category: (None)
Roundabout

|  | Approaches |  |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | South | East | North | West |  |
|  | F | F | F | F | F |



Colour code based on Level of Service

| LOS A | LOS B | LOS C | LOS D | LOS E | LOS F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
Roundabout Level of Service Method: SIDRA Roundabout LOS
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Organisation: TONKIN \& TAYLOR | Processed: Friday, 7 June 2019 1:09:51 PM Project: \lttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_SH3 RAB.sip8

## INTERSECTION SUMMARY

## $\overline{7}$ Site: 101 [2018_Low Dev_Hi-Lvl Peak]

New Site
Site Category: (None)
Roundabout

| Intersection Performance - Hourly Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Travel Speed (Average) | $11.2 \mathrm{~km} / \mathrm{h}$ | 11.2 km/h |
| Travel Distance (Total) | 3888.4 veh-km/h | 4666.1 pers-km/h |
| Travel Time (Total) | 348.7 veh-h/h | 418.5 pers-h/h |
| Demand Flows (Total) | 4505 veh/h | 5406 pers/h |
| Percent Heavy Vehicles (Demand) | 6.6 \% |  |
| Degree of Saturation | 1.558 |  |
| Practical Spare Capacity | -45.4 \% |  |
| Effective Intersection Capacity | 2892 veh/h |  |
| Control Delay (Total) | 273.09 veh-h/h | 327.71 pers-h/h |
| Control Delay (Average) | 218.2 sec | 218.2 sec |
| Control Delay (Worst Lane) | 521.4 sec |  |
| Control Delay (Worst Movement) | 523.0 sec | 523.0 sec |
| Geometric Delay (Average) | 3.8 sec |  |
| Stop-Line Delay (Average) | 214.4 sec |  |
| Idling Time (Average) | 157.9 sec |  |
| Intersection Level of Service (LOS) | LOS F |  |
| 95\% Back of Queue - Vehicles (Worst Lane) | 218.8 veh |  |
| 95\% Back of Queue - Distance (Worst Lane) | 1557.6 m |  |
| Queue Storage Ratio (Worst Lane) | 1.25 |  |
| Total Effective Stops | 21908 veh/h | 26290 pers/h |
| Effective Stop Rate | 4.86 | 4.86 |
| Proportion Queued | 0.98 | 0.98 |
| Performance Index | 1301.6 | 1301.6 |
| Cost (Total) | 9971.07 \$/h | 9971.07 \$/h |
| Fuel Consumption (Total) | 871.0 L/h |  |
| Carbon Dioxide (Total) | $2070.2 \mathrm{~kg} / \mathrm{h}$ |  |
| Hydrocarbons (Total) | $0.238 \mathrm{~kg} / \mathrm{h}$ |  |
| Carbon Monoxide (Total) | $1.851 \mathrm{~kg} / \mathrm{h}$ |  |
| NOx (Total) | $4.339 \mathrm{~kg} / \mathrm{h}$ |  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Intersection LOS value for Vehicles is based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Site Model Variability Index (Iterations 3 to N): 3.9 \%
Number of Iterations: 10 (Maximum: 10)
Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 1.0\% $1.1 \% \quad 0.8 \%$

| Intersection Performance - Annual Values |  |  |
| :---: | :---: | :---: |
| Performance Measure | Vehicles | Persons |
| Demand Flows (Total) | 2,162,526 veh/y | 2,595,032 pers/y |
| Delay | 131,083 veh-h/y | 157,300 pers-h/y |
| Effective Stops | 10,516,060 veh/y | 12,619,270 pers/y |
| Travel Distance | 1,866,426 veh-km/y | 2,239,711 pers-km/y |
| Travel Time | 167,380 veh-h/y | 200,856 pers-h/y |
| Cost | 4,786,112 \$/y | 4,786,112 \$/y |
| Fuel Consumption | 418,100 L/y |  |
| Carbon Dioxide | $993,702 \mathrm{~kg} / \mathrm{y}$ |  |
| Hydrocarbons | $114 \mathrm{~kg} / \mathrm{y}$ |  |
| Carbon Monoxide | $889 \mathrm{~kg} / \mathrm{y}$ |  |
| NOx | 2,082 kg/y |  |

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TONKIN \& TAYLOR | Processed: Friday, 7 June 2019 1:05:57 PM
Project: <br>ttgroup.locallcorporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_SH3 RAB.sip8

## LANE LEVEL OF SERVICE

## Lane Level of Service

## F Site: 101 [2018_Low Dev_Hi-Lvl Peak]

New Site
Site Category: (None)
Roundabout

|  | Approaches |  |  |  | Intersection |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | South | East | North | West |  |
|  | F | F | F | F | F |



Colour code based on Level of Service

| LOS A | LOS B | LOS C | LOS D | LOS E | LOS F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).
Roundabout Level of Service Method: SIDRA Roundabout LOS
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Organisation: TONKIN \& TAYLOR | Processed: Friday, 7 June 2019 1:05:57 PM
Project: \lttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_SH3 RAB.sip8


[^0]:    $1-5$ of 5

[^1]:    SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
    Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 11:42:53 AM
    Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRAIT6_Ballance SH3 Church Int \& Whitmore SH3 Int.sip8

[^2]:    SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
    Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 11:42:56 AM
    Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRAIT6_Ballance SH3 Church Int \& Whitmore SH3 Int.sip8

[^3]:    SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
    Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 11:42:58 AM
    Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRAIT6_Ballance SH3 Church Int \& Whitmore SH3 Int.sip8

[^4]:    SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
    Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 11:43:00 AM
    Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRAIT6_Ballance SH3 Church Int \& Whitmore SH3 Int.sip8

[^5]:    SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
    Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 11:43:02 AM
    Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRAIT6_Ballance SH3 Church Int \& Whitmore SH3 Int.sip8

[^6]:    SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
    Organisation: TONKIN \& TAYLOR | Processed: Friday, 24 May 2019 11:43:05 AM
    Project: \lttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRAIT6_Ballance SH3 Church Int \& Whitmore SH3 Int.sip8

[^7]:    SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
    Organisation: TONKIN \& TAYLOR | Processed: Saturday, 8 June 2019 6:17:29 PM
    Project: <br>ttgroup.local\corporate\Hamilton\Projects\1008305\1008305.1000\WorkingMaterial\Traffic\Modelling\SIDRA\T11_Cambridge Rd.sip8

