

23 April 2021

TITANIUM BUSINESS PARK RAYNES ROAD, HAMILTON

PRELIMINARY GEOTECHNICAL INVESTIGATION REPORT

Titanium Park Limited HAM2020-0020AB Rev.0

HAM2020-0020AB Rev.0				
Date	Revision	Comments		
16 April 2021	A	Initial draft for internal review		
23 April 2021	0	Issue to client		

	Name	Signature	Position
Prepared by	Kori Lentfer	Wertfer	Associate Engineering Geologist
Reviewed by	Ken Read	10000	Principal Geotechnical Engineer
Authorised by	Andrew Linton	MA	Principal Geotechnical Engineer

EXECUTIVE SUMMARY

This report presents the results of geotechnical investigations and a geohazards assessment of a proposed Titanium Park Northern Precinct land development located to the south of Raynes Road, Hamilton.

The majority of the 100ha site is situated on a near level terrace at RL 49 to 52m underlain by Hinuera Formation alluvium. Two low hills up to RL 62.5m are present in the eastern part of the site that are underlain by older volcanic ash and silts/clays of the Walton Subgroup.

The masterplan for the site depicts the development of industrial and commercial lots with associated roading, green spaces and stormwater attenuation basins.

We consider that the site is suitable for the proposed level of development subject to our geohazards assessment and geotechnical recommendations summarised as follows:

- Liquefaction induced vertical settlements in the ULS earthquake scenario are expected to be of the
 order of 26mm or less. Accordingly, the liquefaction risk is considered to be low for the development.
 Seismic slope stability analyses for the stormwater basins is recommended at detailed design stage to
 demonstrate compliance with the project design criteria.
- For the low hill remaining following proposed earthworks, due to the low slope gradients the slope stability risk is considered to be negligible.
- On account of the depth to liquefaction being greater than 6m along with the thin and discrete distribution of liquefied layers, the risk of lateral spreading into the proposed approximately 3m deep stormwater soakage basins is considered to be very low.
- For large commercial / industrial buildings, preliminary estimates of static settlements for strip pad footings are expected to be of the order of up to 10 to 100mm. For widespread foundation loads of 35kPa, static settlements of 40 to 265mm are estimated. The upper bound values are considered to be overestimates as the CPT Qc values within the upper Walton Subgroup – Puketoka Formation soils underestimate soil strength and stiffness due to the sensitivity of these soils to disturbance. Typically shallow foundation types are considered feasible subject to further assessment.
- For particularly heavy building loads, ground improvement may be required to mitigate excessive settlement. Appropriate options include:
 - shallow undercut and replacement of any low-strength near surface soils;
 - temporary surcharge (pre-load) fill embankment construction above design finished level to overconsolidate the compressible soils
 - compensated foundation design using lightweight geofoam to keep pressures below preconsolidation pressures within compressible soils;
 - deeper ground improvement beneath the building footprint to transfer loads from the structure to more competent underlying soils at depth.
- The southern hill is expected to be lowered to the surrounding terrace level with filling expected in lower
 parts of the site in order to form level building platforms. Cut soils are generally expected to be suitable
 for reuse as fill subject to conditioning including moisture control and blending.
- A preliminary geotechnical ultimate bearing pressure of 300 kPa should be available for foundations in most areas. However reduced bearing pressures may be required where Puketoka Formation silt/clay is near finished levels. Improvement of near surface soil bearing capacity could be achieved with conventional compaction equipment.
- Trench collapse may pose problems where excavations are in loose soils or extend below the water table. Temporary dewatering and trench support or battering may be required.
- Hinuera Formation sands are considered suitable road subgrade materials. If loose sands are exposed, proof rolling is typically effective to increase CBR values. Hinuera Formation silts and Walton Subgroup silts and clays may require undercutting and replacement with a subgrade improvement layer.

Table of Contents

Ε	XECU	TIVE SUMMARY	. ii
1	INT	RODUCTION	.1
	1.1 1.2	Project Brief Scope of Work	
2	SIT	E DESCRIPTION	.1
	2.1 2.2	Site Location	
3	PR	OPOSED DEVELOPMENT	. 3
4	INV	ESTIGATION SCOPE	. 3
	4.1 4.2	Desktop Study Previous Field Investigation	
5	GR	OUND MODEL	. 4
	5.1	Published Geology	. 4
	5.2	Stratigraphic Units	
	5.2. 5.2.		
	5.2		
	5.2		
	5.2	5 1	
	5.2. 5.3	.6 Summary Groundwater	
	5.4	Soakage Test Results	
6	GE	OHAZARDS ASSESSMENT	. 8
	6.1	Seismicity	. 8
	6.2	Fault Rupture	
	6.3 <i>6.3</i>	Liquefaction	
	6.3		
	6.3		
	6.3		
	6.4 6.5	Cyclic Softening	
	6.6	Soakage Basin Batters and Slope Stability	12
	6.7	Erosion	13
	6.8 6.9	Load Induced Settlement	
	6.9 6.10	Sensitive Soils	
7		OTECHNICAL RECOMMENDATIONS	
-	7.1	Seismic Site Subsoil Category	
	7.2	Liquefaction / Lateral Spread Mitigation	
	7.3	Soakage Basin Batter Stability	15
	7.4	Static Settlement Management	
	7.4. 7.4		
	7.5	Earthworks	

	7.5.1	General	16
	7.5.2	Subgrade Preparation	17
	1.5.3	Subsoli Drainage	17
	7.5.4	Compaction	17
	7.5.5	Compaction Factor Quality Control Works	. 17
	7.5.6	Quality Control	17
7.	.6 Civil	Works	.18
	7.6.1	Road Subgrades	18
	7.6.2	Service Trenches	18
	7.6.3	Stormwater Soakage	. 18
8	FOUNDA	ATIONS	.19
9	Stateme	nt of Professional Opinion	.19
10	FURTHE	R WORK	.20
USE	E OF THIS	S REPORT	.21

Drawings

Drawing 01:	Geotechnical Investigation Plan
Drawing 02:	Geological Section A-A

Appendices

Appendix A: Coffey Geotechnics Figures 01 to 07

Appendix B: HGCL Illustrative Masterplan

Appendix C: Coffey Field Investigation Results

Appendix D: Liquefaction Analysis Results

1 INTRODUCTION

1.1 Project Brief

CMW Geosciences (CMW) was engaged by Titanium Park Ltd to provide an update to the preliminary geotechnical investigation report prepared by Coffey Geotechnics (NZ) Ltd in 2011 of a site located at Raynes Road, Hamilton, which is being considered for the construction of the Titanium Business Park industrial and commercial subdivision.

The scope of work and associated terms and conditions of our engagement were detailed in our services proposal referenced HAM2020-0020AA Rev.0 dated 11 March 2020.

This report is to support a Private Plan Change (PPC) application to Hamilton City Council and provides the basis for the Statement of Professional Opinion in Section 9.

1.2 Scope of Work

As detailed in our services proposal, the agreed scope of work to be conducted by CMW was defined as follows:

- Review of Harrison Grierson Consultants Masterplan documentation.
- Review of existing geotechnical information for the site (Coffey Geotechnics Preliminary Geotechnical Investigation Report)¹.
- Re-assessment of liquefaction risk in accordance with the MBIE / NZGS earthquake geotechnical engineering practice notes released in 2016.
- Confirmation of previous recommendations for future building foundation suitability and bearing capacity, static settlement and soakage assessments, and earthworks recommendations.
- Comment on the land suitability for commercial / industrial land development as presented on the current Masterplan.
- Provision of a preliminary geotechnical report to support the PPC in accordance with current standards and engineering guidelines.

2 SITE DESCRIPTION

2.1 Site Location

The site now referred to as Titanium Park Northern Precinct comprises an area of approximately 100ha and is located south of the Raynes Road and Narrows Road intersection and to the east of Middle Road as shown on *Figure 1* below.

¹ "Preliminary Geotechnical Investigation Report on Proposed Montgomerie Block Industrial Land Development at Raynes Toad, Hamilton" Coffey Report ref GENZ17003AAd dated 9 November 2011

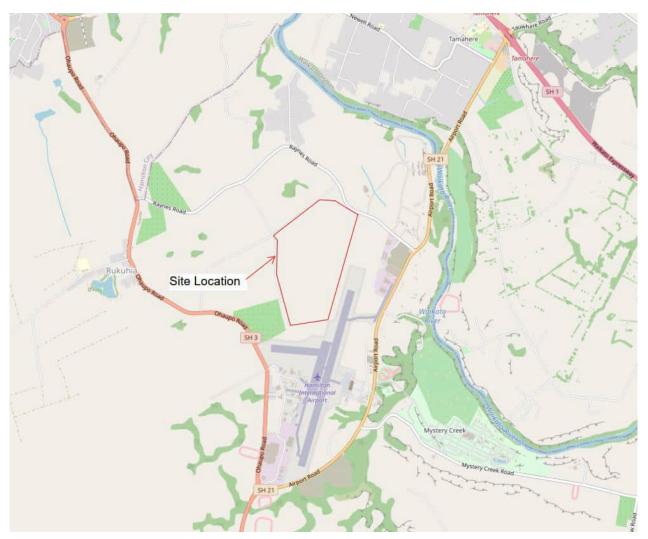


Figure 1: Site Location Plan (Open Street Map)

2.2 Landform

The current general landform, together with associated features located within and adjacent to the site is presented on the attached Coffey Geotechnics Site Plan (*Appendix A*). The site has not changed in the 10 year period since the Coffey report was prepared.

The majority of the site is near level with a gentle grade towards the north and west. Two low hills are located in the central-eastern and south-eastern portions. Existing ground levels for the majority of the site range from RL49m (Moturiki Vertical Datum) in the west to RL52.5m at the southern boundary.

The hills rise up to RL62.5m. A dairy effluent storage pond is located on top of the southern hill that has had the crest cut down in the past to form a level surface at approximate RL62.

A series of open drains flow from east to west across the property as shown on the attached Site Plan, that flow through several culverts beneath the roads bordering the site.

The site is bound to the north by Raynes Road, to the west by Narrows Road and Middle Road and to the south and east by airport airside land. An existing dwelling and farm buildings are present.

Historical aerial photographs² show that the land has been farmed since prior to 1943 with little change since then.

3 PROPOSED DEVELOPMENT

The current development proposal, as shown on the Illustrative Masterplan provided by Harrison Grierson and provided in *Appendix B*, is to create multiple industrial and commercial lots of varying sizes with associated access roads connecting to future roads in the north, south and west. This is consistent with the land development proposed at the time of the Coffey site investigation and report preparation.

At the time of writing this report the project was still in planning and preliminary urban design phase and no earthworks or engineering design drawings have yet been developed.

We have prepared this report on the basis that a future development will mostly comprise minor cuts and fills to form a near level site supporting commercial and industrial buildings with shallow strip and pad foundations and widespread floor loads of up to 35kPa. As indicated on the Masterplan is assumed that the southern hill will be cut down to near the surrounding ground level while the northern hill will largely remain.

A large stormwater attenuation basin is depicted along the western boundary, plus smaller stormwater swales in the northwest, north and centre of the site.

4 INVESTIGATION SCOPE

4.1 Desktop Study

CMW undertook a desktop study including review of geology maps, aerial photos, previous reports and information on the NZ Geotechnical Database.

4.2 Previous Field Investigation

The Coffey Geotechnics field investigation was carried out during August 2011 and comprised:

- A walkover survey by senior engineering geologist of the site;
- Five machine boreholes, denoted MH01 and MH05, drilled using HQ3 coring techniques to depths of up to 30m to determine the deeper ground model for the site and below the likely cut level in the hill area. Standard Penetration Tests (SPT's) were undertaken at regular intervals and Vane Shear Strength VSS tests where applicable in fine-grained soils. Standpipe piezometers were installed in MH01 to MH04 and subsequently monitored;
- Fourteen Cone Penetrometer Tests (CPTu), denoted CPT1 to CPT14, were pushed to depths of up to 31m to help define the ground model through the zone of influence of future building foundations and to provide preliminary indication of foundation requirements. Results of the CPT's are presented as traces of tip resistance (qc), friction resistance (fs) and friction ratio;
- Five hand auger boreholes, denoted HA01 to HA05, were drilled using a 100mm diameter auger to target depths of between 1.2 and 5.2m below existing ground levels to visually observe the near surface soil profile and to facilitate in-situ permeability testing;
- Dynamic cone (Scala) penetrometer (DCP) tests were carried out within each hand auger borehole to depths of up to 4.4m to provide soil density profiles for use as a comparison with the CPT data, and to provide a subgrade CBR value for pavement design purposes;
- In-situ falling head permeability tests were carried out in hand auger boreholes;

² Retrolens website, Sourced from http://retrolens.nz and licensed by LINZ CC-BY 3.0

• Groundwater monitoring was undertaken at completion of machine borehole drilling and during further visits to the site 8 and 20 days following the initial fieldwork, to monitor the groundwater levels in the boreholes.

Copies of Coffey's engineering logs of the boreholes, the CPT traces and soakage results are provided in *Appendix C*;

The approximate locations of the respective boreholes and CPTs referred to above are shown on the Coffey Site Plan (Figure 01) in *Appendix A*.

5 GROUND MODEL

5.1 Published Geology

The published geological map³ for the area indicates the majority of the site is underlain by Late Pleistocene aged river deposits comprising cross-bedded pumice sand, silt and gravel with interbedded peat of the Hinuera Formation as illustrated in Figure 2 below.

The low hills are shown to be underlain by older volcanic silts and clays of the Walton Subgroup derived from insitu and fluvially reworked and weathered non-welded distal ignimbrites that are mantled with weathered volcanic ash.

The geologically older Walton Subgroup represents an older (1.2 million year old) landform that is present below the younger Hinuera Formation deposits.

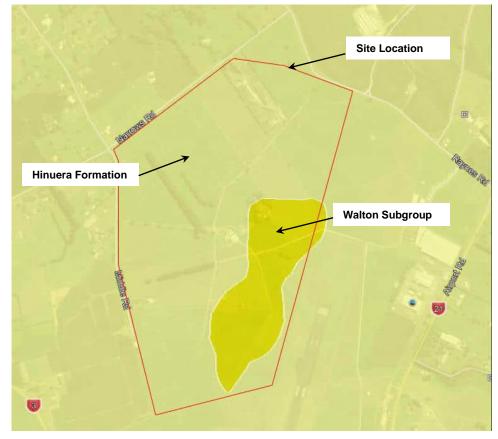


Figure 2: Regional Geology (QMap)

³ Waikato 1:250,000 Geological Map, No 4, Institute of Geological and Nuclear Sciences Limited, 2005.

Based on the known history of the site, some superficial depths of fill are anticipated as a result of farming activities.

5.2 Stratigraphic Units

The ground conditions encountered and inferred from the investigation are considered to be generally consistent with the published geology for the area and can be generalised according to the following subsurface sequences.

The distribution of the various units encountered is presented in the appended Cross-sections A-A and B-B (Coffey Figures 2 to 6) in *Appendix A.*

5.2.1 Topsoil / Fill

Topsoil was encountered in all boreholes with thicknesses of 0.1 to 0.3m.

5.2.2 Hinuera Formation

Hinuera Formation deposits were encountered on the terrace surrounding the low hills and underly the greatest portion of the development area. The soils typically consist of very loose to dense silty sands (typically loose to dense) with interbedded firm to stiff alluvial clayey or sandy silts, silty clays and minor organic silts and clays.

Relatively thick uniform layers of loose to medium dense sand are present between 3.5 to 16 and 17.7 to 27.55 metres depth in machine boreholes 01, 02 and 03 respectively.

Due to the interbedded nature of the Hinuera Formation soils SPT N values obtained in these layers are variable. The lower values of between 0 and 7 were recorded within fine-grained clayey silt and silty clayey deposits. N values of between 2 and 50 were obtained within the sandy soils and generally increased with depth.

Peak shear vane values ranging between 30 and greater than 130kPa were also recorded in several fine grained silt and clay layers with readings also increasing with depth.

The typical soil profiles on the CPT traces are similar to the soil profiles recorded in machine boreholes 01 to 03 where interbedded layers of sand, silty sands and clayey silts and silty clays were encountered.

In general, these layers comprise firm to stiff silts or clays and medium dense sands, however CPT qc values as low as 0.2 MPa (interpreted as very soft) were recorded within the silt horizons and up to more than 20 MPa (very dense) within the sands.

Thick layers of medium dense to dense sandy layers are also present in the soil profile.

5.2.3 Walton Subgroup – Volcanic Ashes

Weathered volcanic ashes comprising the Hamilton Ash and older tephra's were encountered below the Hinuera Formation and also form a mantle over the low hills. These soils consist of firm to very stiff silty clays.

N values ranging between 2 and 11 were recorded within fine-grained silty clays. Peak shear vane values recorded in the volcanic ashes were between 60 to 120kPa. CPT Qc values were reasonably broad between 0.5 and 8.0MPa.

5.2.4 Walton Subgroup – Puketoka Formation Silt and Clay

Variable strength (soft to stiff) sensitive silts and clays and silty fine sands were encountered in all CPT's below the volcanic ash layers to depths of between 10.5 and 29.0 metres. CPT Qc values ranged from 0.4 to 2.8 MPa, averaging approximately 1.0 MPa. N values of 0 to 22 were obtained within the fine grained silts and clays. It is important to note that CPT's and SPT's both underestimate soil strengths in Puketoka Formation soils due to the presence of Halloysite clays that are sensitive to disturbance.

Where recorded, peak shear vane values were between 15 and 200kPa.

5.2.5 Walton Subgroup – Puketoka Formation Sands

Beneath the fine-grained Puketoka Formation. soils, typically medium dense to very dense silty sands are present with minor layers of hard sandy silts. CPT Qc values of up to more than 20 MPa. N values of 7 to 44 were obtained within these typically sandy soils. Refusal of the CPT probe occurred within these materials in all test locations at depths of 18.0 to 31.1 metres.

5.2.6 Summary

The distribution of these units is illustrated on the appended Coffey Geological Sections A-A and B-B (Figures 02 to 05 inclusive) and is summarised below in Table 1.

Table 1: Summary of Strata Encountered					
Unia	Top of Unit (mbgl)		Thickness (m)**		
Unit	Min	Max	Min	Max	
Topsoil	0.0	0.0	0.1	0.3	
Hinuera Fm. – very loose to dense silty sands or gravels and firm to stiff alluvial clayey or sandy silts, silty clays or organic silts and clays	0.1	0.3	0.0	18.0	
Walton SG Volcanic Ashes – firm to very stiff silty clays	0.1	18.5	0.0	8.5	
Walton SG Puketoka Fm. – firm to very stiff silty clays	5.5	20.0	7.0	17.0	
Walton SG Puketoka Fm. – medium dense to very dense silty sands	11.5	27.0	-	-	
Notes: **Thickness only recorded were base of strata has been	confirmed.				

5.3 Groundwater

During the 2011 investigation, which was carried out in late winter (August and September 2011), groundwater was encountered within the CPTs and boreholes at variable depths.

Hand auger boreholes S1 to S3 were drilled in the northern and western portion of the site respectively where groundwater was recorded between 0.85 and 1.2 metres below ground level respectively.

Hand augers S4 and S5 were drilled at the southern end of the property where the ground level is up to 2.5 metres higher. Groundwater here was recorded in S4 at 3.55 metres depth and was not observed in hand auger S5.

On Table 2 we present the results of groundwater monitoring undertaken in the piezometers installed following the investigation:

Table 2: Groundwater Monitoring Data							
	Screen 26 August 2011		7 Septe	7 September 2011			
Standpipe	Depth (mbgl)	Screened Formation	Depth (mbgl)	Elevation (m RL)	Depth (mbgl)	Elevation (m RL)	
P1 MH01 (shallow)	1 to 3	Hinuera Fm.	0.7	49.5	1.2	49.0	
P2 MH01 (deep)	6 to 12	Hinuera Fm.	5.0	45.2	5.4	44.8	
P3 MH02 (shallow)	1 to 3	Hinuera Fm.	1.1	48.5	1.4	48.2	
P4 MH02 (deep)	6 to 12	Hinuera Fm.	3.2	46.3	3.7	45.9	
P5 MH03 (shallow)	1 to 6	Hinuera Fm.	2.4	49.4	2.7	49.1	
P6 MH03 (deep)	18 to 24	Walton SG.	6.6	53.6	7.2	52.9	
P7 MH04 (deep)	6 to 18	Walton SG.	9.2	52.5	9.7	52.0	
0	Note: mbgl = metres below ground level Vertical Datum = Moturiki 1953						

Historical information provided by the owner indicates that a network of subsoil drains has been installed across the property and extending to the north-east of the development area in order to lower the high groundwater table that was known to cause surface flooding in the lower lying paddocks.

This was confirmed by a Google Earth aerial photo taken on 17 January 2006 that shows the layout of the existing shallow subsoil drainage system.

The approximate layout of these drains within the site is shown on the attached Existing Drainage Network drawing (Figure 07).

Anecdotal information suggests that the construction of the subsoil drains typically consists of 1 metre deep trenches with a buried perforated drain coil pipe with filter cloth sock. The nature of the backfill material is unknown. This drainage system is reported to have been successful with decreased surface flooding following heavy rainfall events since installation.

Seasonal fluctuation in groundwater levels is expected. Due to the short groundwater monitoring duration the magnitude of this variation is uncertain. However from our experience in the area this may be in the order of 1m or more.

5.4 Soakage Test Results

Falling head soakage (percolation) tests were carried out by Coffey within the hand auger borehole locations by lining the 100 mm diameter boreholes with perforated PVC pipe, filling the holes with water and monitoring the rate of water level fall over time.

The test results were used to calculate soil hydraulic conductivity in accordance with the analysis method of Hvorslev⁴ and the inverted auger test method of van Beers⁵.

Analysis using the Hvorslev method considers soakage from both the base and sides of the test hole with no overlying restrictive layer.

Results of Coffey analyses are presented in Table 3. The Hvorslev method assumes horizontal flow and is relevant to flow below the water table, and the Inverse Auger Hole method assumes vertical flow and is relevant to testing above the water table (with the ground wetted-up prior to measurement).

⁴ Hvorslev, M.J. (1951), Time Lag and Soil Permeability in Ground Water Observations. U.S. Army Corps of Engineers Waterway Experimentation Station, Bulletin 36

⁵ van Beers, W.F.J. (1983), The Auger Hole Method: A Field Measurement of the Hydraulic Conductivity of Soil Below the Water Table, International Institute for Land Reclamation and Improvement, ILRI Wageningen, The Netherlands

Based on the data results, the tests at locations S4 and S5 are expected to have been performed above the water table (the Inverse Auger Hole method is therefore relevant), while tests at locations S1, S2 and S3 straddled the water table and Hvorslev analysis is expected be more relevant at these locations.

Table 3: Soakage Test Results					
Test Location	Hvorslev Method K (m/sec)	Inverted Auger Method K (m/sec)			
S1	1.2 x 10 ⁻⁶	3.4 x 10 ⁻⁵			
S2	2.2 x 10 ⁻⁵	7.6 x 10 ⁻⁵			
S3	3.5 x 10 ⁻⁶	3.6 x 10 ⁻⁶			
S4	9.6 x 10 ⁻⁷	7.7 x 10 ⁻⁵			
S5	6.4 x 10 ⁻⁷	1.1 x 10 ⁻⁵			
Note: More appropriate analysis method in bold & italics for each test location					

GEOHAZARDS ASSESSMENT 6

6.1 Seismicity

Practice in assessing seismic risk has changed since 2011 and the review below therefore supersedes that in the earlier Coffey report.

A seismic assessment has been carried out in general accordance with NZGS guidance⁶ to calculate the peak horizontal ground acceleration or PGA (amax) as follows:

$$a_{max} = C_{0,1000} \frac{R}{1.3} x f x g$$

Where: $C_{0,1000}$ = unweighted PGA coefficient (refer Section 7.1 for subsoil class)

R = return period factor given in NZS1170.5, Table 3.5 (refer Section 7.1 for importance level)

f = site response factor subject to subsoil class (refer Section 7.1 for subsoil class)

q = acceleration due to gravity

The ULS PGA was calculated based on a 50-year design life in accordance with the New Zealand Building Code⁷ and importance level (IL) 2 structures. The PGA for the serviceability limit state (SLS) and ultimate limit state (ULS) earthquake scenarios is as follows:

Table 4: Design Peak Ground Acceleration (PGA) for Various Limit States						
Limit State AEP R PGA(g) Magnitude _{eff}						
SLS	1/25	0.25	0.06	5.9		
ULS	1/500	1.0	0.22	5.9		
Note: SLS = serviceab	Note: $SLS = serviceability limit state: ULS = ultimate limit state: AFP = annual exceedance probability$					

serviceability limit state; ULS = ultimate limit state; AEP = annual exceedance probability

⁶ NZ Geotechnical Society publication "Earthquake geotechnical engineering practice, Module 1: Overview of the standards", (March 2016)

⁷ Ministry of Business, Innovation and Employment (1992) NZ Building Code Handbook, Third Edition, Amendment 13 (effective from 14 February 2014)

6.2 Fault Rupture

The nearest known active fault recorded in the GNS Active Faults Database⁸ is the Kerepehi Fault approximately 38km to the east of the site. The risk of fault rupture affecting the site is therefore considered low.

6.3 Liquefaction

6.3.1 General

Soil liquefaction is a process where typically saturated, granular soils develop excess pore water pressures during cyclic (earthquake) loading that exceed the effective stress of the soil. In loose soils, some dilation can occur during this process, which can lead to individual soil grains moving into suspension. Following the onset of liquefaction, the shear strength and stiffness of the liquefied soil is effectively lost causing excessive differential settlement of the ground surface, bearing capacity failure and collapse of structures and low-angle lateral spreading of slopes in liquefiable soils.

In accordance with NZGS guidance⁹ the liquefaction susceptibility of the soils at this site has been considered with respect to geological age, soil fabric and soil consistency / density.

6.3.2 Geological Age

The vast majority of case history data compiled in empirical charts for liquefaction evaluation come from Holocene deposits or man-made fills¹⁰¹¹. Pleistocene aged alluvium (>12,000 years) is considered to have a very low to low risk of liquefaction^{11.}

Hinuera Formation deposits are of mid to late Pleistocene geological age. The Walton Subgroup soils forming the low hills and underling the Hinuera Formation deposits are defined as being of later to early Pleistocene geological age. These deposits are therefore significantly older than what case history data would suggest as being susceptible to liquefaction.

Notwithstanding this, age alone is often debated as being of insufficient evidence to discount liquefaction potential due to its qualitative nature. Consideration can therefore be given to applying an ageing factor (K_{DR}) to site specific liquefaction analyses in accordance with methods described in Saftner et al¹² based on the following relationship (where t = time (years)):

K_{DR} =0.189·log(t)+0.878

The calculated aging factor for the Hinuera Formation is 1.65.

For Walton Subgroup the calculated aging factor is 1.85.

The method described by Saftner is based on Hayati and Andrus ¹³ but is updated following further studies and field trials. The basis for applying ageing factors to CPT-based liquefaction assessments is multi-faceted and discussed as follows:

⁸ https://data.gns.cri.nz/

⁹ Earthquake Geotechnical Engineering Practice, Module 3: Identification, assessment and mitigation of liquefaction hazards", (May 2016)

¹⁰ Seed, H.B. and Idriss, I.M. (1971) *A simplified procedure for evaluating soil liquefaction potential*, Earthquake Engineering Research Centre, Report No. EERC 70-9, University of California

¹¹ Youd, T.L. and Perkins, D.M. (1978) Mapping liquefaction-induced ground failure potential, *Journal of the Geotechnical Engineering Division,* ASCE, Vol. 104, No. GT4, Proc Paper 13659, p. 433-446

¹² Saftner, D.A.; Green, R.A.; Hryciw, R.D. (2015). Use of explosives to investigate liquefaction resistance of aged sand deposits, *Engineering Geology*, Vol 199, p.140-147.

¹³ Hayati H, Andrus RD. (2009) Updated liquefaction resistance correction factors for aged sands Journal of Geotechnical and Geoenvironmental Engineering. 135: 1683-1692.

- MBIE Module 3 states that liquefaction susceptibility of soils should be assessed with respect to
 geological criteria (age) and compositional criteria (soil fabric and consistency/density). The geological
 criteria for liquefaction susceptibility is outlined in Section 5.2.1 and states "The age of the deposit is
 an important factor to consider when assessing liquefaction susceptibility". However, it also notes that
 ageing effects can be difficult to quantify. Overall, the MBIE Module 3 guidance is inconclusive around
 applying ageing factors and therefore CMW assessments do not rely on age alone to discount
 liquefaction. Geological age and compositional criteria are considered in conjunction when assessing
 liquefaction, as well as consideration of the geomorphology and topography of the area.
- Nearly all case history data compiled in empirical charts for liquefaction evaluation come from Holocene deposits or man-made fills (Seed & Idriss, 1971 and MBIE Module 3). Pleistocene aged alluvium (>12,000 years) is considered to have a very low to low risk of liquefaction (Youd & Perkins, 1978). Hinuera Formation deposits which underlie the site are Late Pleistocene alluvial deposits, with a geological age of 60 to 17 thousand years.

6.3.3 Soil Fabric

Soils are also classified with respect to their grain size and plasticity to assess liquefaction susceptibility. Based on more recent case histories, there is general agreement that sands, non-plastic silts, gravels and their mixtures form soils that are susceptible to liquefaction. Clays, although they may significantly soften under cyclic loading, do not exhibit liquefaction features, and therefore are not considered liquefiable. NZGS guidance⁵ sets out the plasticity index (PI) criteria for liquefaction susceptibility as follows:

PI < 7: Susceptible to Liquefaction

 $7 \le PI \ge 12$: Potentially Susceptible to Liquefaction

 $PI \ge 12$: Not Susceptible to Liquefaction

The fines content of the sands beneath the site also has a significant impact on their liquefaction susceptibility.

Specific soil grading / plasticity index laboratory testing has not been undertaken to date. Further testing may be of value at building design stage if CPT based liquefaction assessment results are problematic and refinement of susceptibility is warranted.

6.3.4 Specific Analyses

Specific liquefaction analyses were based on the Boulanger and Idriss (2014) methods using the software package CLiq by comparing the cyclic stress ratio (CSR), being a function of the earthquake magnitude for the design return period event, to the cyclic resistance ratio (CRR), being a function of the CPT cone resistance (qc) and friction ratio.

Ageing of the soils was applied to the CLiq models based on the ages specified in Section 6.3.2 above.

Results are presented in *Appendix D* and are summarised on Table 5 below:

Table 3: Liquefaction Analyses Results (Current Ground Profile)						
CPT No.	ULS Settlement (mm)	Depth to Liquefied Layer (m) *	Liquefaction Comments			
1	19	9.0	Several layers between 0.5 and 0.7m thick			
2	7	8.4	Thin discrete layers from 0.2 to 0.4m thick			
3	6	11.6	Single layer 0.3 to 0.4m thick			
4	6	7.1	Thin discrete layers 0.2m thick			
5	9	10.8	Single layer 0.4m thick			
6	11	6.5	Thin discrete layers from 0.2 to 0.5m thick			
7	4	NA	No significant liquefiable layers			
8	5	7.3	Single layer 0.2 to 0.3m thick			
9	7	7.4	Thin discrete layers from 0.2 to 0.3m thick			
10	26	6.1	Thin discrete layers up to 0.5m thick. Susper WSG from 10m ruling out deeper liquefactio			
11	9	7.5	Thin discrete layers from 0.2 to 0.4m thick			
12	0	NA	No significant liquefiable layers. WSG soils			
13	7	8.5	Thin discrete layers from 0.2 to 0.4m thick			
14	0	NA	No significant liquefiable layers			

Note: * liquefied layer considered if greater than 200mm thick
 Settlements and depths are based on current ground profile with no fill surcharge applied.
 NA = Not Applicable, WSG = Walton Subgroup Soils

No liquefaction is predicted under the SLS earthquake event.

6.4 Cyclic Softening

Although the fine-grained Hinuera Formation soils, are not considered liquefiable due to their high plasticity, they may still be susceptible to some strength loss, referred to as cyclic softening, during the ULS seismic event.

Cyclic softening analyses of those soils was carried out in accordance with Boulanger¹⁴ and Idriss¹⁵. This correlates earthquake magnitude to the estimated number of equivalent stress cycles (Figure 3 below) and then correlates number of cycles to a cyclic shear strength ratio (Figure 4 below).

¹⁴ Boulanger, R.W. and Idriss. I. M. (2007) Evaluation of Cyclic Softening in Silts and Clays, Journal of Geotechnical and Environmental Engineering, Vol 133, Issue 6.

¹⁵ Idriss, I. M. and Boulanger, R. W. (2008) Soil Liquefaction During Earthquakes. Monograph 12, Earthquake Engineering Research Institute.

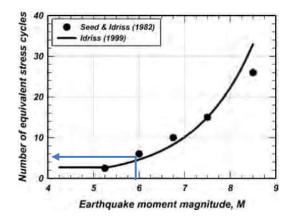


Figure 3: Relationship between earthquake magnitude and mean number of uniform stress cycles

Figure 4: Relationship between cyclic strength ratio and number of uniform stress cycles

Based on the above assessment, 6 stress cycles are estimated during the ULS M5.9 earthquake resulting in an estimated cyclic shear strength of no more than 85% of the peak shear strength. Reduced peak shear strengths should be considered if any slope stability analyses are required e.g. for soakage basin detailed design.

6.5 Lateral Spread

Following the onset of liquefaction, the liquefied soils behave as a very weak undrained material, which can give rise to lateral spreading where a free face is present within the vicinity of the site.

Literature suggests that lateral spreading may occur if laterally persistent liquefied layers are present within a depth of 2 times the free face height. In this case, assuming a 3m deep soakage basin liquefaction above a depth of 6m may result in lateral spreading.

On account of the depth to liquefaction being greater than 6m along with the thin and discrete distribution of liquefied layers, the risk of lateral spreading into the proposed stormwater soakage basins in considered to be very low.

6.6 Soakage Basin Batters and Slope Stability

Detailed slope stability analyses are not warranted for the soakage basin at this early stage of the proposed development. Preliminary design recommendations are provided in Section 7.3 below.

For the hill remaining following proposed earthworks, due to the low slope gradients the slope stability risk is considered to be negligible.

6.7 Erosion

The predominantly sandy and silty nature of the natural soils, which will also generally be used as engineered fill, means that there is a risk of erosion if appropriate controls are not in place.

However, considering the relatively flat finished landform there will be a low risk of erosion across the site as a whole.

6.8 Load Induced Settlement

Although no earthworks plans are available at the time of this report preparation, it is anticipated that only minor fill placement will be undertaken of the order 1m thick across the lower lying portions of the site.

Proposed fill and future building loads may induce settlements within the underlying subsoils.

As the Hinuera Formation soils are sand dominated with lenses of fine grained silt, clay and localised organic silt and clay layers, load induced settlement is anticipated to be largely immediate.

Static settlements were calculated from selected representative CPT data to simulate widespread floor loads of 35kPa, and for shallow strip and pad foundations of dimensions 0.4×0.4 metres and 1.5×1.5 metres respectively with an applied working load of 100kPa.

The calculations were carried out adopting correlations with soil modulus from CPT data following the different methods of Schmertmann and Burland & Burbridge (carried out by Coffey) and re-assessed for comparison by CMW using the software package CPeT-IT.

Table 6: Estimated Fill Induced Static Settlements (mm)					
CPT No	Method	0.4 x 0.4m strip footing with 100 kPa applied load	1.5 x 1.5m pad footing with 100 kPa applied load	35kPa widespread load *	
3	Schmertmann	10	20	125	
3	Burland & Burbridge	35	35	155	
3	CPeT-IT	25	30	60	
4	Schmertmann	15	50	55	
4	Burland & Burbridge	50	70	75	
4	CPeT-IT	35	40	265	
6	Schmertmann	5	20	100	
6	Burland & Burbridge	20	30	50	
6	CPeT-IT	45	50	120	
8	Schmertmann	10	80	130	
8	Burland & Burbridge	25	60	135	
8	CPeT-IT	85	100	205	
10	Schmertmann	10	30	100	
10	Burland & Burbridge	30	35	140	
10	CPeT-IT	30	35	85	
11	Schmertmann	5	10	40	

Estimated static settlements are presented in Table 6 below:

Table 6: Estimated Fill Induced Static Settlements (mm)							
CPT No Method 0.4 x 0.4m strip footing with 100 kPa applied load 1.5 x 1.5m pad footing with 100 kPa applied load 35kPa widespread load							
11	Burland & Burbridge	10	15	35			
11	11 CPeT-IT 35 40 65						
Notes: * T	Notes: * Total load represents nominal 5 kPa dead load and 30 kPa live load						

Data from CPT 12 located on the southern low hill was not analysed as this location is proposed to be cut down in the order of 10m resulting in a large load compensation at finished subgrade levels.

Fill loads have not been considered in the settlement estimates as due to the primarily sandy nature of the Hinuera Formation soils beneath where fill will be placed. Associated settlements are anticipated to be immediate and largely resolved during earthworks construction.

These preliminary results show that settlement magnitudes for shallow pad and strip footings range from 5 to 100mm, where stress increases are primarily within the near surface deposits.

For widespread floor loads, settlement magnitudes are calculated to range from 35 to 265mm, where the theoretical pad width was adjusted to determine the greatest associated magnitude of settlement at each selected CPT location.

Load induced settlement estimates, in particular the widespread load values in Table 6 are considered to be very conservative. This is on the basis that the CPT Qc values within the upper Walton Subgroup – Puketoka Formation soils underestimate soil strength and stiffness due to the sensitivity of these soils to disturbance.

6.9 Sensitive Soils

The Walton Subgroup – Puketoka Formation silts and clays that are expected to be exposed following cutting down of the low hill area at / or immediately below design subgrade level typically contains very high moisture contents, sometimes approaching the soil liquid limit. They are highly sensitive resulting in significant strength loss upon remoulding.

Those characteristics may make the Puketoka Formation silty and clay soils particularly challenging to earthwork requiring specific consideration of plant types, vehicle movements and cut to fill methodologies. Further recommendations are provided in Section 7.5 below.

The majority of silt and clay soils present are sensitive to remoulding and moisture ingress resulting in a loss of strength. Care will be required to avoid over-working and trafficking of these materials during building, and to protect them from moisture ingress.

6.10 Expansive Soils

National standards exclude from the definition of 'good ground', soils with a liquid limit of more than 50% and a linear shrinkage of more than 15% due to their potential to shrink and swell as a result of seasonal fluctuations in water content.

This shrinking and swelling results in vertical surface ground movement which can cause significant cracking of floor slabs and walls. There have been instances of concrete floors and/ or foundations that have been poured on dry, desiccated subgrades in summer months on expansive soils and have undergone heaving and cracking requiring extensive repairs or re-building once the soil moisture contents have returned to higher levels.

Whilst no laboratory testing has been undertaken for this site, from our experience the Walton Subgroup clay soils may be expected to have liquid limits above 50% indicating potentially expansive soils.

Hinuera Formation soils and Walton Subgroup silts and sands are not considered expansive.

The November 2019 update to the NZ Building Code, B1/AS1, includes significant detail on the assessment of expansive soil class and associated foundation design which may be relevant where clay soils are present.

With reference to published literature (Lowe & Percival, 1993⁴⁶, Lowe et al., 2001⁴⁷) the Waikato region clay soils of the Walton Subgroup (the dominant surficial soil type at Lockerbie) have the potential to contain Halloysite, Kaolinite and some Allophane clay mineralogy's.

Upon exposure to air during periods of dry weather, these clay minerals can undergo non-recoverable shrinkage i.e., the volume of the soil is permanently decreased. In this case significant surface cracking can occur. This behaviour is unique to Halloysite dominant clays and therefore differs from Smectite / Montmorillonite (swelling/shrinking) dominated clays, on which AS2870 is based. Specific testing for expansive soils has not been carried out for this site and our advice is based on research in the greater Waikato region.

7 GEOTECHNICAL RECOMMENDATIONS

7.1 Seismic Site Subsoil Category

The geological units encountered beneath the development area comprise soil strength materials, which with respect to the seismic site subsoil category defined in Section 3.1.3 of NZS1170.5, is defined as having a UCS < 1MPa therefore a seismic site subsoil class of D (deep or soft soil) is considered appropriate.

It is anticipated that future buildings will be considered Importance Level IL2 structures with respect to NZS1170.

7.2 Liquefaction / Lateral Spread Mitigation

With reference to the liquefaction, cyclic softening, and lateral spread assessment in Sections 6.3 to 6.5 above, these geohazards are not anticipated to be significant constraints for the proposed development with respect to the defined design criteria.

Following installation of a series of subsoil drain the

Avoidance of stormwater soakage basin excavations deeper than 3m is recommended to reduce the risk of lateral spreading during ULS earthquake conditions.

However seismic slope stability analyses for the stormwater basins is recommended at detailed design stage to demonstrate compliance with design criteria above.

7.3 Soakage Basin Batter Stability

Based on our experience within similar soils as present at the site, a preliminary internal batter gradient of 1v:3h should be suitable assuming loose to medium dense sands.

Further slope stability analyses should be undertaken at the time of detailed design including assessment of soil types, variation of water levels, potential for scour/erosion and any surcharge loading.

A building restriction setback from the basins is expected and should be defined at the detailed design stage.

¹⁶ Lowe, D.J. & Percival, H. J. 1993. Clay Mineralogy of Tephras and Associated Paleosols and Soils, and Hydrothermal Deposits, North Island. 10th International Clay Conference, Adelaide.

¹⁷ Lowe, D.J. et al, 2001. Ages on Weathered Plio-Pleistocene Tephra Sequences, Western North Island, New Zealand. Le Dossiers de l'Archeo-Logis 1, 45-60.

7.4 Static Settlement Management

7.4.1 General

Buildings should be designed to tolerate differential settlements of up to 1 in 240 (approximately 25mm over a 6 metre length of building) as required by the New Zealand Building Code.

Load induced settlement estimates stated in Section 6.8 are considered to be very conservative on the basis that the CPT Qc values within the upper Walton Subgroup – Puketoka Formation soils underestimate soil strength and stiffness due to the sensitivity of these soils to disturbance.

Typically shallow foundation types are considered feasible for lightweight industrial and commercial buildings subject to further geotechnical assessment at Building Consent stage.

Consideration should be given to positioning buildings to avoid spanning over the cut down hills and surrounding terrace where the risk of differential settlement issues is greatest.

Due to the inherent variability of the natural subsoils, foundation improvement works may be required. For any deeper or larger foundation dimensions, changes in stress conditions to the underlying variable strength natural subsoils are likely to result in increased settlements to those indicated in Section 6.8 above.

7.4.2 Ground Improvement Options

If particularly heavy building dead and live load combinations are proposed and specific geotechnical investigation and analysis indicates that settlement magnitudes are unacceptable then to minimise post construction static ground settlements, a range of options may be considered, including the following:

- Nominal 0.5 to 1m undercut of any low-strength near surface soils (such as sensitive silt/clay of the Puketoka Formation or Hinuera Formation silts or loose sands) and replacement with engineered fill (reused or imported sand, or hardfill), possibly with geogrid layers and possibly with stiffened raft foundations;
- Construction of a temporary surcharge or pre-load fill embankment above design finished level, to over-consolidate the compressible soils and minimise post construction embankment settlements;
- Compensated foundation design using lightweight geofoam, such as EPS-block materials to keep pressures below pre-consolidation pressures within compressible soils thereby reducing consolidation settlements;
- Undertake deeper ground improvement beneath the building footprint, such as stone columns, soil
 mixed columns, CFA piles, Rammed Aggregate Piers (RAP's) or similar rigid inclusions to transfer
 loads from the structure to more competent underlying soils at depth.

The Masterplan indicates that buildings may span from cut Walton Subgroup soils onto Hinuera Formation with or without earthfill, where post-construction differential settlements may occur. It is expected that geotechnical designers should give consideration to this differential settlement potential and also consider positioning buildings entirely on cuts or fills.

7.5 Earthworks

7.5.1 General

All earthwork activities should be carried out in general accordance with the requirements of NZS 4431¹⁸ and the general requirements of the Waikato Regional Infrastructure Technical Specifications (RITS) under the guidance of a Chartered Professional Geotechnical Engineer.

¹⁸ Standards New Zealand (1989) Code of practice for earth fill for residential development, incorporating Amendment No. 1, NZS 4431:1989, NZ Standard

7.5.2 Subgrade Preparation

Preparation of the natural soil subgrade beneath proposed fill areas should comprise stripping of all vegetation, topsoil, any pre-existing fill materials or weak surficial alluvium. The subgrade should then be scarified and moisture conditioned where necessary and then proof rolled to verify the subgrade stiffness and consistency.

Where any particularly weak materials are encountered that weave excessively during the proof rolling process, they should be undercut and removed prior to placing engineered fill.

For all existing farm drains, allowance should be made for excavating out all organic materials, cleaning out of all accumulated sediment, placement of drainage materials and bulk engineered fill above.

7.5.3 Subsoil Drainage

A network of subsoil drains will need to be installed across the site that will supersede the existing farm subsoil drains and manage near surface groundwater levels over the winter months.

The Coffey Existing Subsoil Drainage Plan drawing Figure 07 (in *Appendix A*) depicts the indicative existing farm subsoil drain layout. At this early stage of the development it is recommended that the new subsoil drain network cover this area with a nominal 30m spacing. The drain layout should be designed to discharge into the proposed stormwater basins.

Subsoil drains are anticipated to comprise a nominal 2m to 3m deep excavated trench with perforated draincoil, drainage aggregate and fully wrapped in a non-woven geotextile fabric. The geotextile wrapped drainage aggregate should be approximately 1m thick. The upper trench backfill should be compacted to engineer certifiable standard.

The function of subsoil drains and their outlets into proposed stormwater soakage basins will be protected using restrictions applied in the Geotechnical Completion Report. These may also include foundation piling requirements to prevent conflict with the drains.

7.5.4 Compaction

Earthfill must be placed, spread and compacted in controlled lifts under the direction of a geotechnical engineer. The fill is expected to comprise cohesive clay and silt, free of any organic.

All earthfill must be placed to ensure adequate knitting of successive fill lifts by ripping any natural subgrade or fill surfaces that have become dry prior to placing the following fill lift.

The volcanic ash sourced cut material should be suitable for reuse as Engineer Certified Fill with minimal conditioning during dry summer construction period.

The deeper Puketoka Formation silt and clay is highly sensitive to strength loss upon remoulding and carefully developed earthworks methodologies and practices are required to successfully earthwork these soils. From our experience these soils can be suitably dried and blended with volcanic ash soils during dry summer months. The success of this is highly dependent on slow and well executed compaction methodologies. Selection of earthworks contractors experienced in dealing with these soils is strongly recommended.

7.5.5 Compaction Factor

Comparison of in-situ dry densities to maximum dry densities within the likely onsite cut materials comprising Walton Subgroup clays and silts, together with data derived from other sites, suggests that an average compaction factor of approximately 1.3 to 1.5 should be appropriate for those materials.

7.5.6 Quality Control

The source and / or type of material used for engineered fill will dictate the type of quality control testing undertaken.

It is expected that the onsite cut will comprise clays and silts to be used as structural earth filling. In this case test criteria using vane shear strength and air voids should be used. A representative suite of

compaction curves with solid density and moisture content tests are recommended to confirm a project specific compaction specification.

For any imported granular (sand and gravel) fill materials, testing following compaction should be principally in terms of the maximum dry density within the appropriate water content range, which may be calibrated with a dynamic cone (Scala) penetrometer test that is then used as the primary testing measure. Where the source or quality of fill changes, re-calibration will be required.

The source of the fill should be discussed with and approved by the project geotechnical engineer to verify its appropriateness and quality control testing requirements.

7.6 Civil Works

7.6.1 Road Subgrades

The development masterplan indicates subdivision roading which will be constructed in primarily cut areas or where thin structural earthfill has been placed.

The Walton Subgroup clay and silt soils, Hinuera silts, particularly the Puketoka Formation clays and silts, are sensitive to disturbance and degrade rapidly with trafficking. Where traffic can be left off these materials, they are moisture conditioned, recompacted at optimum moisture contents and located at least 1m above the peak winter water table, there could be some opportunity to use them as a pavement subgrade material for minor roads. However, this is not considered practical for main collector-type roads and allowance should therefore be made to undercut these materials and replace with a subgrade improvement layer (SIL).

The thickness of the SIL should be determined by the pavement designer although a nominal thickness of 1m is envisaged to adequately dissipate traffic loads within the Puketoka Formation soils. From our experience a 1m thick sand SIL overlying high strength geotextile and geogrid may be appropriate. Specific consideration to construction methodologies, such as the use of long reach excavators, progressive excavation and SIL placement, along with use of geotextiles, etc, will also be required to avoid trafficking over sensitive clay/silt subgrades.

It is envisioned that well-graded clean sand excavated during proposed stormwater basin construction would be suitable for use as SIL material.

Medium dense to dense Hinuera Formation sandy soils are generally suitable as road subgrade materials. Where loose Hinuera Formation sands are present at subgrade levels these may be conditioned by proof rolling to achieve suitable subgrade strengths.

7.6.2 Service Trenches

All of the materials to be exposed during the excavation of service trenches should be readily removed using an excavator.

Trench collapse is expected to pose problems in areas where groundwater is encountered, particular over winter months.

Installation of the proposed subsoil drainage network prior to service trenching is recommended. However for service lines deeper than the subsoil drains these should be installed first and are expected to require temporary construction dewatering in the form of regularly spaced sump pumps or well point dewatering spears.

Potential for dewatering induced settlements should be considered during detailed subdivision design and impact on adjacent roading and existing structures assessed.

It is anticipated that all trench backfill will be placed and compacted in accordance with RITS requirements.

7.6.3 Stormwater Soakage

The Hinuera Formation sandy soils at this site are considered suitable to provide a seepage function for the design of stormwater attenuation and soakage basins. The soakage test results indicate a range in K value of 1.2x10-6 m/sec to 7.7x10-5 m/sec.

Detailed soakage design is being undertaken by others. We recommend the design consider depth to groundwater table, potential for blinding of the base due to progressive fines build up, secondary overland flow paths and downstream effects.

There is a lot of variability in the soakage test results, and for preliminary design purposes conservatively using the lower value may be more appropriate than adopting an average. As such, further soakage testing in the location of the proposed soakage basins should provide greater confidence.

It is important to note that soil permeability rates in the clayey and silty soils forming the low hills will be low and soakage in these soils is not recommended.

8 FOUNDATIONS

At the completion of earthworks, a Geotechnical Completion Report (GCR) will be prepared. The GCR will advise on anticipated foundation design parameters and any restrictions that require further engineering investigation and/ or design on individual lots to address any remaining natural hazards as described in Section 71(3) of the Building Act i.e., erosion, falling debris, subsidence, slippage, and inundation.

Restrictions that are expected to be applied in the GCR to protect the future buildings from natural hazards associated with static settlement and liquefaction, batters and drainage are outlined in the respective sections in this report.

On this site our provisional expectation is that, provided earthworks are completed in accordance with the standards and recommendations described herein, the following will apply:

• A preliminary geotechnical ultimate bearing pressure of 300kPa should be available for shallow strip and pad foundations constructed within both the natural cut ground and engineered fill areas, subject to the short axis of those footings measuring no greater than 1.5m in plan.

There may be areas where localised variations in shear strength within the natural cut ground occur, particularly where Puketoka Formation soils are exposed and where the depth of cut varies across the building platforms. Further confirmation of available bearing pressures will be addressed at the time of post earthworks soil testing.

- On the basis of soil descriptions and our experience, we have assessed the preliminary AS2870 Site Class for building platforms within the Walton Subgroup soils to be M (moderate). These recommendations should be subject to further review by a suitably qualified geotechnical engineer for specific building foundations.
- Hinuera Formation soils are considered to be Site Class A.
- As required by section B1/VM4¹⁹ of the New Zealand Building Code Handbook, a strength reduction factor of 0.5 and 0.8 must be applied to all recommended geotechnical ultimate soil capacities in conjunction with their use in factored design load cases for static and earthquake overload conditions respectively.

9 STATEMENT OF PROFESSIONAL OPINION

Based on the results of previous geotechnical investigations at the site and subject to the preliminary recommendations stated above, we consider that the site is suitable for the proposed level of development. The proposed private plan change from industrial to mixed residential, commercial and recreational land use is considered to be appropriate from a geotechnical perspective.

¹⁹ Ministry of Business, Innovation and Employment (2019) *Acceptable Solutions and Verification Methods for NZ Building Code Clause B1 Structure,* B1/VM4, Amendment 19

10 FURTHER WORK

Further geotechnical field investigation and design will be required to suitably mitigate the geotechnical risks identified in Section 6 above.

Our recommendations for further work are as follows:

- Hand auger boreholes with associated soakage testing in the locations of the proposed stormwater basins to provide in-situ soil permeability values for soakage design;
- Subsoil drainage design including drain layout and construction detailing;
- Further slope stability analyses should be undertaken at the time of detailed design of the stormwater basins including assessment of soil types, variation of water levels, potential for scour/erosion and any surcharge loading. A building restriction setback from the basins should be confirmed at this time;
- Earthworks material suitability assessment including sampling, laboratory testing and preparation of an project specific earthworks compaction control specification;
- Section 106 of the Resource Management Act20 (RMA) requires an assessment of the risk from natural hazards to be carried out when considering the granting of a subdivision consent. S106 RMA specifically states that the assessment must consider the combined effect of the natural hazard likelihood and material damage to land or structures (consequence). This is a requirement at Resource Consent application stage.
- Presentation of the above work in a Geotechnical Design Report suitable to support a Resource Consent application and / or detailed design as appropriate.

Proposed buildings should be subject to specific geotechnical site investigation, analyses and reporting at the time of Building Consent application.

²⁰ Resource Management Act (1991), as at 29 October 2019

USE OF THIS REPORT

Site subsurface conditions cause more construction problems than any other factor and therefore are generally the largest technical risk to a project. These notes have been prepared to help you understand the limitations of your geotechnical report.

Your geotechnical report is based on project specific criteria

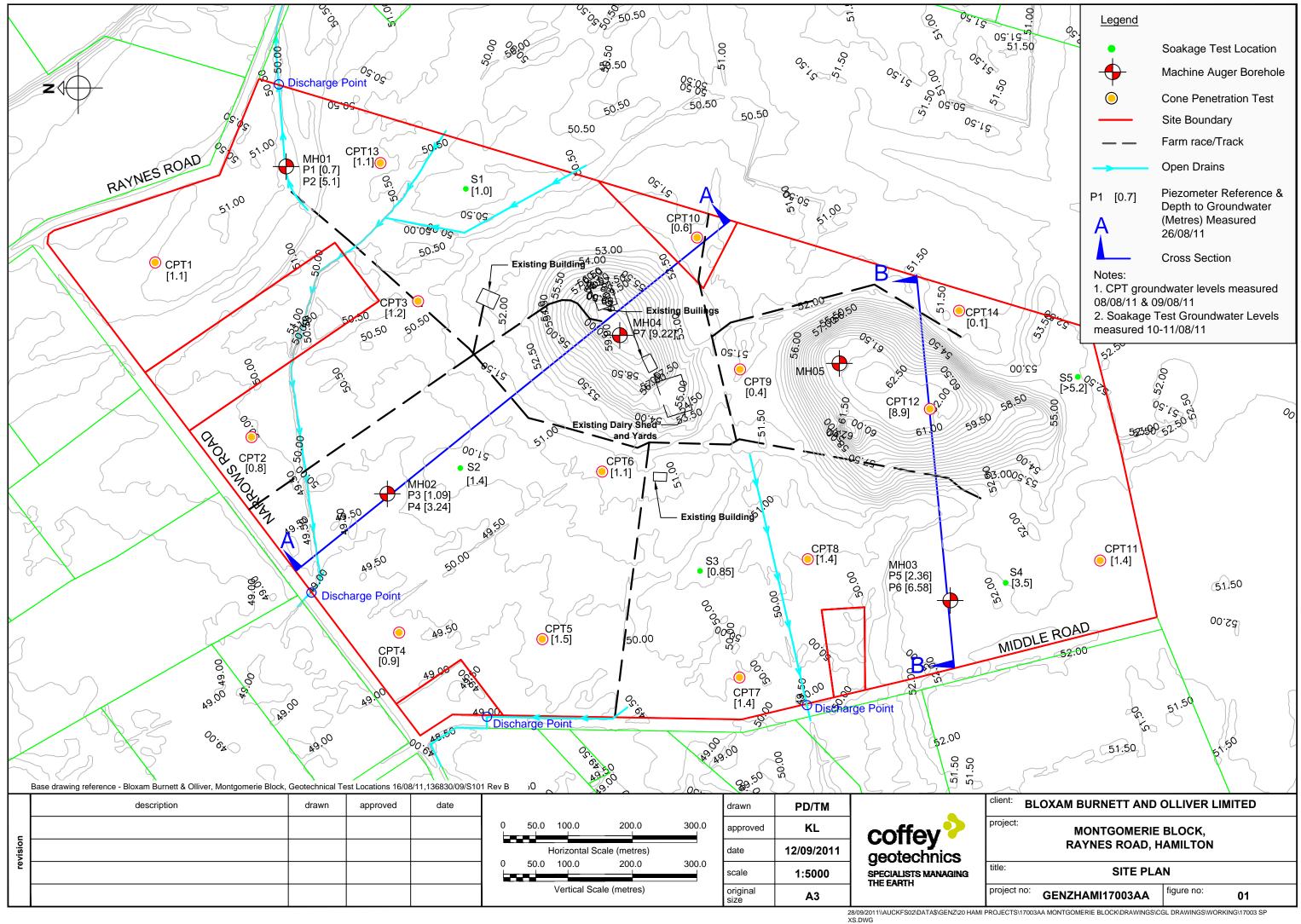
Your geotechnical report has been developed on the basis of our understanding of your project specific requirements and applies only to the site area investigated. Project requirements could include the general nature of the project; its size and configuration; the location of any structures on or around the site; and the presence of underground utilities. If there are any subsequent changes to your project you should seek geotechnical advice as to how such changes affect your report's recommendations. Your geotechnical report should not be applied to a different project given the inherent differences between projects and sites.

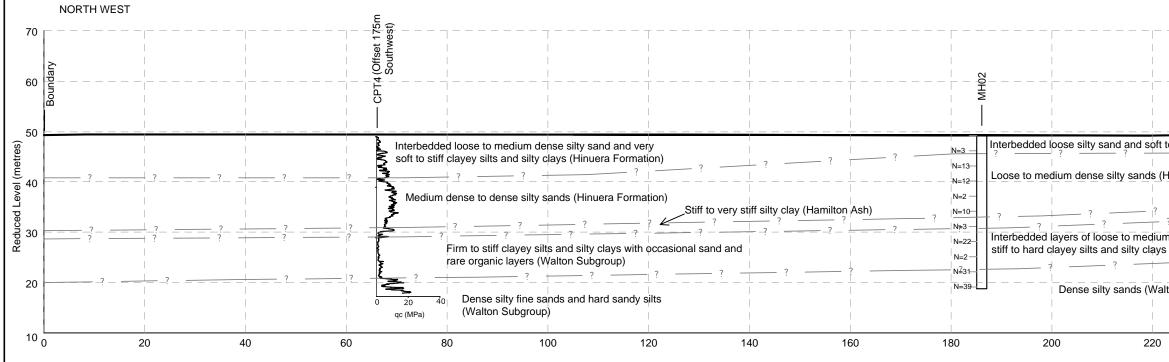
Subsurface conditions can change

Subsurface conditions are created by natural processes and the activity of man. For example, water levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Because a report is based on conditions which existed at the time of subsurface investigation, the conditions may have changed, particularly when large periods of time have elapsed since the investigations were performed.

Interpretation of factual data

Site investigations identify actual subsurface conditions at points where samples are taken. Additional geotechnical information (e.g. literature and external data source review, laboratory testing on samples, etc) are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact on the proposed development and recommended actions. Actual conditions may differ from those inferred to exist, because no professional, no matter how qualified, can exactly predict what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions.


Your report's recommendations require confirmation during construction

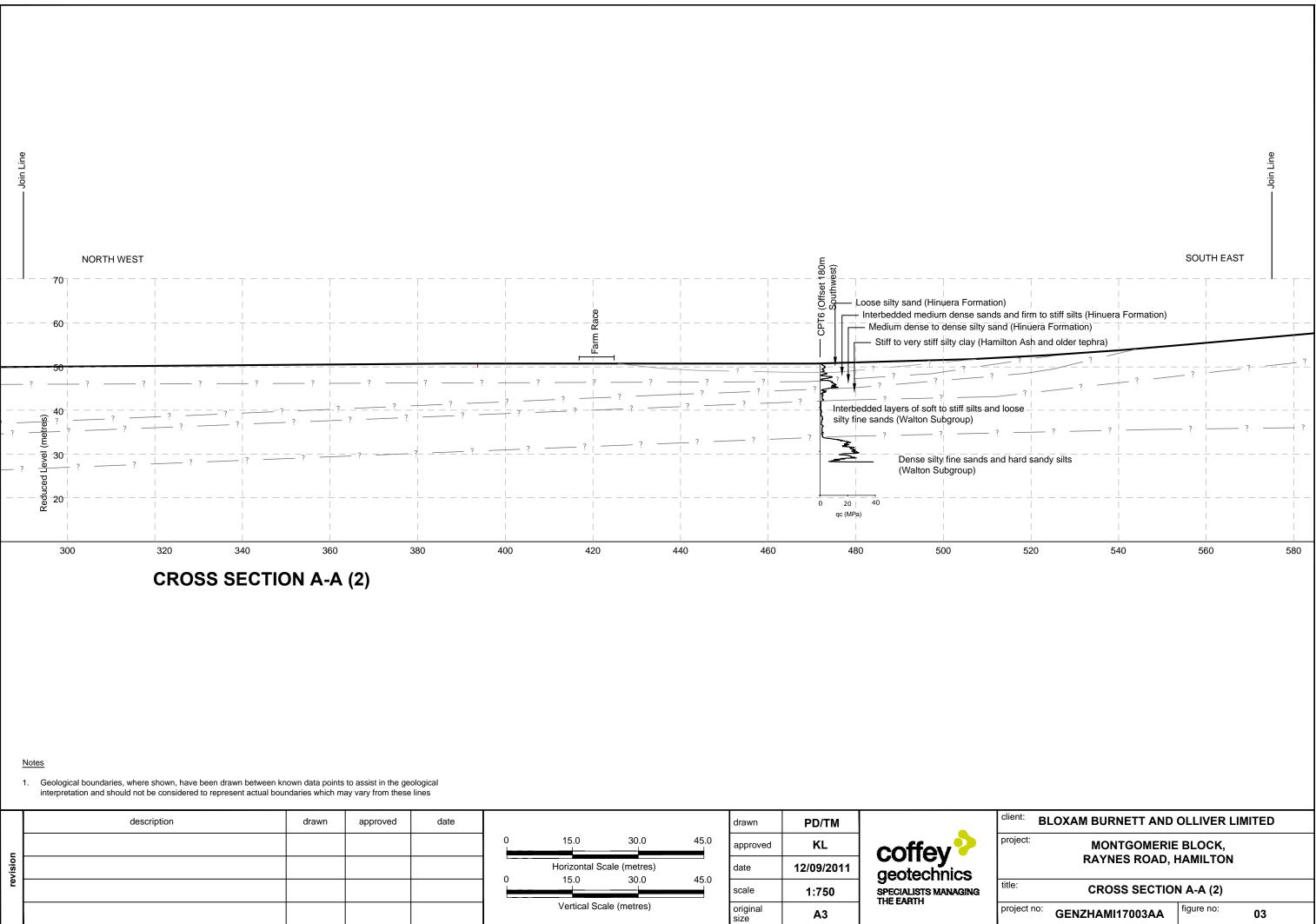

Your report is based on the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until project implementation has commenced. For this reason, you should retain geotechnical services throughout the construction stage, to identify variances, conduct additional tests if required, and recommend solutions to problems encountered on site. A geotechnical designer, who is fully familiar with the background information, is able to assess whether the report's recommendations are valid and whether changes should be considered as the project develops. An unfamiliar party using this report increases the risk that the report will be misinterpreted.

Interpretation by other design professionals

Costly problems can occur when other design professionals develop their plans based on misinterpretations of a geotechnical report. Read all geotechnical documents closely and do not hesitate to ask any questions you may have. To help avoid misinterpretations, retain the assistance of geotechnical professionals familiar with the contents of the geotechnical report to work with other project design professionals who need to take account of the contents of the report. Have the report implications explained to design professionals who need to take account of them, and then have the design plans and specifications produced reviewed by a competent Geotechnical Engineer.

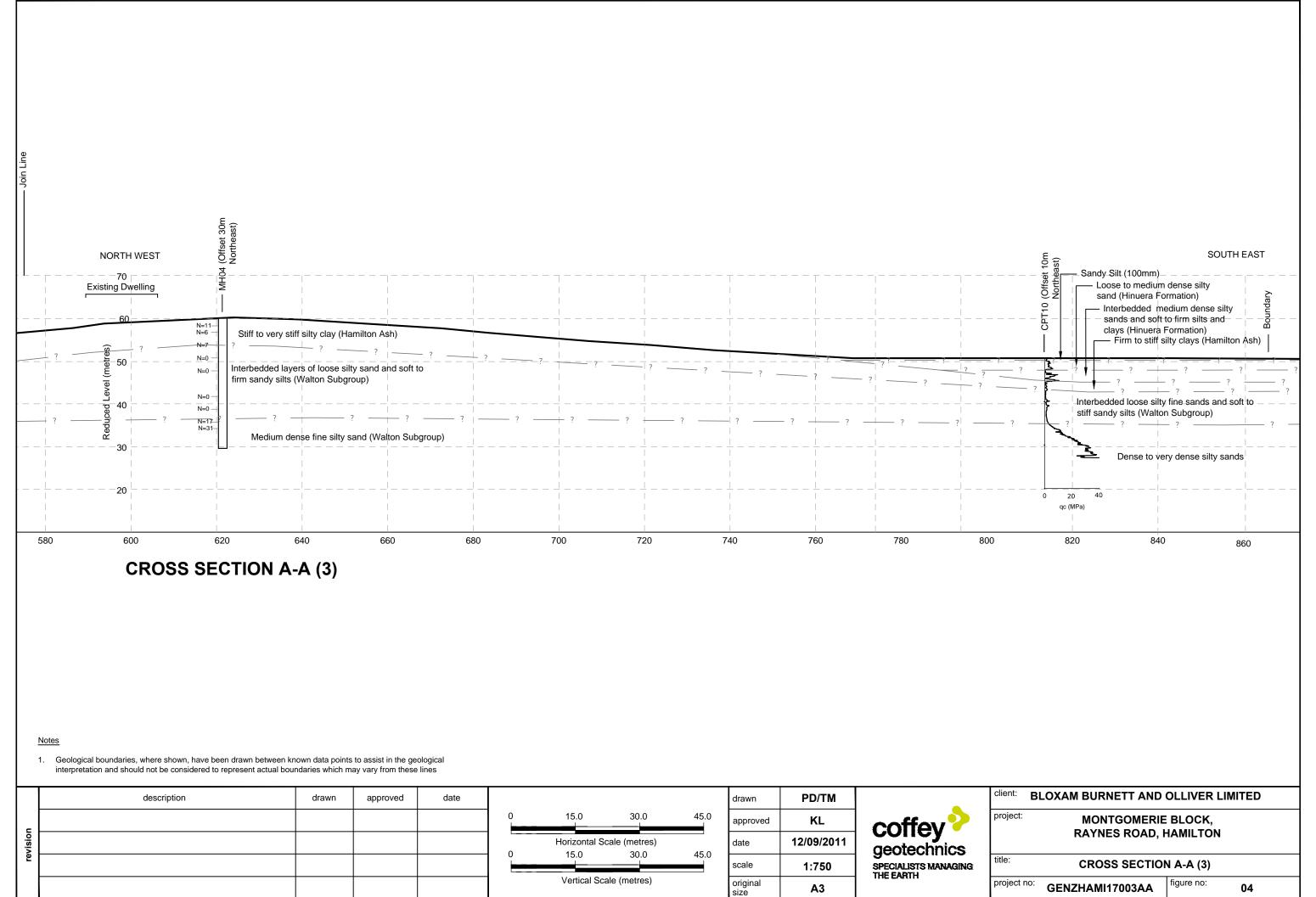
Appendix A: Coffey Geotechnics Figures 01 to 07

CROSS SECTION A-A (1)

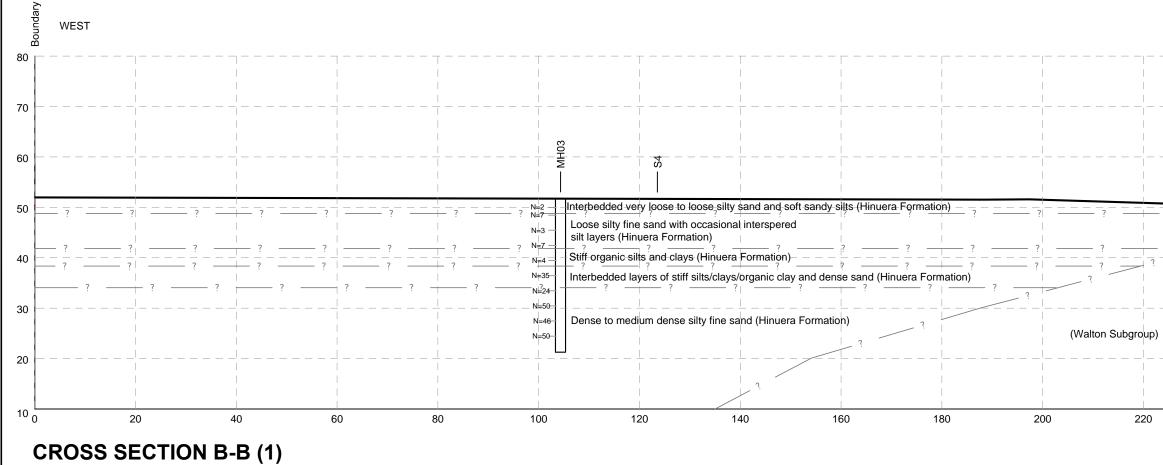

Notes

 Geological boundaries, where shown, have been drawn between known data points to assist in the geological interpretation and should not be considered to represent actual boundaries which may vary from these lines

	description	drawn	approved	date					drawn	PD/TM		clie
-					0	15.0	30.0	45.0	approved	KL	coffey	pro
visior						Horizontal Sc	. ,		date	12/09/2011	geotechnics	
re						15.0	30.0	45.0	scale	1:750	SPECIALISTS MANAGING THE EARTH	title
						Vertical Sca	ale (metres)		original size	A3		pro


12/09/2011C:\USERS\TYLER_MANDERSON\DESKTOP\HAMI_TAUC PROECTS\TYLER\17003 MONTGOMERIE\17003 SP XS.DWG

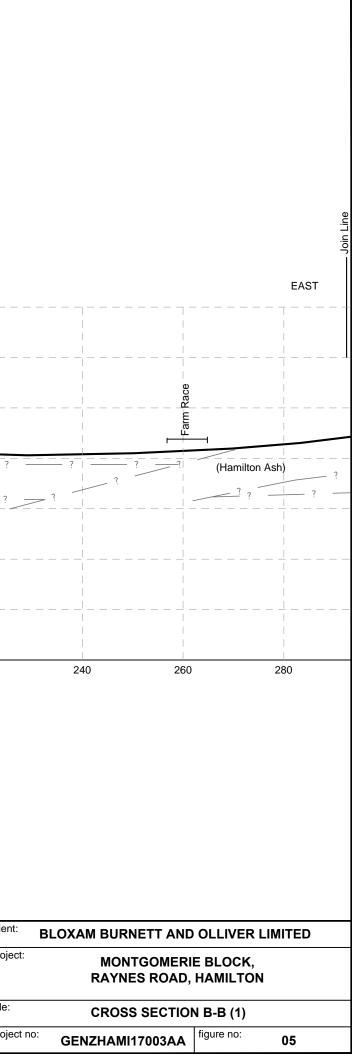
			Join Line
			lol
		SOUTH	IEAST
to firm clayey silts	and silty clays (Hinuera	Formation)	
		?	? ?
linuera Formation)		clay (Hamilton Ash	<u> </u>
; ;	· · · · · · · · · · · · · · · · · · ·	?	(
n dense silty fine s (Walton Subgroup - ??	ands and	_ ? ?	
ton Subgroup)	' 		·
24	40 26	0	280
	BURNETT AND	OLLIVER LIMI	TED
oject:	MONTGOMERIE RAYNES ROAD, H		
e:	CROSS SECTION		
oject no: GENZ	HAMI17003AA	figure no:	02

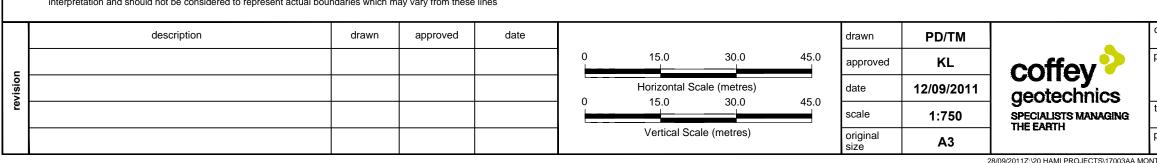


	description	drawn	approved	date					drawn	PD/TM		clie
-					0	15.0	30.0	45.0	approved	KL	coffey	pro
visior						Horizontal Sc	,		date	12/09/2011	geotechnics	
re						15.0	30.0	45.0	scale	1:750	SPECIALISTS MANAGING THE EARTH	title
						Vertical Sca	ale (metres)		original size	A3		pro
									SIZE			

12/09/2011C:\USERS\TYLER_MANDERSON\DESKTOP\HAMI_TAUC PROECTS\TYLER\17003 MONTGOMERIE\17003 SP XS.DWG

12/	09/2011C:\USERS\TYLER_N	MANDERSON\DES	SKTOP\HAMI	TAUC PROECTS\TY	LER\17003 MONTGOMER	IE\17003 SP XS.DWG	

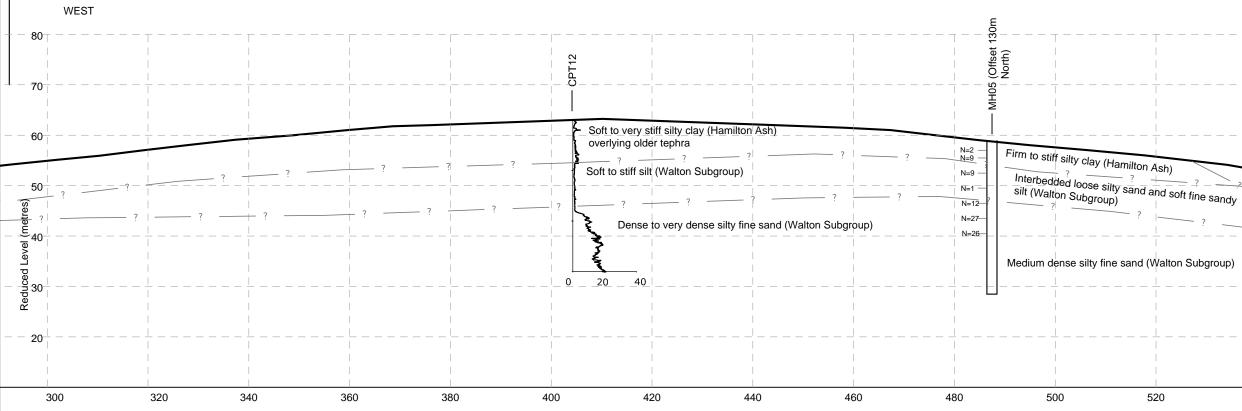


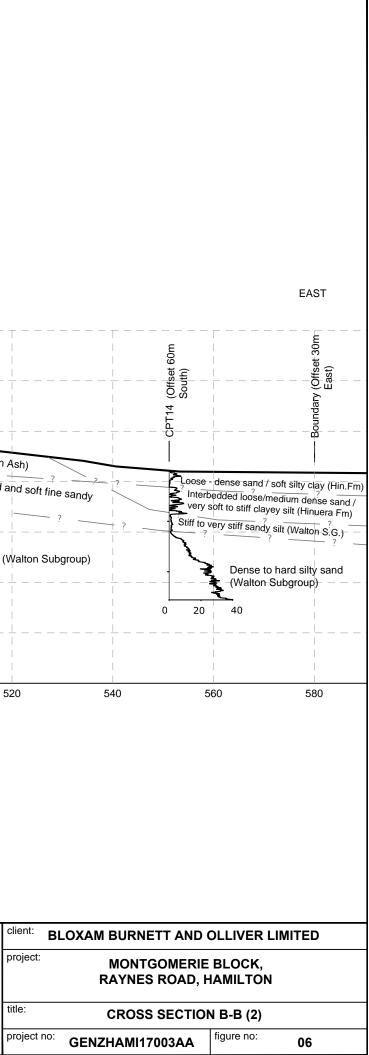

Notes

1. Geological boundaries, where shown, have been drawn between known data points to assist in the geological interpretation and should not be considered to represent actual boundaries which may vary from these lines

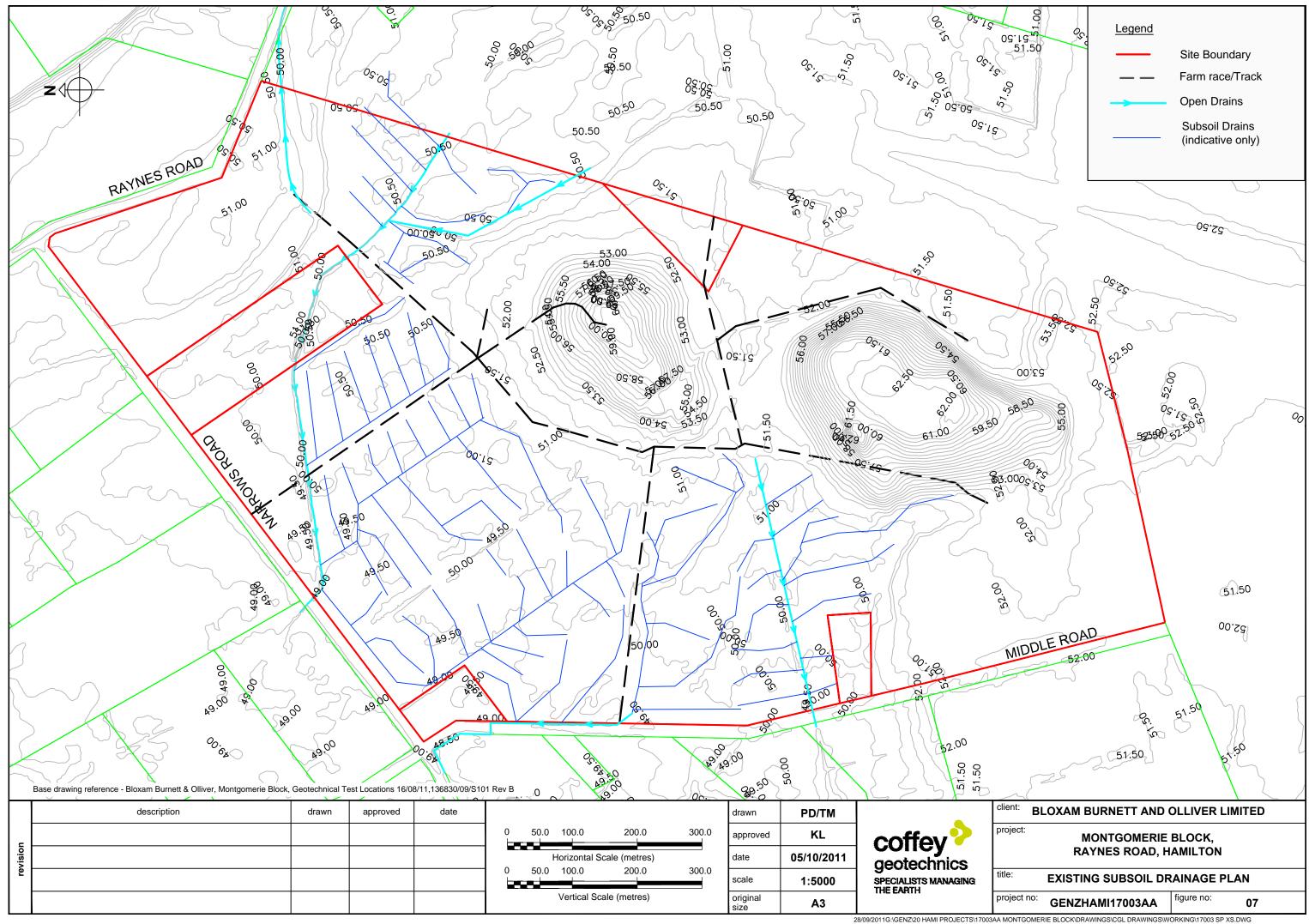
	description	drawn	approved	date					drawn	PD/TM		clie
-					0	15.0	30.0	45.0	approved	KL	coffey	pro
visior						Horizontal Sc	. ,	45.0	date	12/09/2011	geotechnics	
re						15.0	30.0	45.0	scale	1:750	SPECIALISTS MANAGING THE EARTH	title
						Vertical Sca	le (metres)		original size	A3		pro
									size			

12/09/2011C:\USERS\TYLER_MANDERSON\DESKTOP\HAMI_TAUC PROECTS\TYLER\17003 MONTGOMERIE\17003 SP XS.DWG

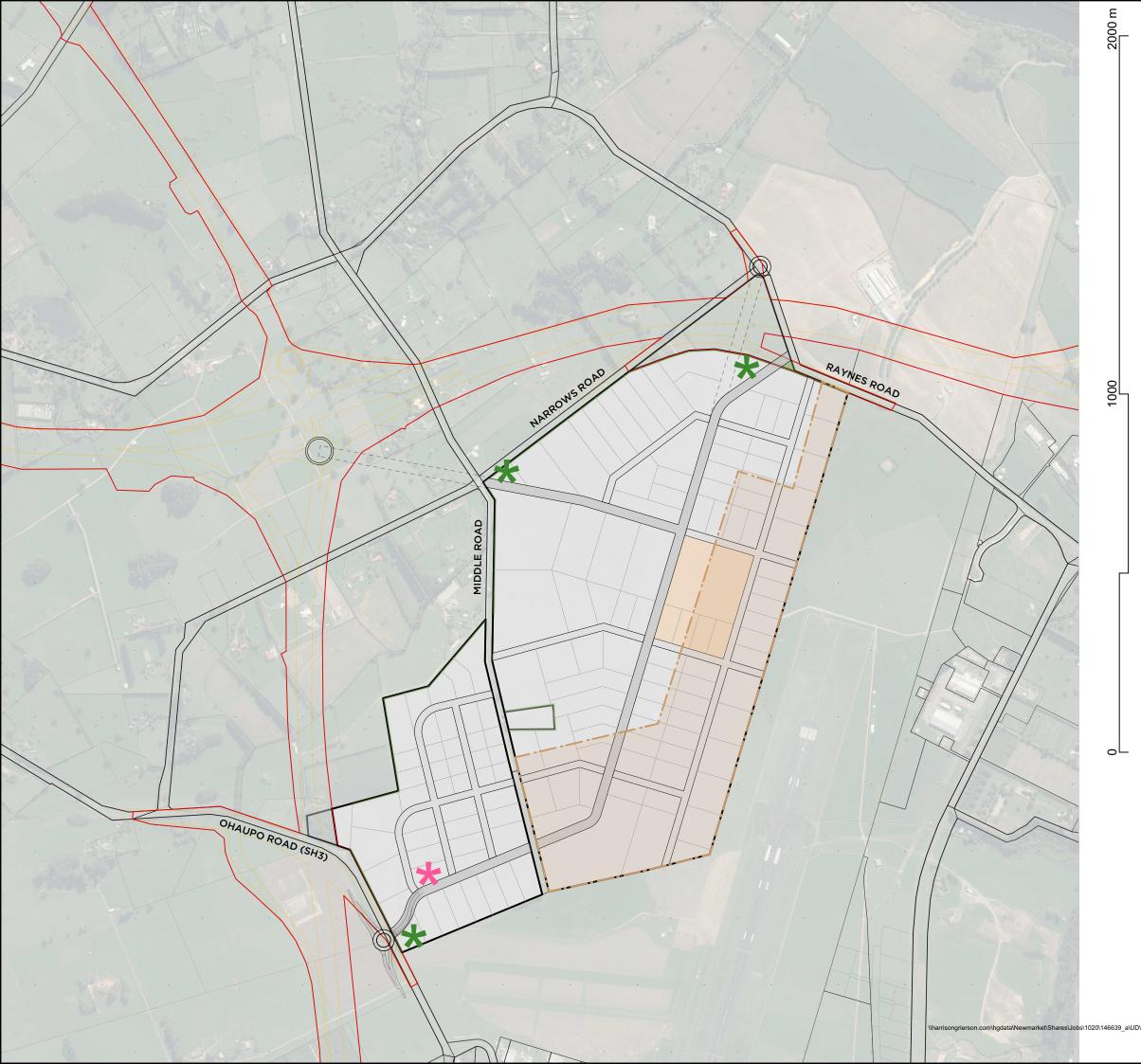



Geological boundaries, where shown, have been drawn between known data points to assist in the geological interpretation and should not be considered to represent actual boundaries which may vary from these lines

Notes


 320
 340
 360
 380
 400

 CROSS SECTION B-B (2)



28/09/2011Z:\20 HAMI PROJECTS\17003AA MONTGOMERIE BLOCK\DRAWINGS\CGL DRAWINGS\WORKING\17003 SP XS.DWG

Appendix B: HGCL Illustrative Masterplan

Integrated Masterplan Concept

KEY

	Hub
i	Indicative Future Road Connections to Southern Links
	Southern Links Designation Extent
	Landscape Buffer
*	Indicative Landscape Feature
*	Indicative Retail Area
	Operative Airport Business Zone Extent Land area extent - approx. 41ha

NOTE: Lot layout is indicative only and for illustrative purposes. Further development is anticipated following experts review and additional information from others.

HARRISON GRIERSON

NORTHERN PRECINCT

Project: Date: Status: Scale: Revision: D

1020-146639-01 20/04/2022 Dwg No: 146639-122 for information 1:10000

This document and design remains the property of Harrison Grierson Consultants Limited. No liability shall be accepted for unauthorised use. This concept is subject to further investigations into Planning, Surveying and Engineering feasibility. This document may be desired for incourse incourse information may be derived from inaccurate source information.

Appendix C: Coffey Field Investigation Results

Soil Description Explanation Sheet (1 of 2)

DEFINITION:

In engineering terms soil includes every type of uncemented or partially cemented inorganic or organic material found in the ground. In practice, if the material can be remoulded or disintegrated by hand in its field condition or in water it is described as a soil. Other materials are described using rock description terms.

CLASSIFICATION SYMBOL & SOIL NAME

Soils are broadly described in accordance with the Unified Soil Classification System (UCS) as shown in the table on Sheet 2. However, there are some departures from this and reference should be made to the New Zealand Geotechnical Society 'Field Description of Soil and Rock' 2005 for clarification.

PARTICLE SIZE DESCRIPTIVE TERMS

NAME	SUBDIVISION	SIZE
Boulders		>200 mm
Cobbles		60 mm to 200 mm
Gravel	coarse	20 mm to 60 mm
	medium	6 mm to 20 mm
	fine	2 mm to 6 mm
Sand	coarse	600 μm to 2 mm
	medium	200 μm to 600 μm
	fine	60 μm to 200 μm
1		

MOISTURE CONDITION

Dry	Looks and feels dry. Cohesive and cemented soils are hard, friable or powdery. Uncemented granular soils run freely through hands.
Moist	Soil feels cool and darkened in colour. Cohesive soils can be moulded. Granular soils tend to cohere.
Wet	As for moist but with free water forming on hands when handled.

CONSISTENCY OF COHESIVE SOILS

TERM	UNDRAINED STRENGTH S _U (kPa)	FIELD GUIDE
Very Soft	<12	Easily exudes between fingers when squeezed.
Soft	12 - 25	Easily indented by fingers.
Firm	25 - 50	Indented by strong finger pressure & can be indented by thumb pressure.
Stiff	50 - 100	Cannot be indented by thumb pressure.
Very Stiff	100 - 200	Can be indented by thumb nail.
Hard	200 - 500	Difficult to indent by thumb nail.

DENSITY OF GRANULAR SOILS

TERM	DENSITY INDEX (%)	SPT N-value (Blows / 300mm)
Very loose	Less than 15	Less than 4
Loose	15 - 35	4 - 10
Medium Dense	35 - 65	10 - 30
Dense	65 - 85	30 - 50
Very Dense	Greater than 85	Greater than 50

MINOR COMPONENTS

FRACTION	TERM	% OF SOIL MASS	EXAMPLE
Major	() [UPPER CASE]	≥ 50 [major constituent]	GRAVEL
Subordinate	()y [lower case]	20 - 50	Sandy
	with some with minor	12 - 20 5 - 12	with some sand with minor sand
Minor	with trace of (or slightly)	< 5	with trace of sand (slightly sandy)

SOIL STRUCTURE

	ZONING	CEMENTING						
Layers	Continuous across exposure or sample.	Weakly cemented	Easily broken up by hand in air or water.					
Lenses	Discontinuous layers of lenticular shape.	Moderately cemented	Effort is required to break up the soil by hand in air or water.					
Pockets	Irregular inclusions of different material.							

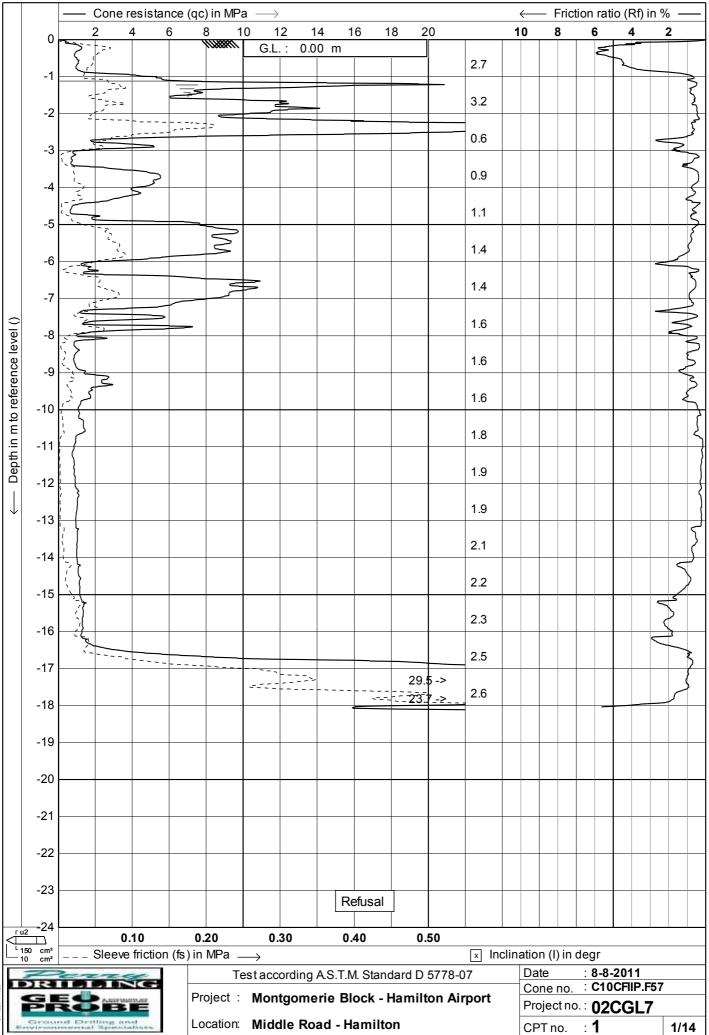
GEOLOGICAL ORIGIN

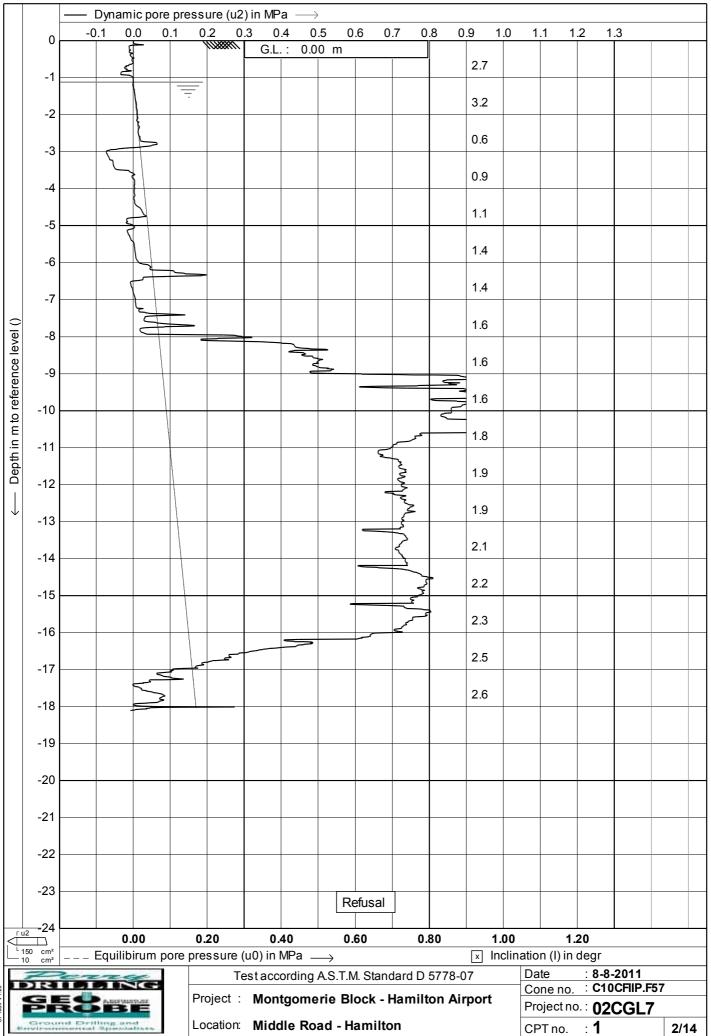
WEATHERED	IN PLACE SOILS
Extremely weathered material	Structure and fabric of parent rock visible.
Residual soil	Structure and fabric of parent rock not visible.

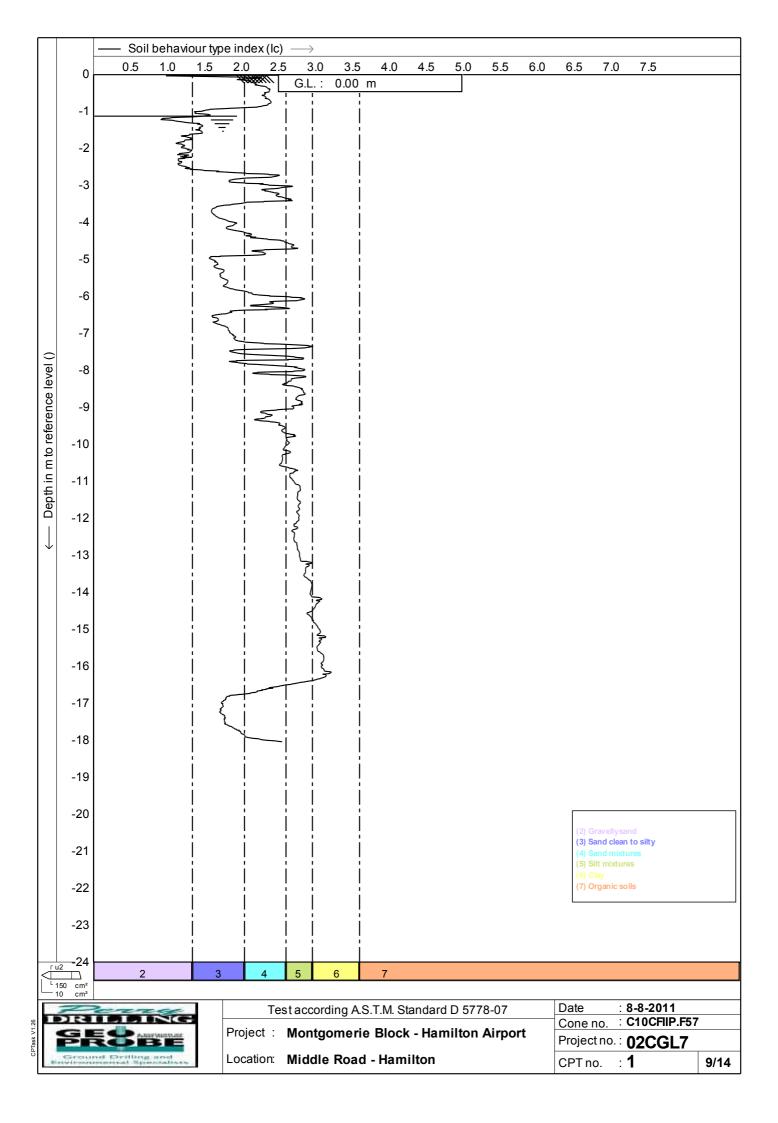
TRANSPORTE	ED SOILS
Aeolian soil	Deposited by wind.
Alluvial soil	Deposited by streams and rivers.
Colluvial soil	Deposited on slopes (transported downslope by gravity).
Fill	Man made deposit. Fill may be significantly more variable between tested locations than naturally occurring soils.
Lacustrine soil	Deposited by lakes.
Marine soil	Deposited in ocean basins, bays, beaches and estuaries.

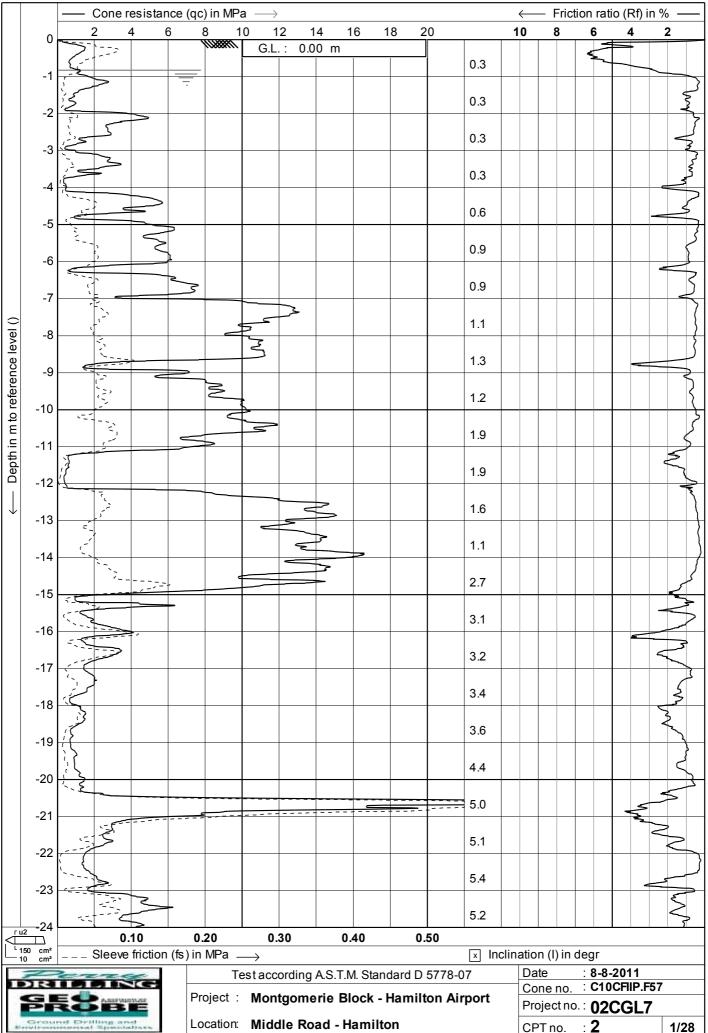
Soil Description Explanation Sheet (2 of 2)

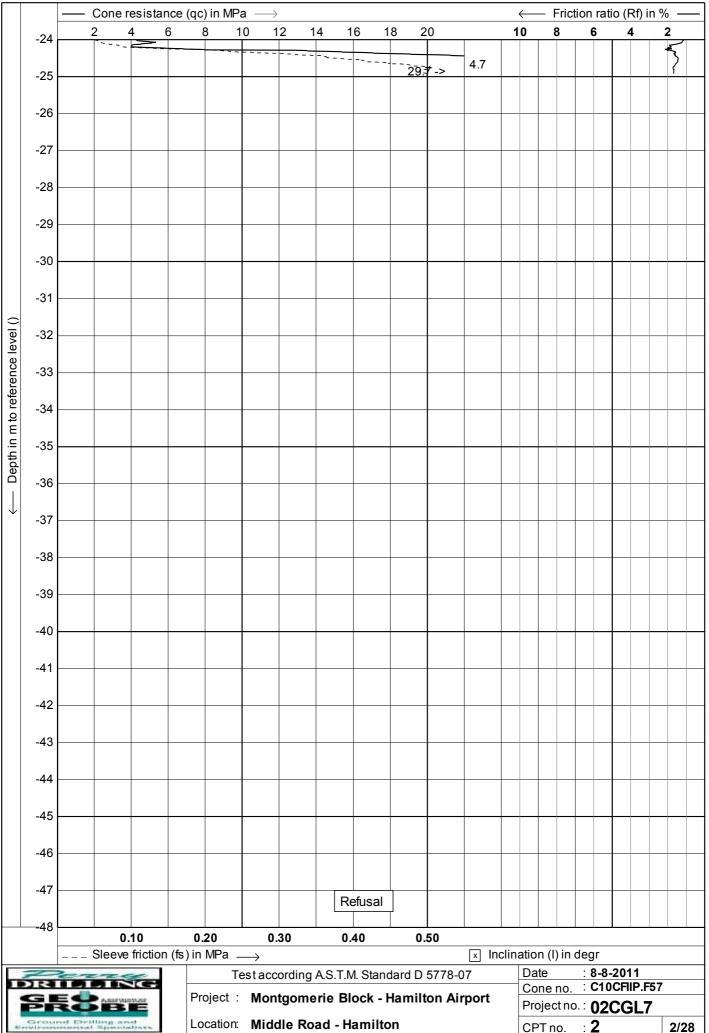
SOIL CLASSIFICATION INCLUDING IDENTIFICATION AND DESCRIPTION

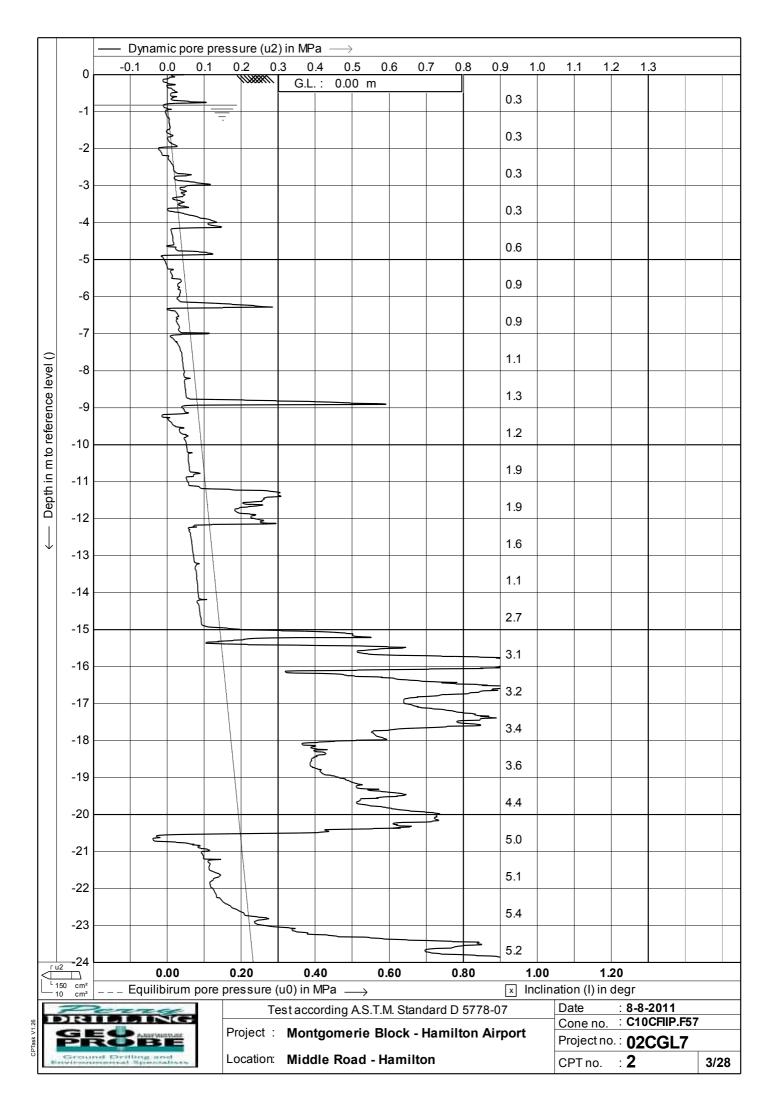

(Excludin				ON PROCEDURE and basing fractions		USC	PRIMARY NAME
<u>.</u>	oarse 2.0 mm	CLEAN GRAVELS (Little or no fines)	Wide amou	range in grain size a unts of all intermediat	nd substantial e particle sizes.	GW	GRAVEL
0 mm	/ELS alf of co	GRA GRA Ei. c (Li		ominantly one size or more intermediate siz		GP	GRAVEL
SOILS s than 6 m eye)	GRAVELS GRAVELS More than half of coarse ction is larger than 2.0 m	GRAVELS WITH FINES (Appreciable amount of fines)		plastic fines (for identedures see ML below		GM	SILTY GRAVEL
AllNED ials less 0.06 m	GRAVELS GRAVELS More than half of coarse fraction is larger than 2.0 mm	GRAN WITH (Appre amc of fii		ic fines (for identificat CL below)	tion procedures	GC	CLAYEY GRAVEL
COARSE GRAIINED SOIL 0% of materials less than larger than 0.06 mm visible to the naked eye)		Wide amou	range in grain sizes a ints of all intermediat	and substantial e sizes	SW	SAND	
CO/ an 50% lar sle visib	IDS If of coa r than 2	CLEAN SANDS (Little or no fines)		ominantly one size or some intermediate siz		SP	SAND
More tha	SANDS SANDS More than half of coarse fraction is smaller than 2.0 mm	SANDS WITH FINES (Appreciable amount of fines)	Non- proce	plastic fines (for idented under the set of	tification).	SM	SILTY SAND
ne smalle	More	SAI WITH (Appre amo		ic fines (for identificat CL below).	tion procedures	SC	CLAYEY SAND
t t		IDENTIFICAT	ION PI	ROCEDURES ON FR	ACTIONS <0.2 mm.		
abo	S	DRY STREN	GTH	DILATANCY	TOUGHNESS		
01LS less th 05 mm icle is	CLAYS limit an 50	None to Low	Quick to slow		None	ML	SILT
ED SC aterial han 0.	SILTS & CLAYS Liquid limit less than 50	Medium to H	ligh	None	Medium	CL	CLAY
FINE GRAINED SOILS More than 50% of material less than 60 mm is smaller than 0.05 mm (A 0.06 mm particle is abo	SIL 1	Low to medi	um	Slow to very slow	Low	OL	ORGANIC SILT
FINE GRAINED SOILS In 50% of material less in is smaller than 0.05 n (A 0.06 mm particle	LAYS mit an 50	Low to medi	um	Slow to very slow	Low to medium	MH	SILT
bre tha	SILTS & CLAYS Liquid limit greater than 50	High		None	High	СН	CLAY
ž	SILT Lij grea	Medium to H	ligh	None	Low to medium	OH	ORGANIC CLAY
HIGHLY O SOILS	RGANIC	Readily iden frequently by	tified b / fibrou	y colour, odour, spon Is texture.	gy feel and	Pt	PEAT

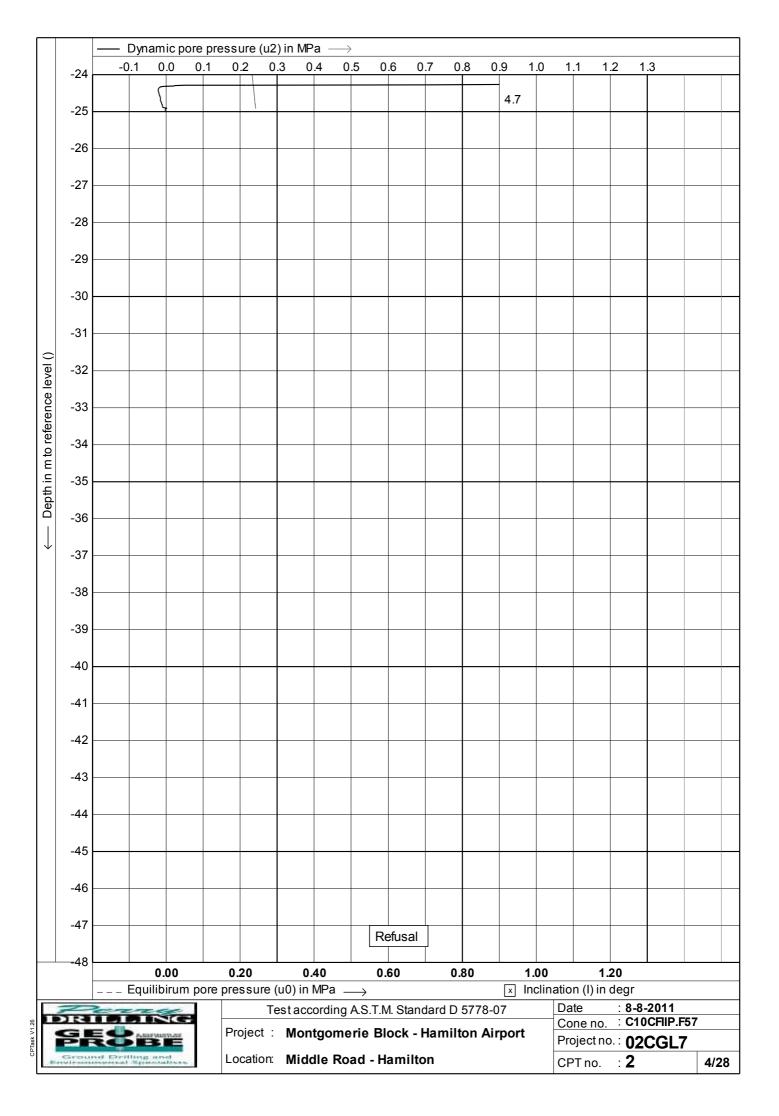

 \bullet Low plasticity – Liquid Limit WL less than 35%. \bullet Medium plasticity – WL between 35% and 50%.

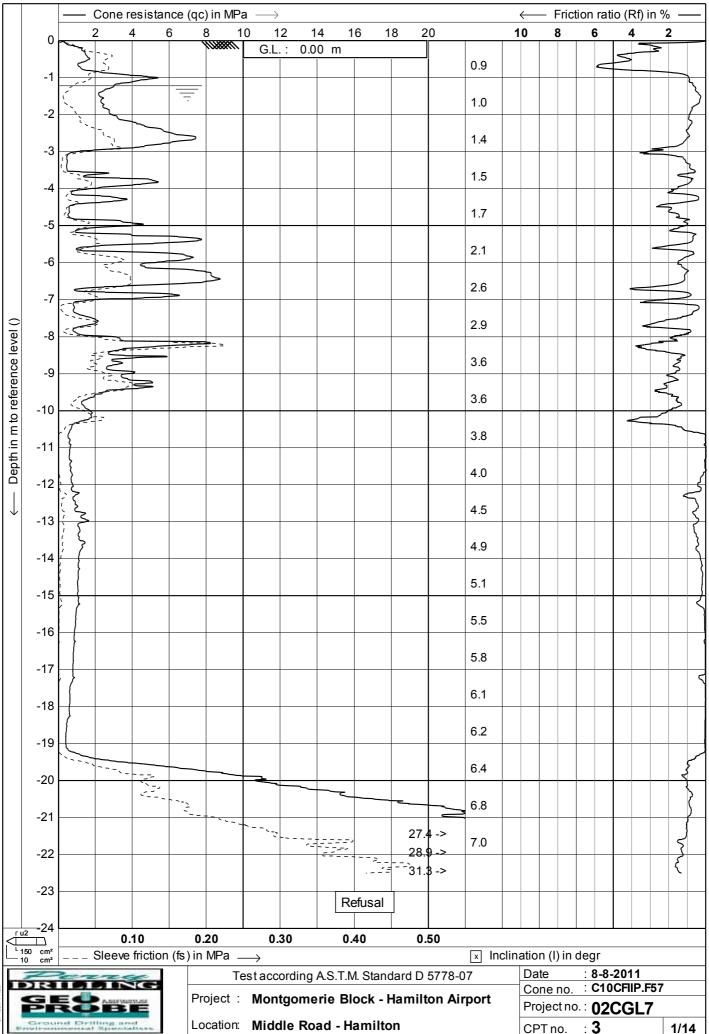

COMMON DEFECTS IN SOIL

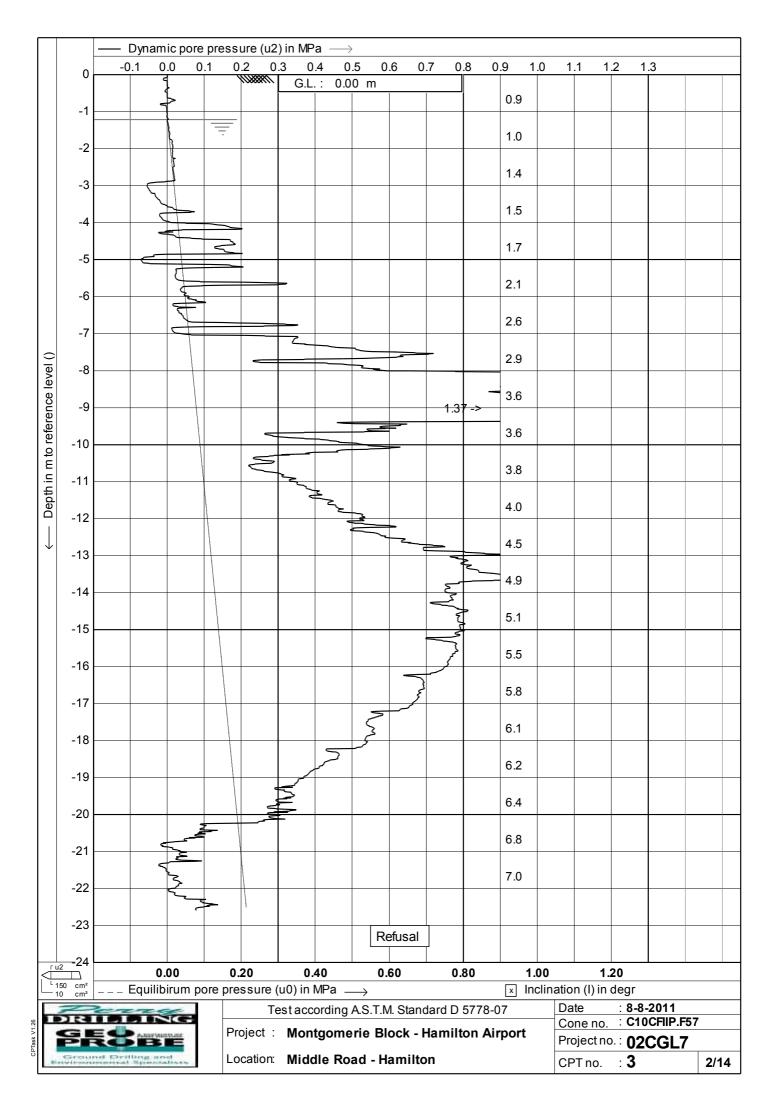

TERM	DEFINITION	DIAGRAM	TERM	DEFINITION	DIAGRAM
PARTING	A surface or crack across which the soil has little or no tensile strength. Parallel or sub parallel to layering (eg bedding). May be open or closed.		SOFTENED ZONE	A zone in clayey soil, usually adjacent to a defect in which the soil has a higher moisture content than elsewhere.	MENT STORE
JOINT	A surface or crack across which the soil has little or no tensile strength but which is not parallel or sub parallel to layering. May be open or closed. The term 'fissure' may be used for irregular joints <0.2 m in length.		TUBE	Tubular cavity. May occur singly or as one of a large number of separate or inter-connected tubes. Walls often coated with clay or strengthened by denser packing of grains. May contain organic matter.	
SHEARED ZONE	Zone in clayey soil with roughly parallel near planar, curved or undulating boundaries containing closely spaced, smooth or slickensided, curved intersecting joints which divide the mass into lenticular or wedge shaped blocks.		TUBE CAST	Roughly cylindrical elongated body of soil different from the soil mass in which it occurs. In some cases the soil which makes up the tube cast is cemented.	
SHEARED SURFACE	A near planar curved or undulating, smooth, polished or slickensided surface in clayey soil. The polished or slickensided surface indicates that movement (in many cases very little) has occurred along the defect.		INFILLED SEAM	Sheet or wall like body of soil substance or mass with roughly planar to irregular near parallel boundaries which cuts through a soil mass. Formed by infilling of open joints.	

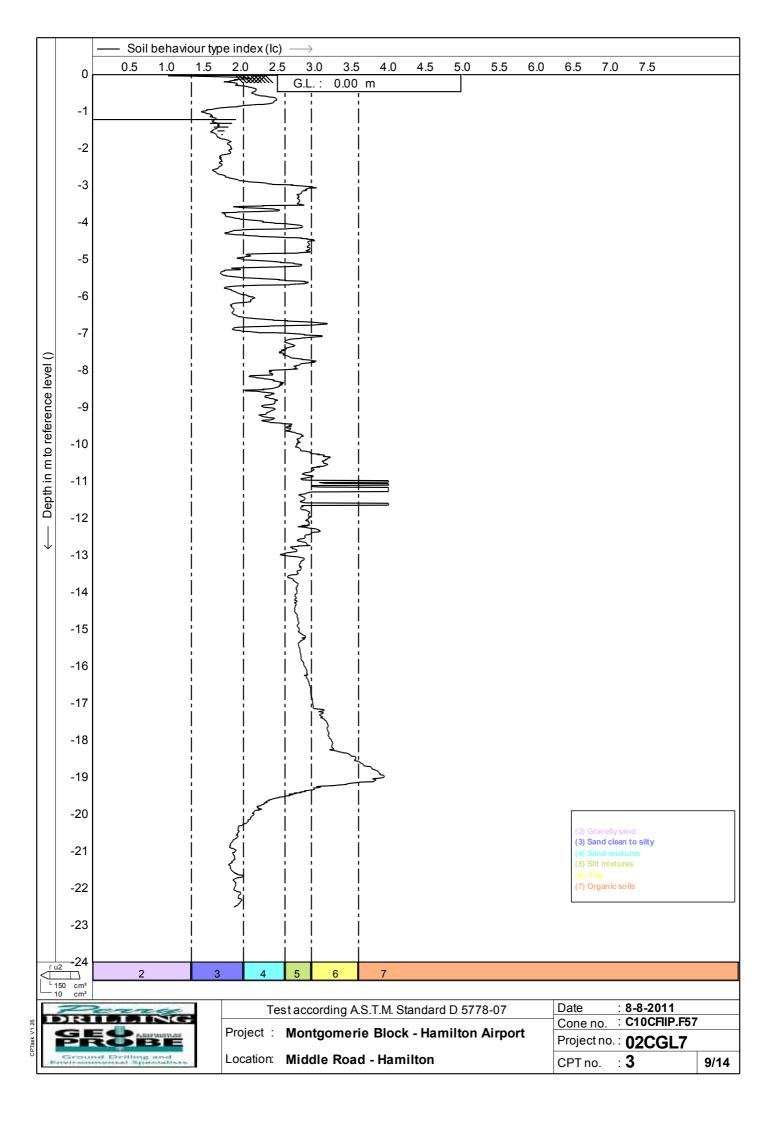

73060-03/02/2009

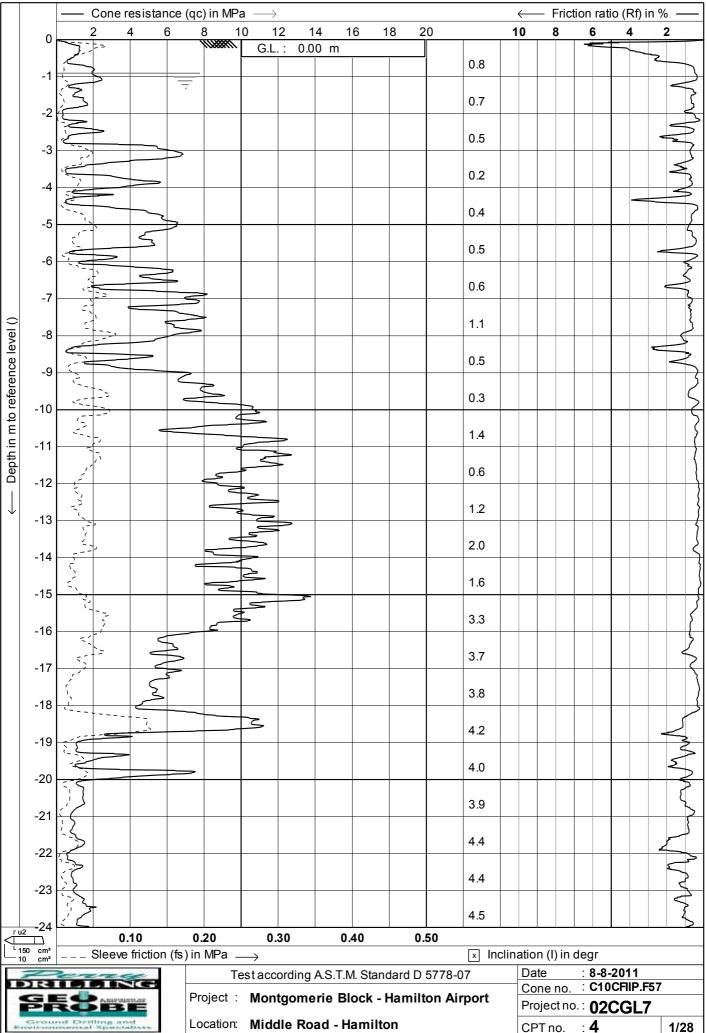


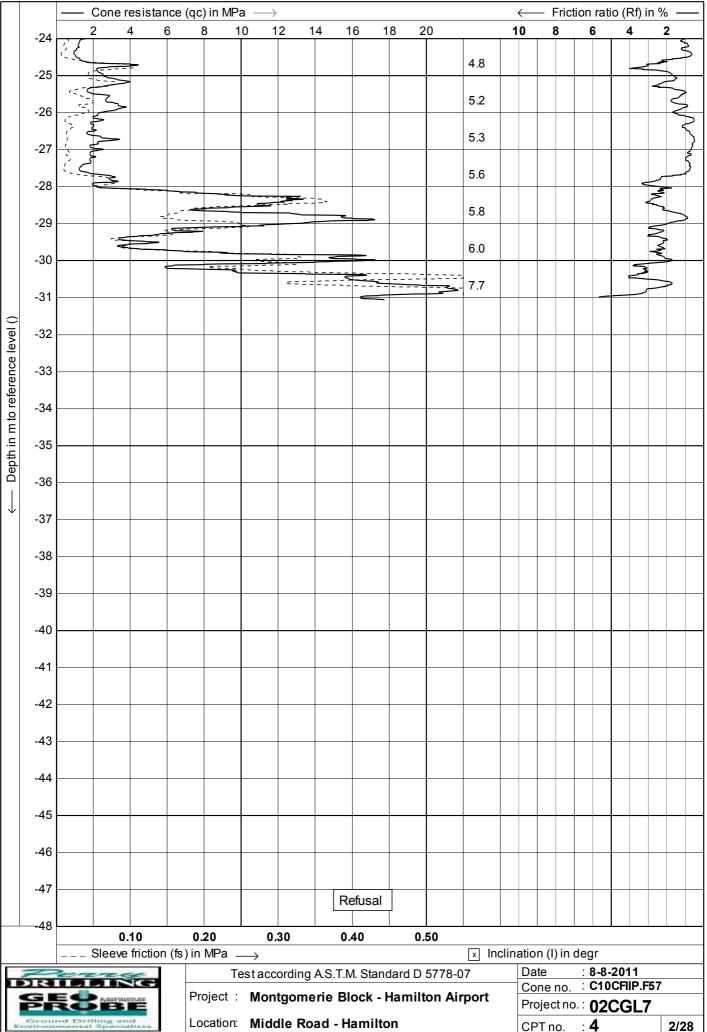


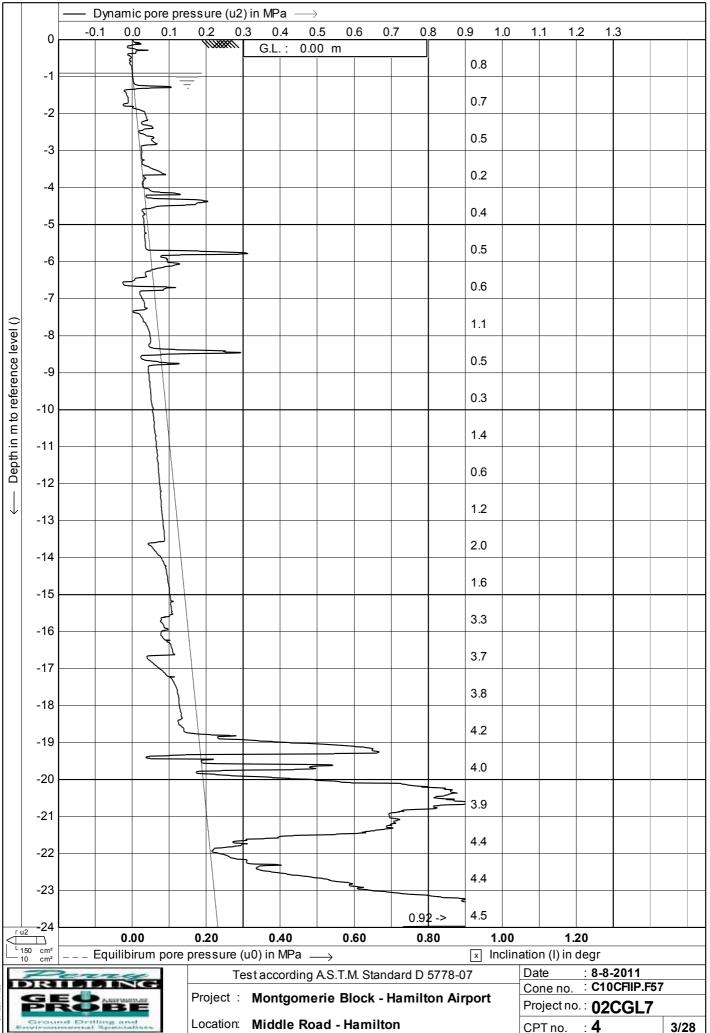


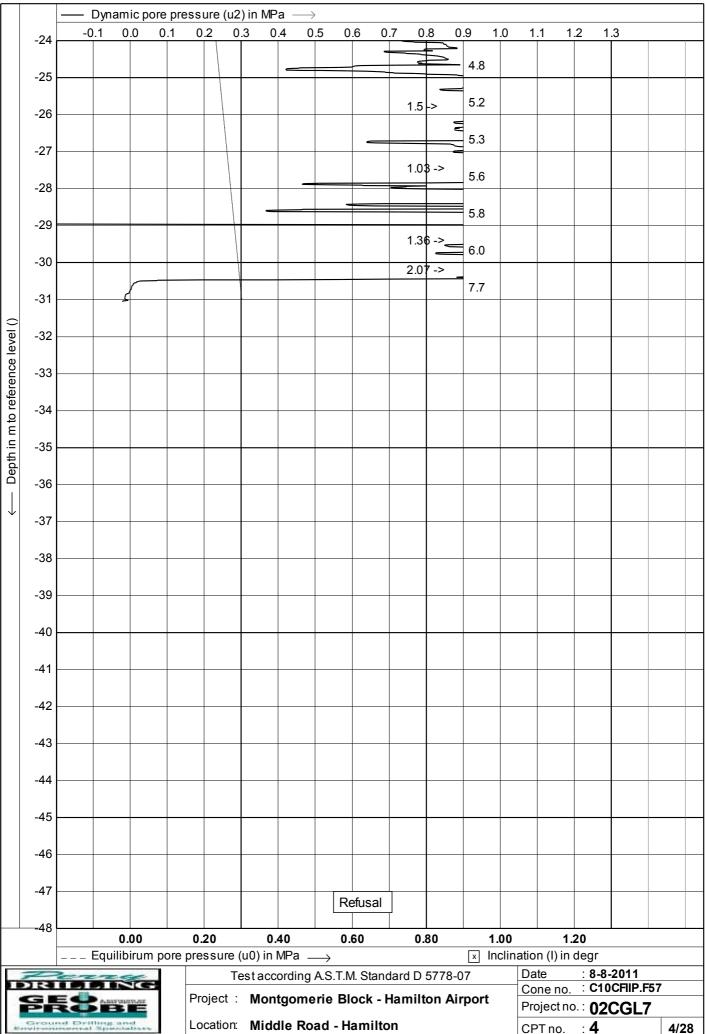


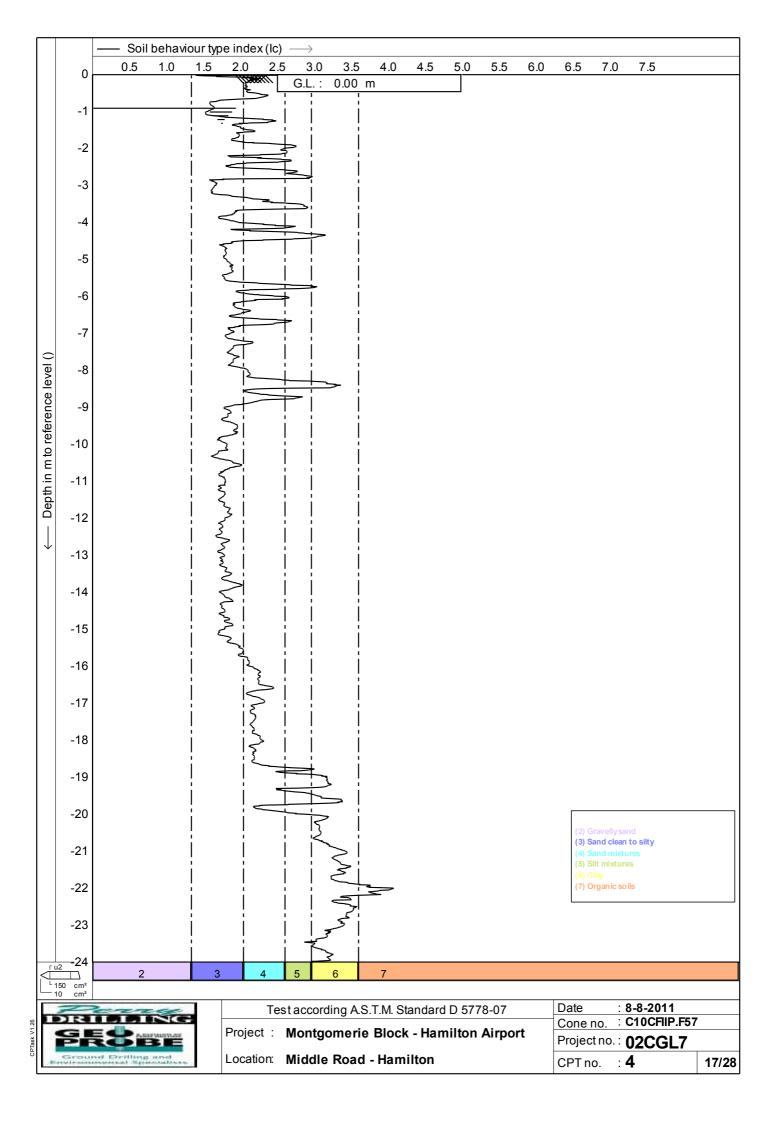


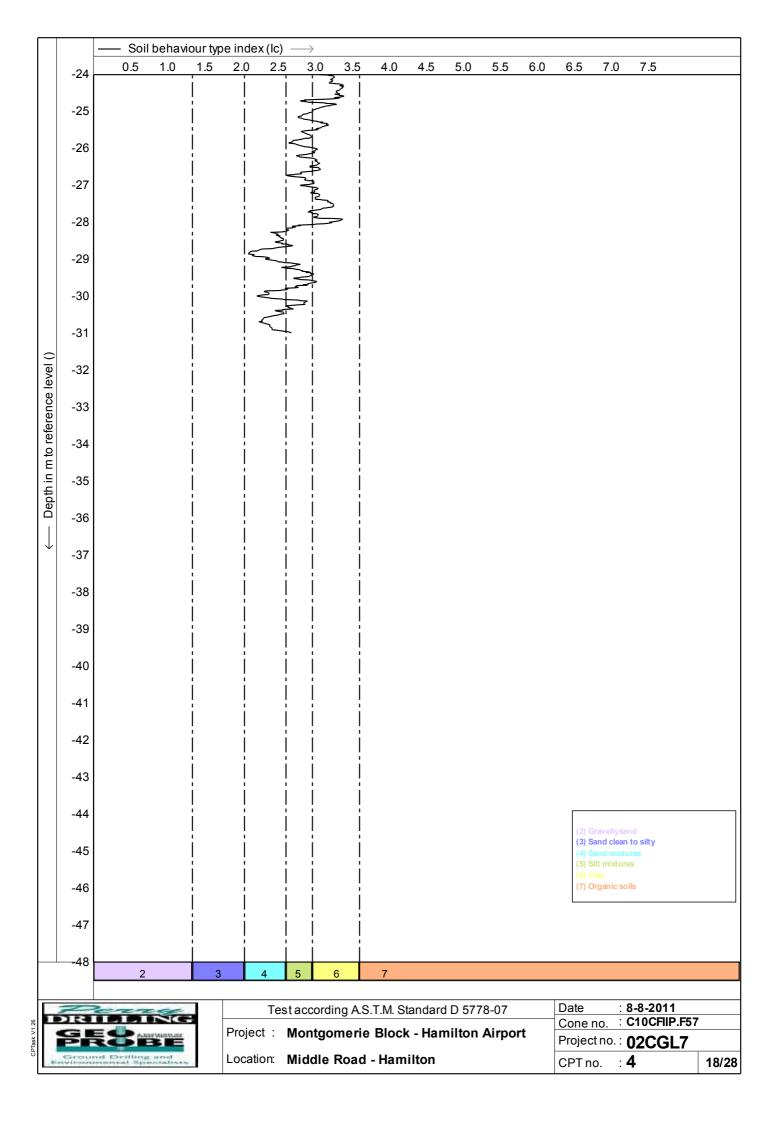


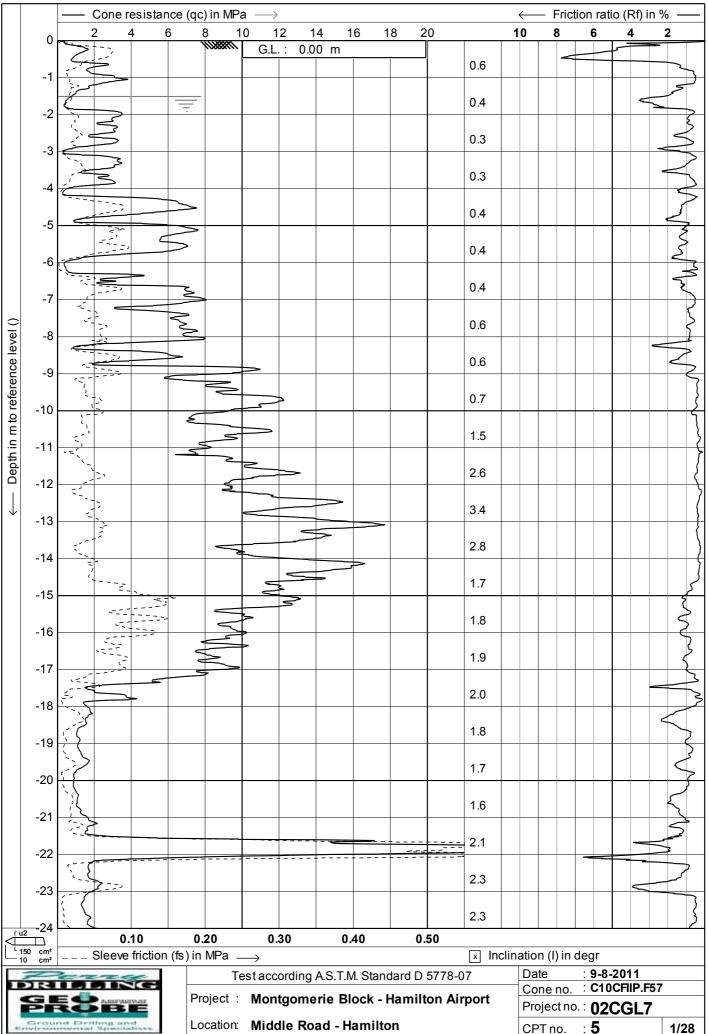

			Soil	behavio	our typ	be inc	(cl) xet	\rightarrow	>											
	-24		0.5	1.0	1.5	2.0) 2.5		8.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5		
				Ì	ļ	ł		1		Ì										
	-25			1		ĺ		i		İ										
	-26			1				İ												
	20				ļ			i		ļ										
	-27				İ	ĺ		i		i										
	-28				İ	ĺ		i	İ	İ										
					İ	İ		i	i	i										
	-29			1		İ		Ì		i										
	-30			I	i I			i	i I											
					i I			: I												
	-31				:			¦ I		 										
vel ()	-32				 			:												
ce le	20				 			¦ 												
eren	-33				 			 												
Depth in m to reference level ()	-34				 															
in m	-35				 															
epth i	-35				 															
ă	-36																			
\downarrow	-37																			
	51																			
	-38					 !														
	-39																			
					!															
	-40																			
	-41																			
	-42			l	ļ	ļ		!												
	-43				ļ	į		ļ		İ										
	, .					ļ				İ										
	-44				į			į	ĺ							(2) G	iravellysan	d		
	-45			1		İ		İ		ļ						(3) S (4) S	and clean t and mixtu	to silty res		
	10			1		İ		İ								(6) C				
	-46				İ	i		i	İ	Ï						(7) 0	n ganic sol	13		
	-47					i		i		ļ										
	-48																			
	-40		2		3		4	5	6		7									
=	~	2			8			etaar	ordin	a V c		andard	D 577	8_07	1	Date	ي .	-8-2011		
	DRI	10	2 3 4 5 0 7			C10CFIIP.F	57													
	SF	22	A	APRIL 201		Proj	ect :	won	tgom	ierie	e Block	- Han	niiton	Airpor	•)2CGL7		_
	Group	nd Rz	d Styres	arset Malassa		Loca	ation:	Mid	dle R	oad	- Ham	ilton				CPT n			18/2	28

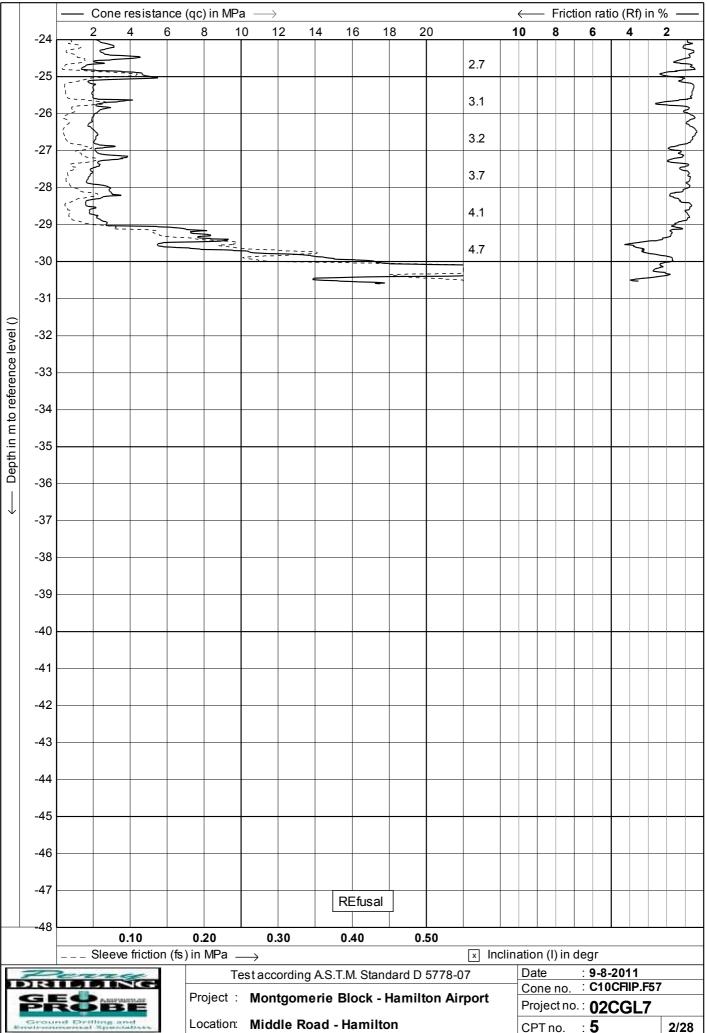


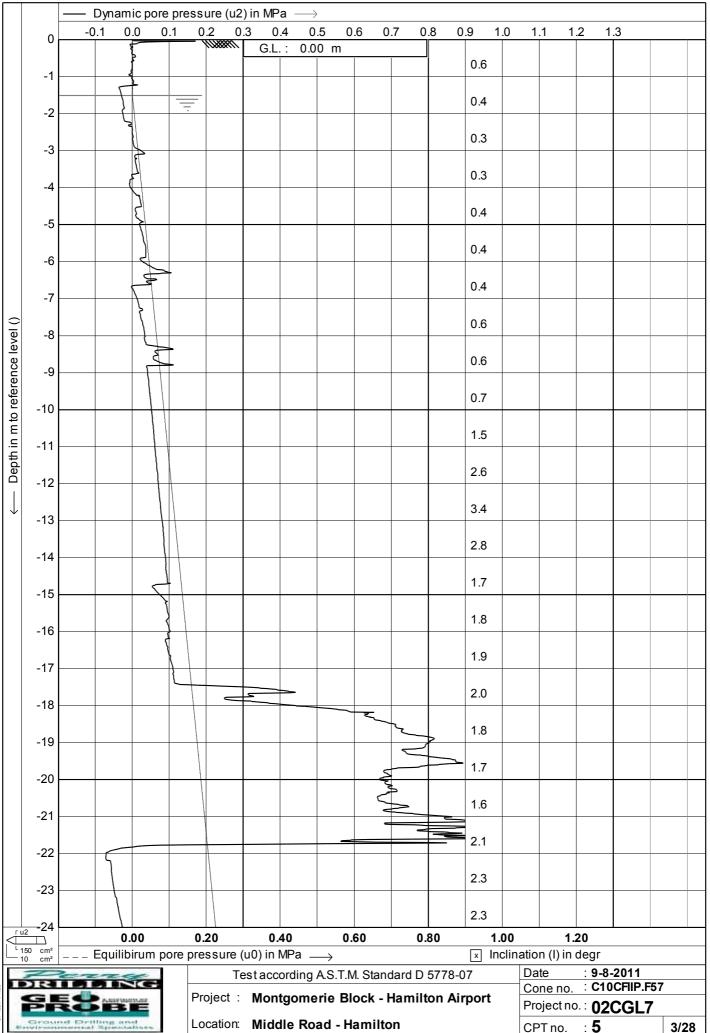


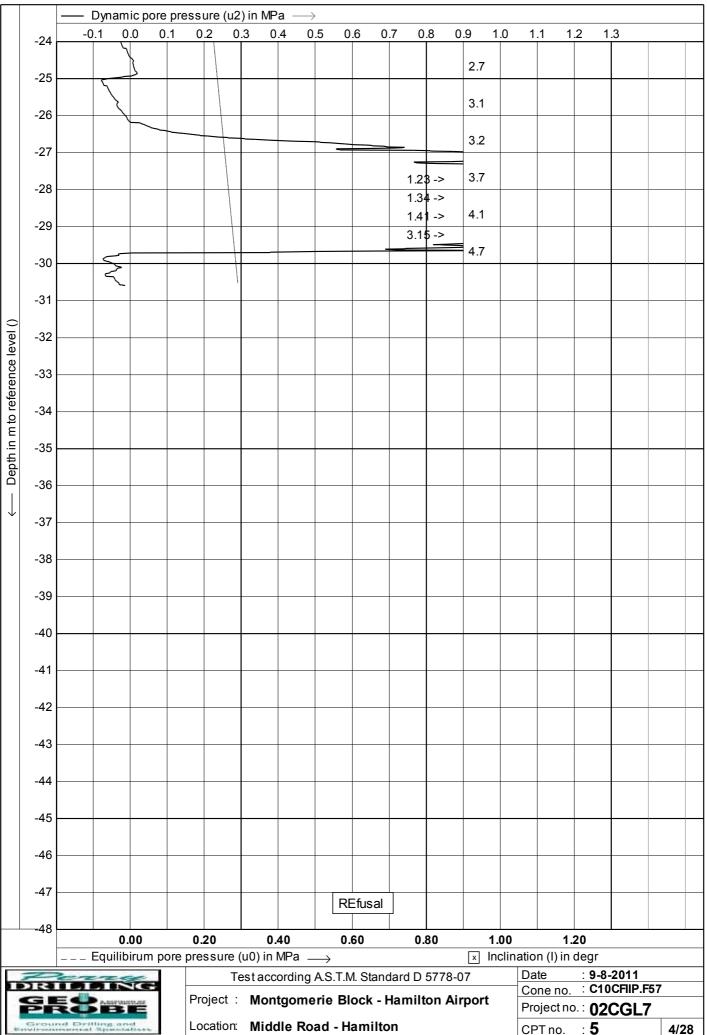


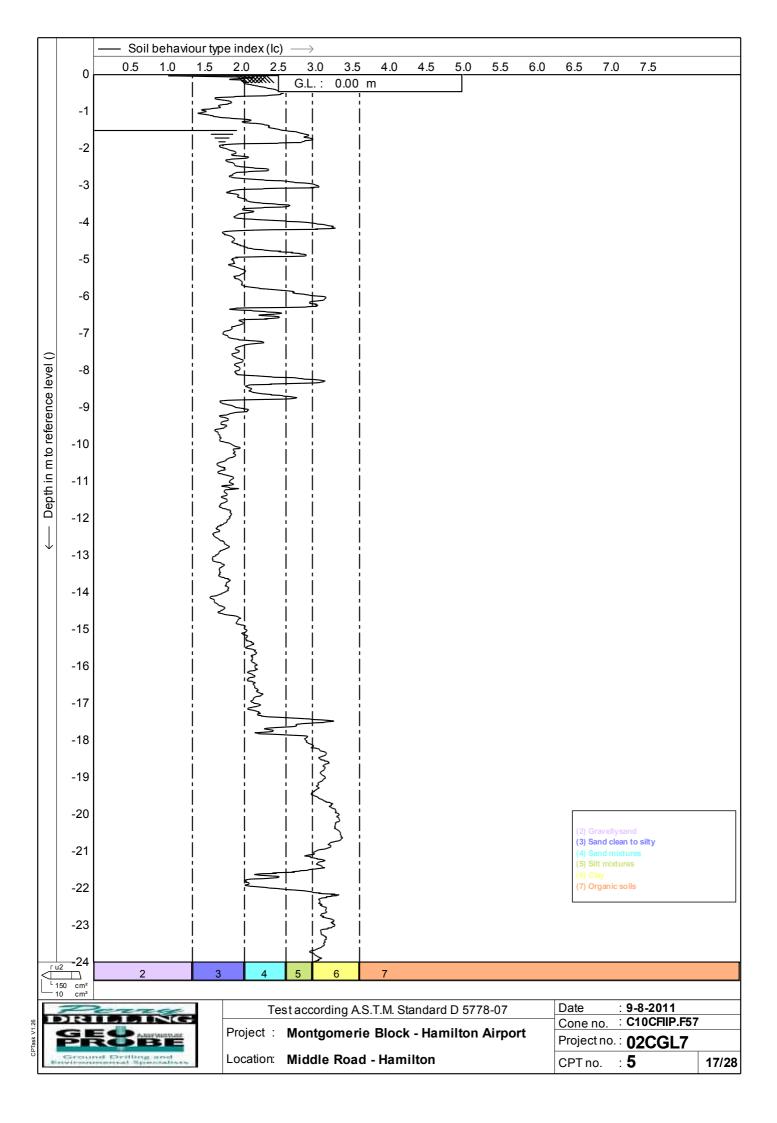


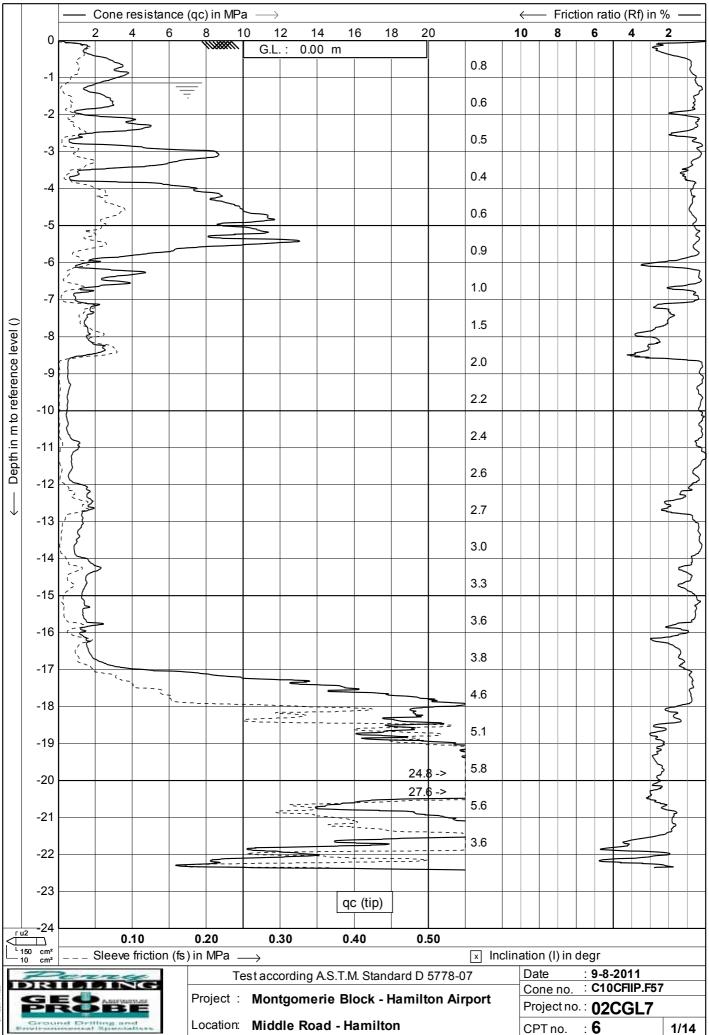


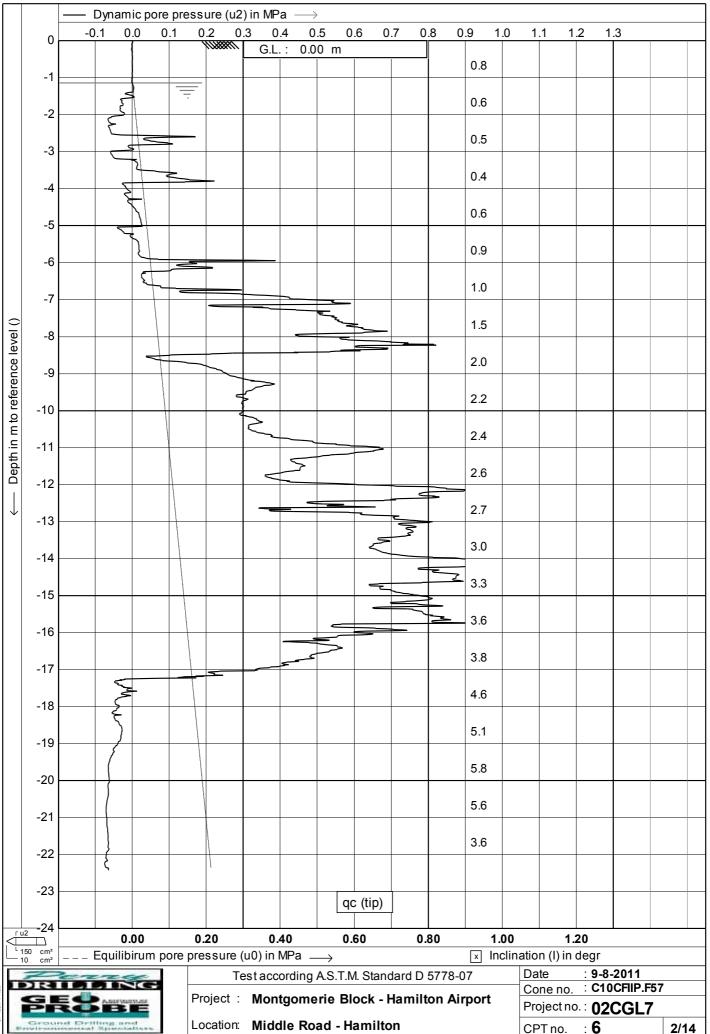


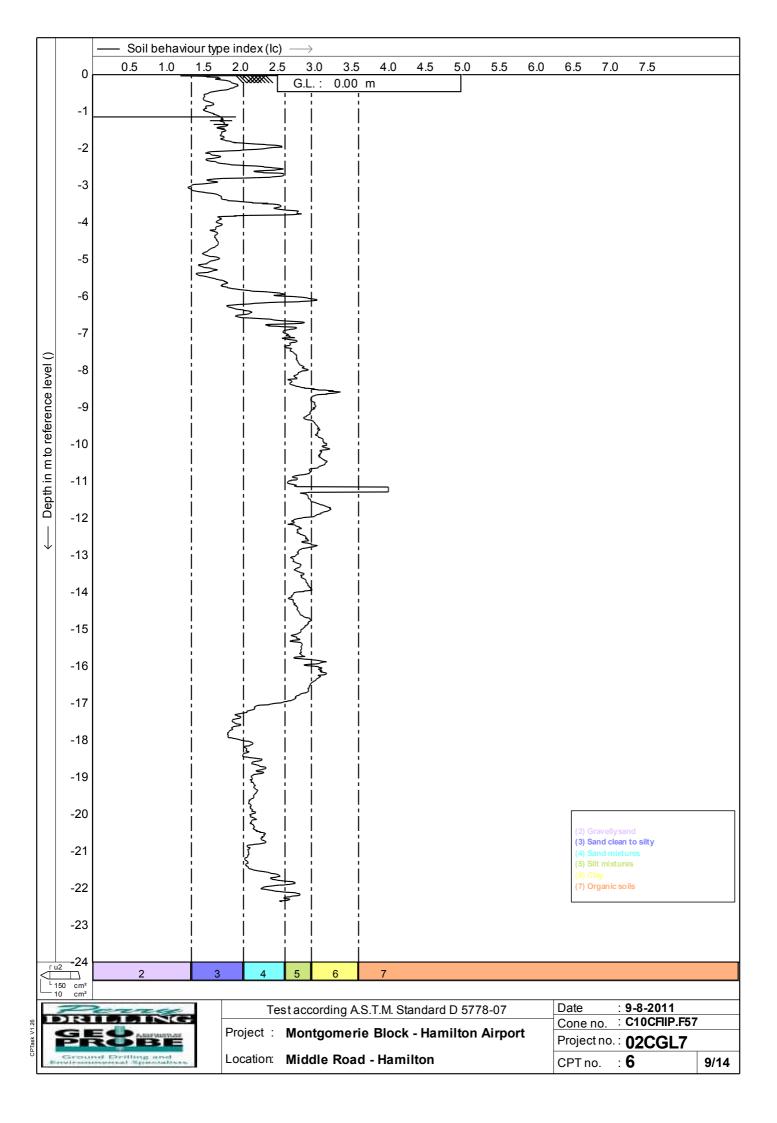


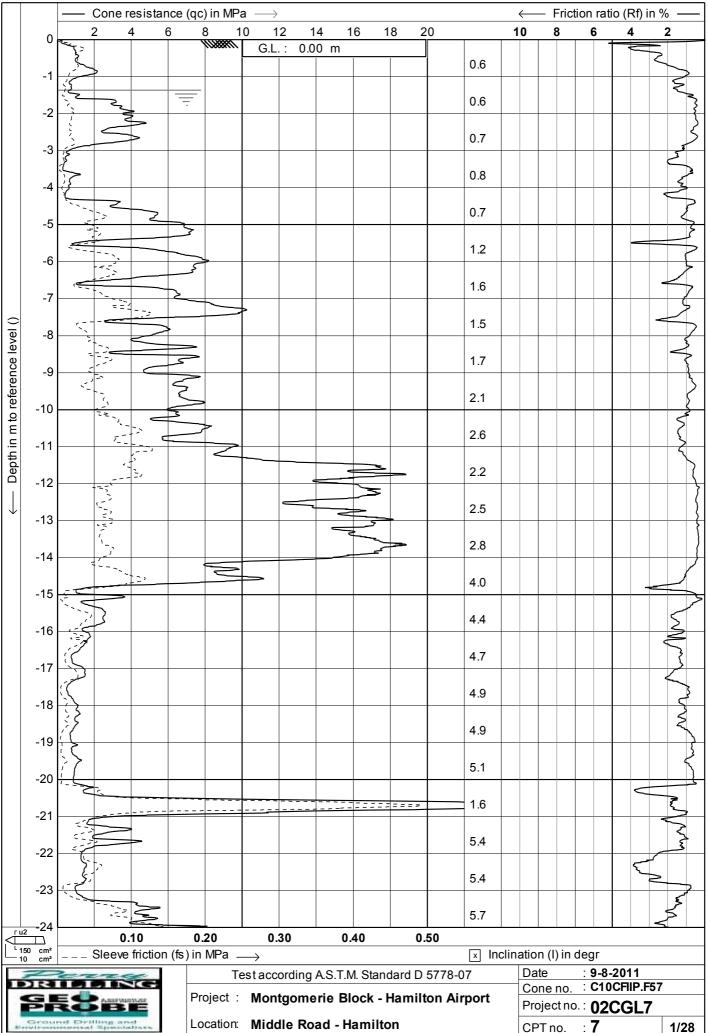




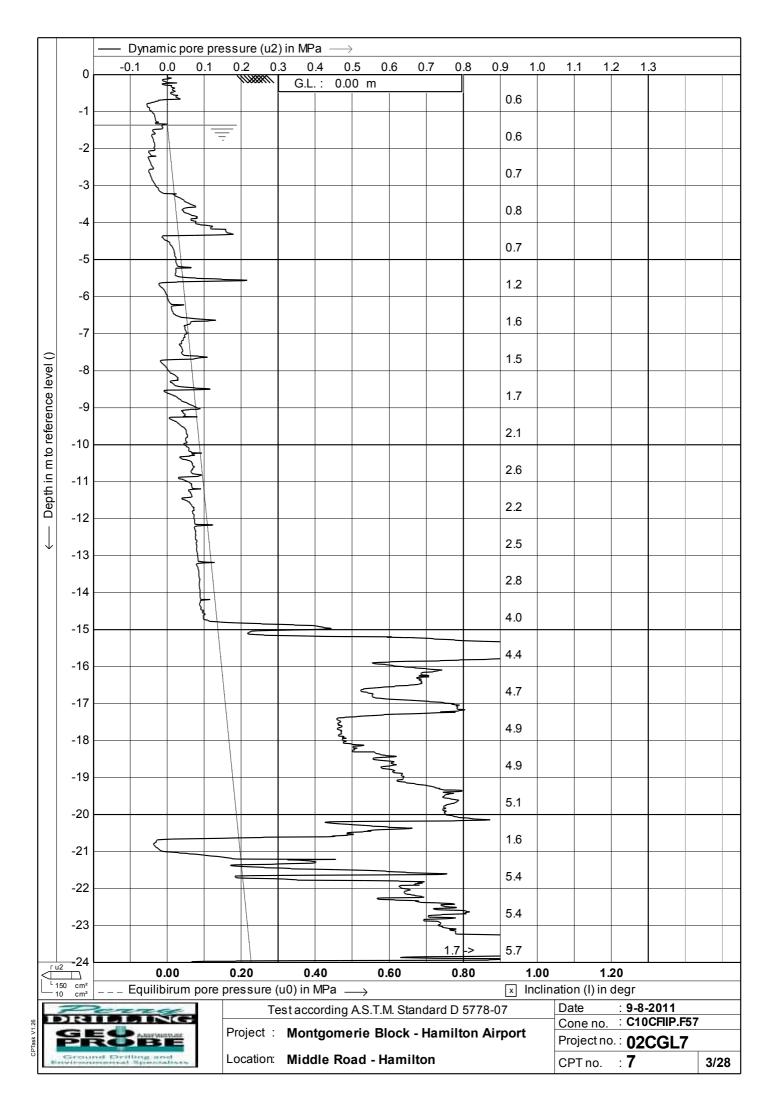


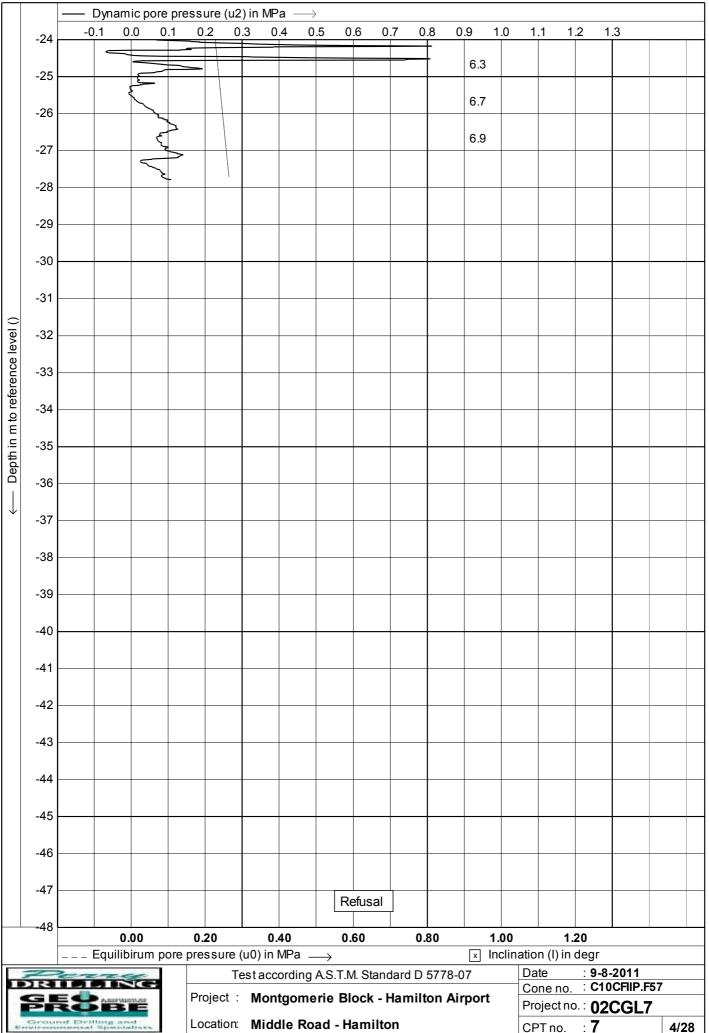


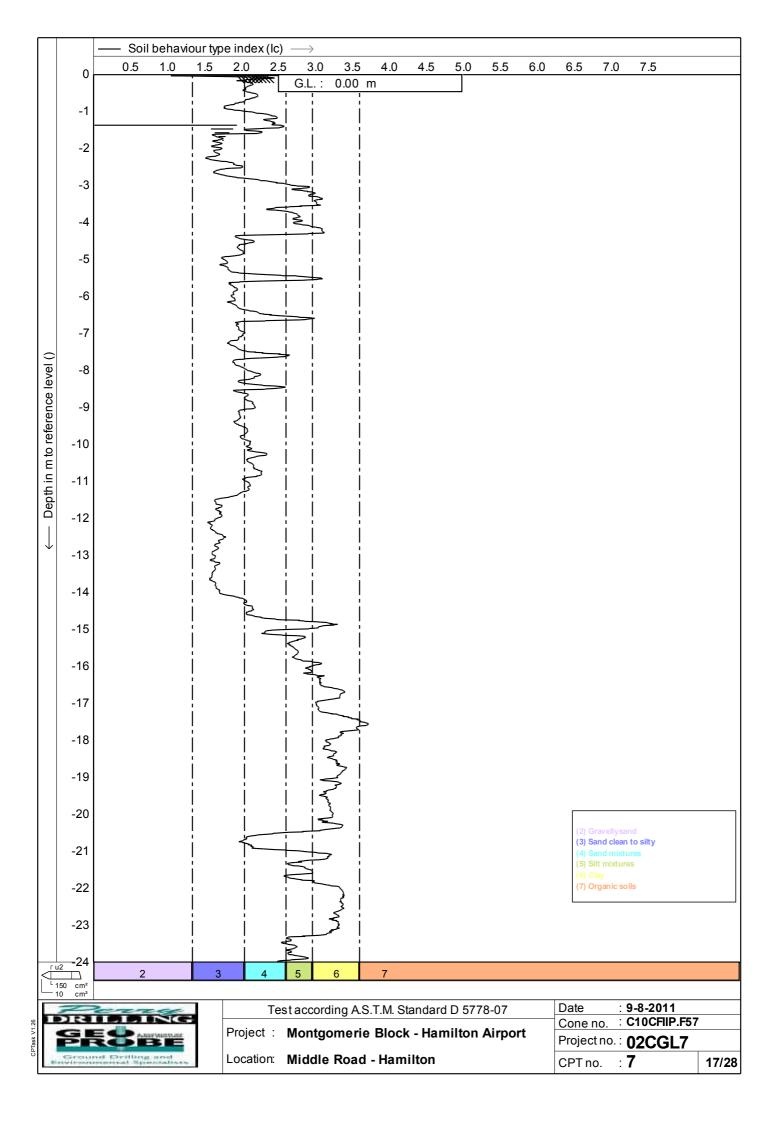


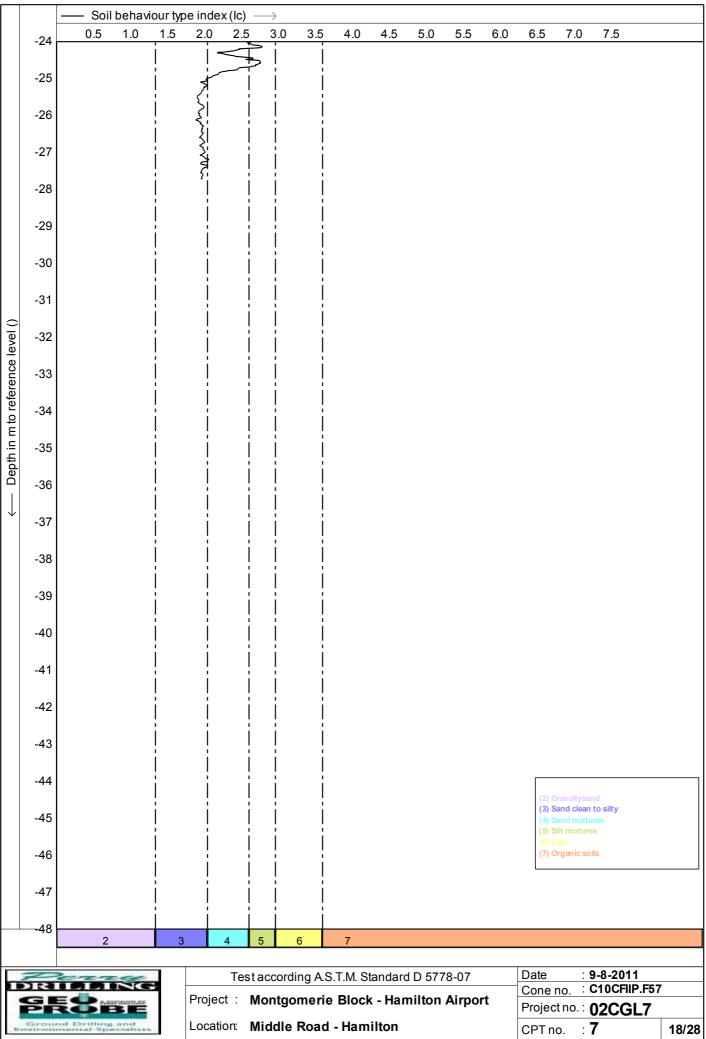


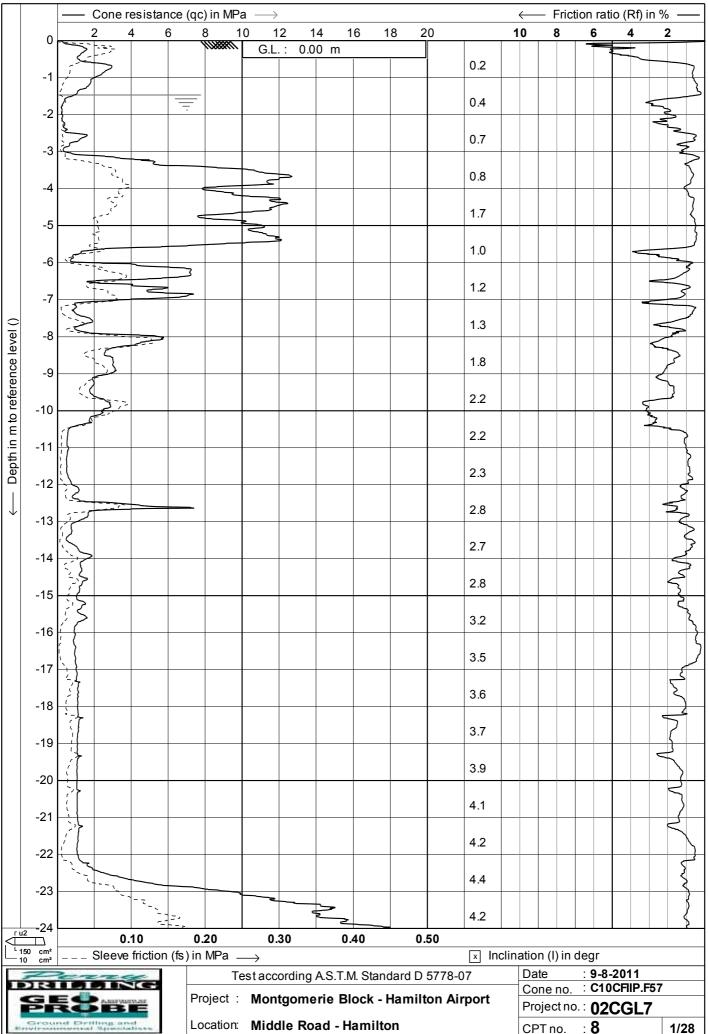
	-	— Soil I	behavio	our typ	e inc	dex (lc)	\longrightarrow										
	-24	0.5	1.0	1.5	2.0			0 3.	5 4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	
	-25			 		•	╞╩ <u>╞</u> ┾╱╁	N 1	 								
	-26							>									
	-27			 													
	-28							د ج									
	-29			 		40			 								
	-30					Ł	 										
0	-31			 					 								
e level	-32																
eferenc	-33			 					 								
Depth in m to reference level ()	-34																
Depth ir	-35 -36			 					 								
	-30				ļ												
	-38																
	-39																
	-40			 					 								
	-41																
	-42			 					 								
	-43																
	-44																
	-45													 (2) Gravellysand (3) Sand clean to silty (4) Sand mixtures (5) Silt mixtures (6) Clay 			
	-46														Organic so	ils	
	-47																
	-48	2		3		4	5	6	7								
				1		Та	etacor	vrding /	N S T M G	Standor	1 D 677	78_07		Date	· (9-8-2011	
	DRI	arrule -		3	Proi	ect :			A.S.T.M. S				rt	Cone	no. : (C10CFIIP.F	
	BR								ne Bloc		mon	λιμο				02CGL7	
		morenaut Myson	nialises.		LOCa	alion	wiaa	le Roa	ia - Han	niiton				CPTr	no. :	5	18/2

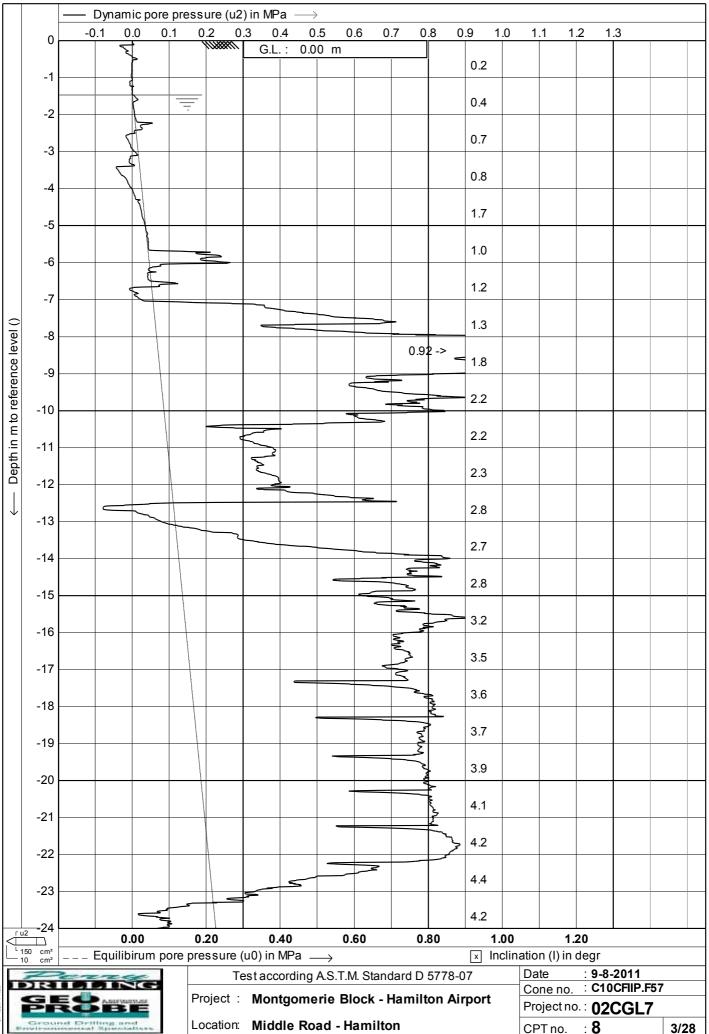


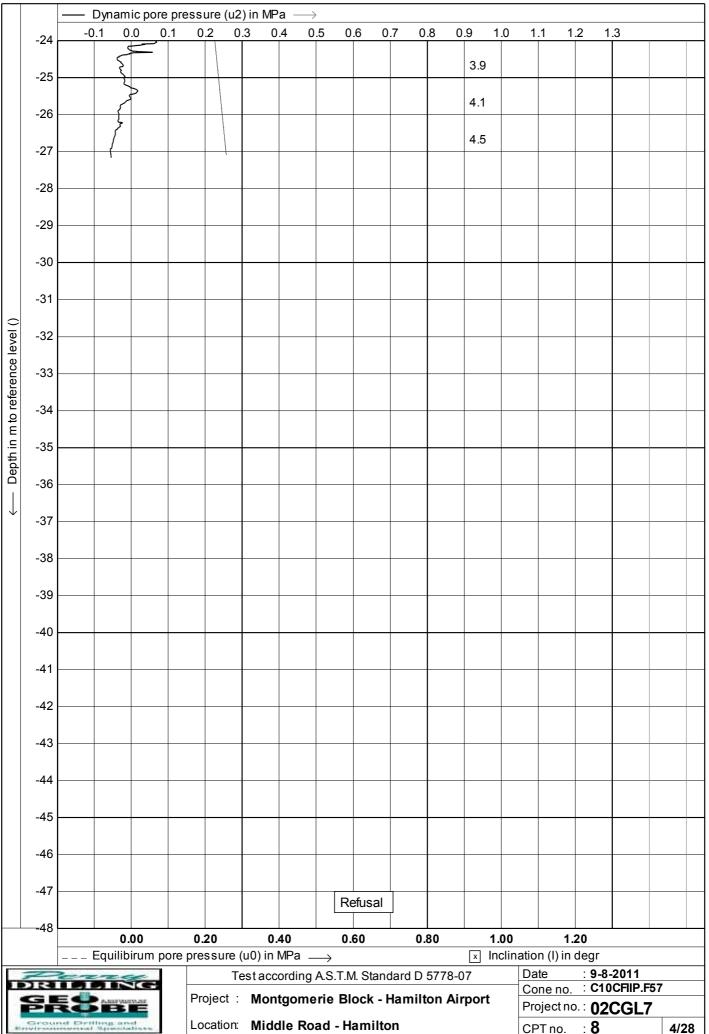


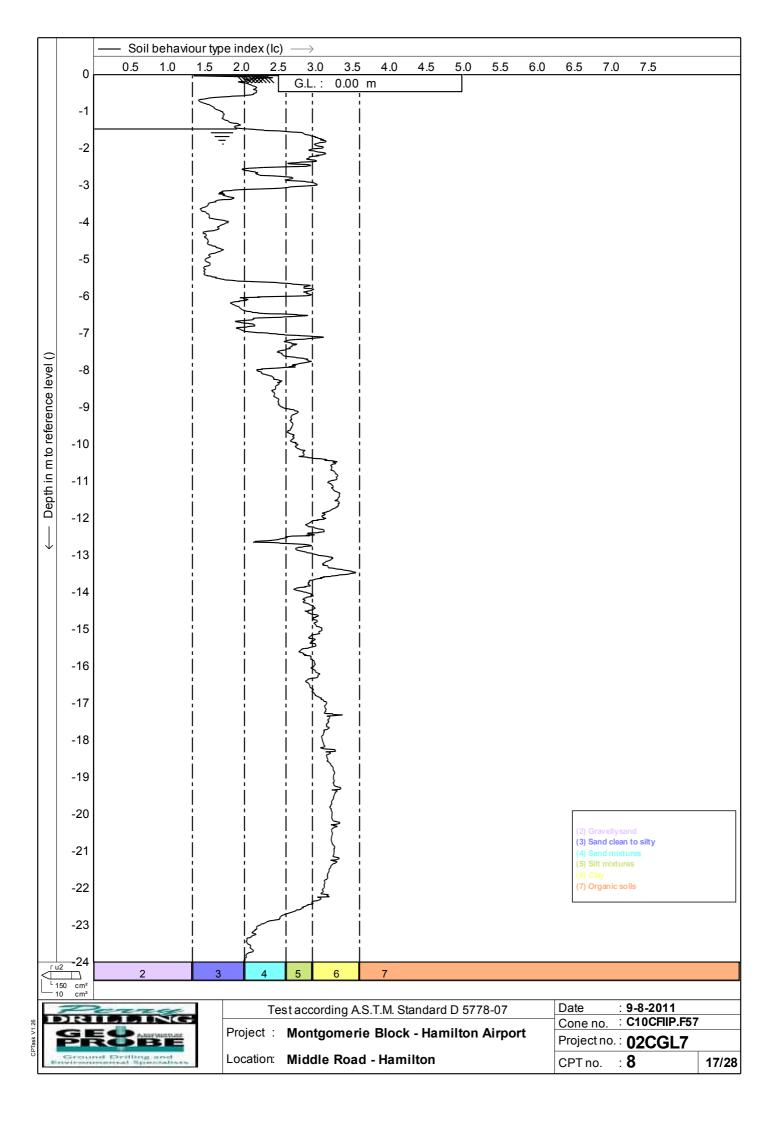


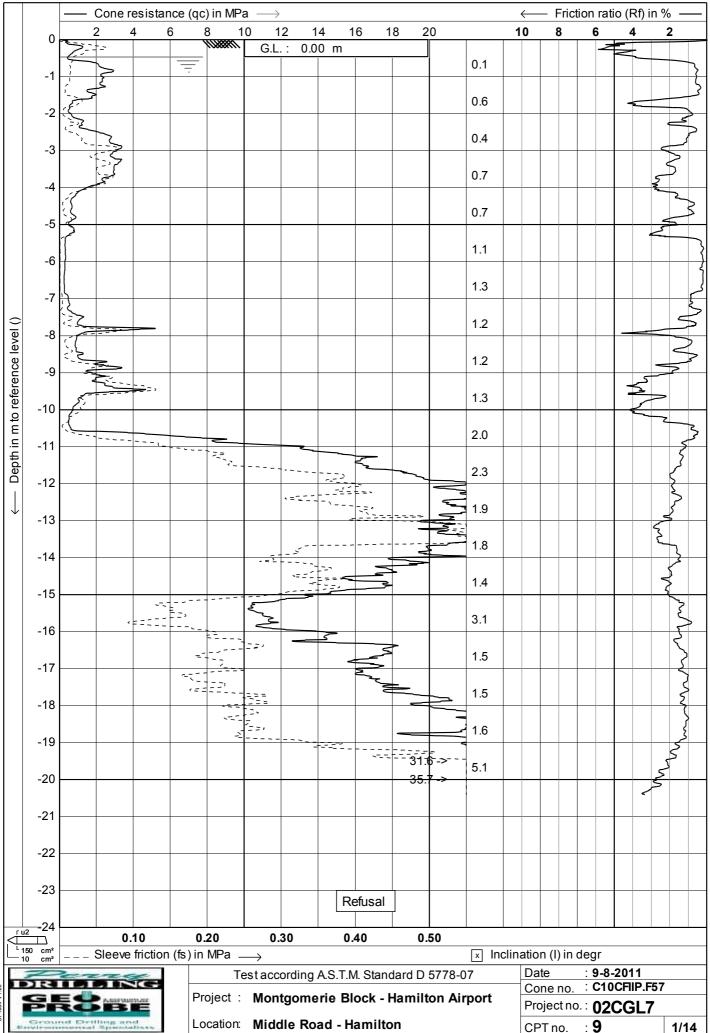


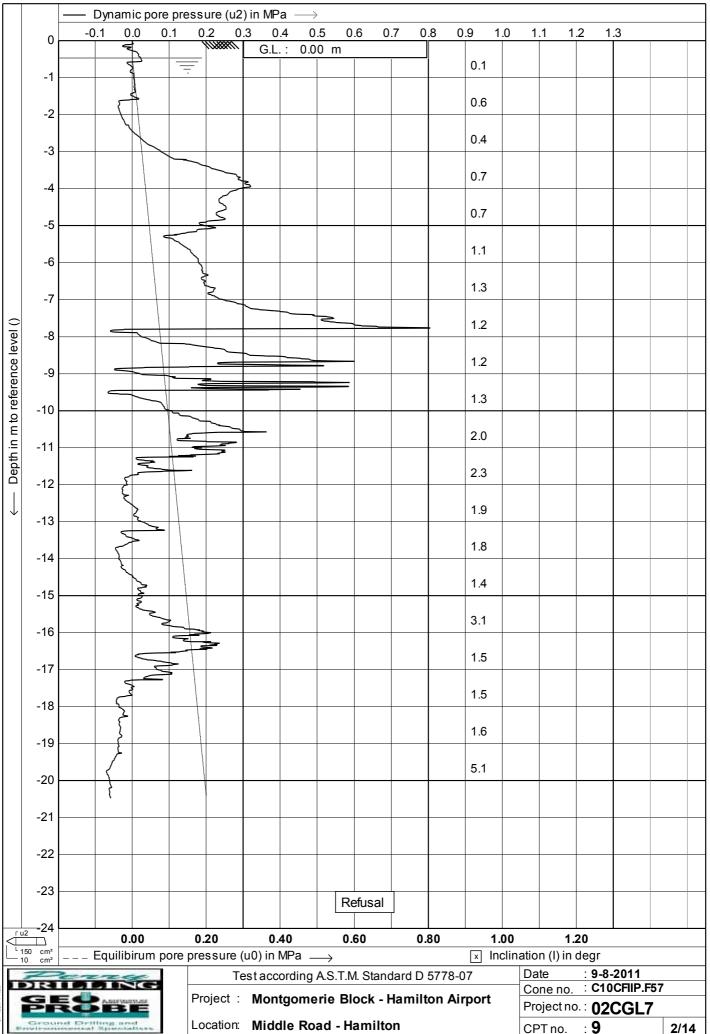

		Cone resistance (qc) in MPa \longrightarrow Friction ratio													utio (Rf) in %							
\leftarrow Depth in m to reference level ()	-24				6	8	6 1	0 1	2	14 1	6 1	18 2	20		10	8	3	6		4	2	
	-24																				\leq	>
	-25			<u></u>	6									6.3							-	
	-25		-									•										ζ
	-26			`	,							2	*	6.7								$\left \right\rangle$
					= =			-`;;:				25	.6 ->									{
	-27							-`` `					.6 ->	6.9								
									< =		 	26	.4 ->									Š
	-28																		_			,
	-29																					
	-30																					
	04																					
	-31																					
	-32																					
	02																					
	-33																					
	-34																	_	_		_	
	-35																					
	00																					
	-36																					
	-37																					
	07																					
	-38																					
	-39																		_			_
	-40																					
	-41																					
	-41																					
	-42																					
	-43				-														_			
													1									
	-44				-														_			
	. –												1									
	-45																					
	-46																					
																	T					
	-47									 		<u> </u>										
										R	efusal	-										
	-48			.10			20	^	20		40		50									
					(fs)		0.20 0.30 0.40 0.50 in MPa →								lination (I) in degr							
	2	200	5.5570		. (.0)	, 1	Test according A.S.T.M. Standard D 5778-07							Da	ate		: 9-	8-20	11			
	1:4	IBBING				Pro										oneı		: C1	0CF	lip.F		
	Þ.	12	A.R.B.YUL				Project : Montgomerie Block - Hamilton Airport									Project no. : 02CGL7						
Ground Drilling and Environmental Specialists						Loc	cation:	Mide	dle Ro	ad - H	amilto	on			CI	CPT no. : 7 2/28						

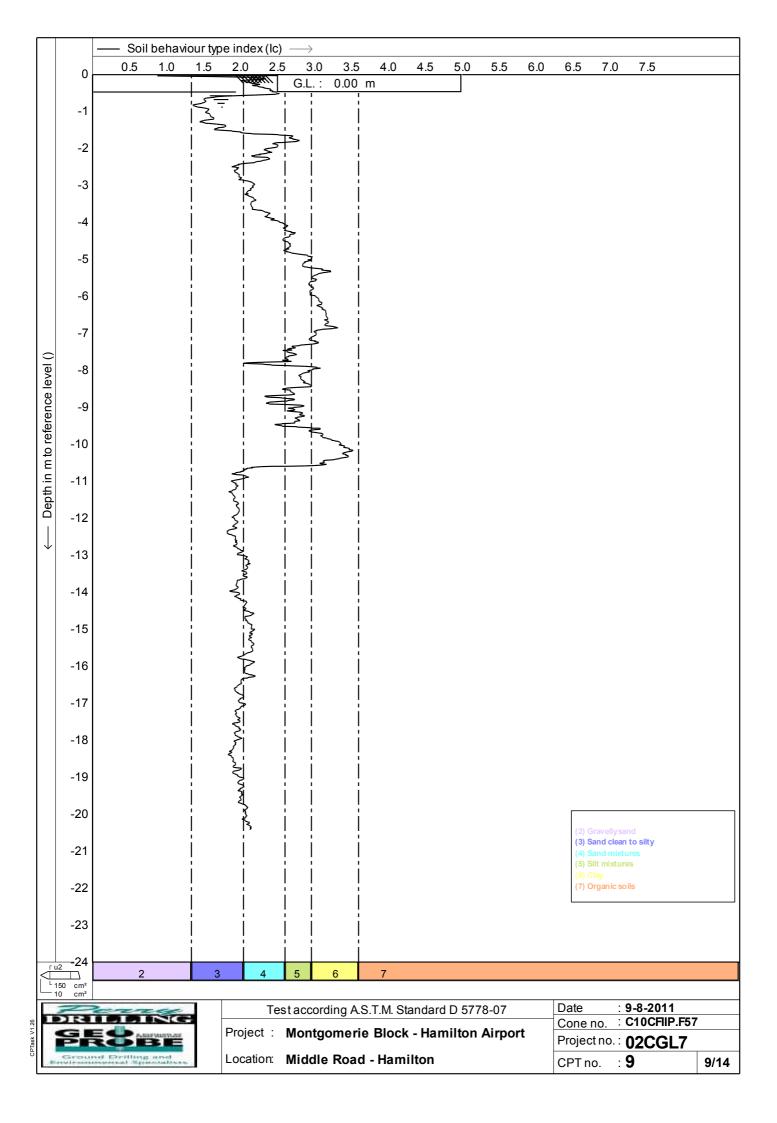


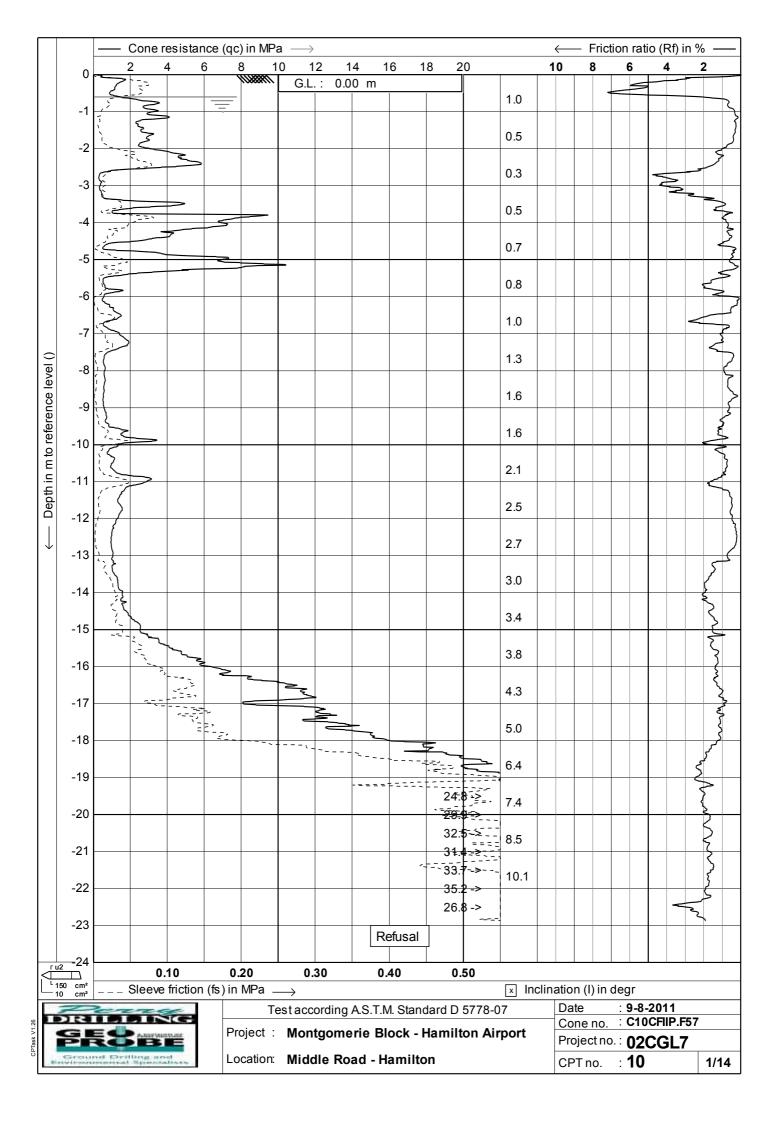


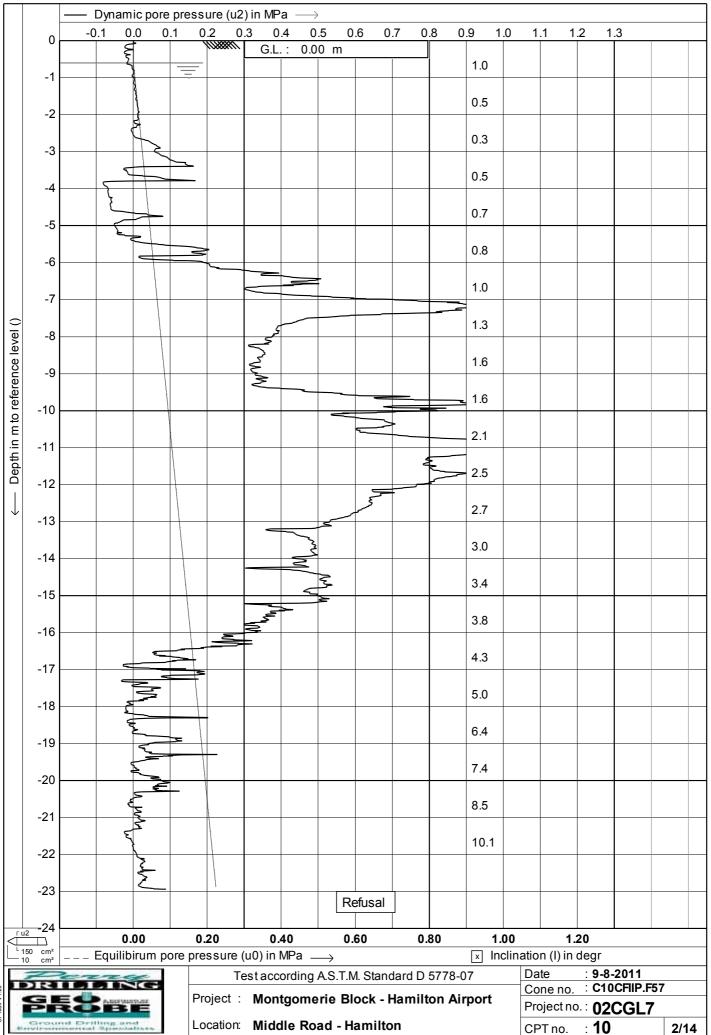


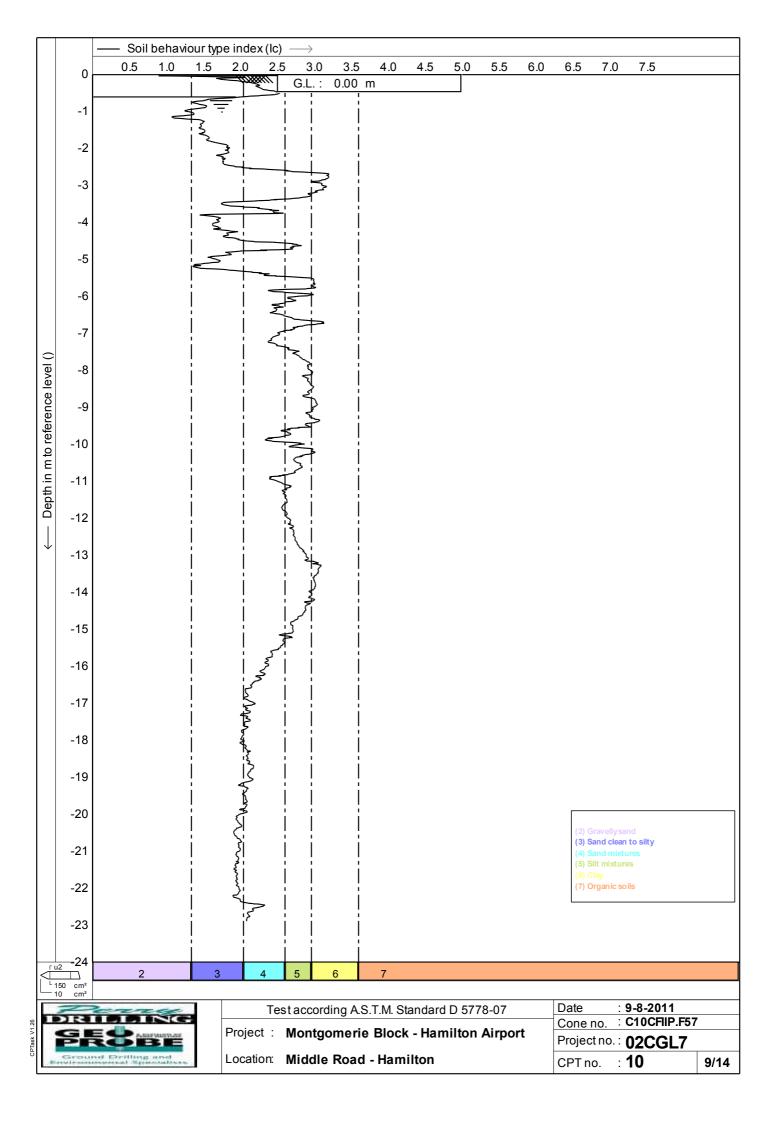

		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																				
	-24		2	4	6	8	1	0	12	14 1			20		10	8	3	6		4	2	
	-24				1						γV			30								}
	-25												2	5.9								ł
	-26				, -							25	 >	4.1								{ }
	-27						~	~	·					4.5								Ł
	-28																					
	-29																					
	-30																					
el ()																						
nce lev																						
Depth in m to reference level ()																						
u to	01																					
pth in	-35																					
- De	-36																					
\downarrow	-37					_																
	-38																					
	-39																					
	-40																					
	-41					_																
	-42																					
	-43																					
	-44																		_			
	-45																					
	-46																					
	-47					_				R	efusal											
	-48																					
	.0			.10	(fr.)	0.2			.30	0.	40	0.	50		lingtic	n //	in d	0.07				
	2		Sieeve	friction	i (IS)) 111			ordino	A.S.T.N	/ Stand	hard D	5778-0		clinatio Da				8-20	11		
	181					Pro	ject :			erie Bl					Co	neı	no.	: C ′	I OCF	lip.F		
	Þ.													ροπ						GL7		
	Grau	resources	Hierg or	alases .		Loc	ation:	Mid	dle Ro	oad - H	amilto	n			CF	PT n	0.	: 8			2/	28

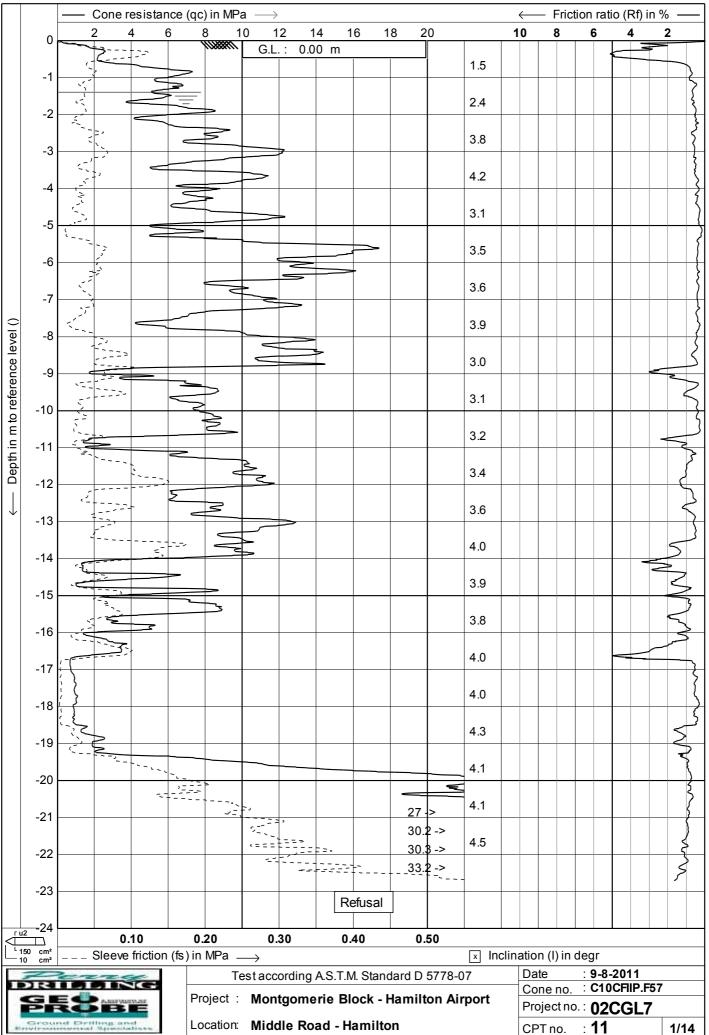


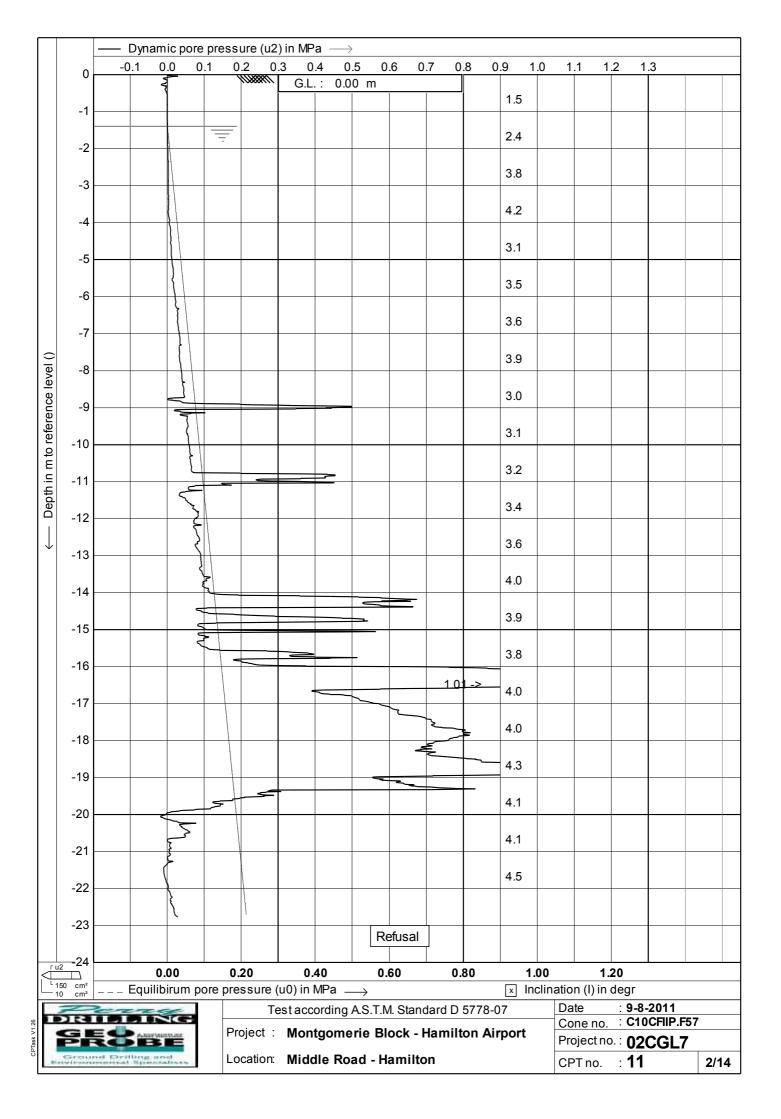


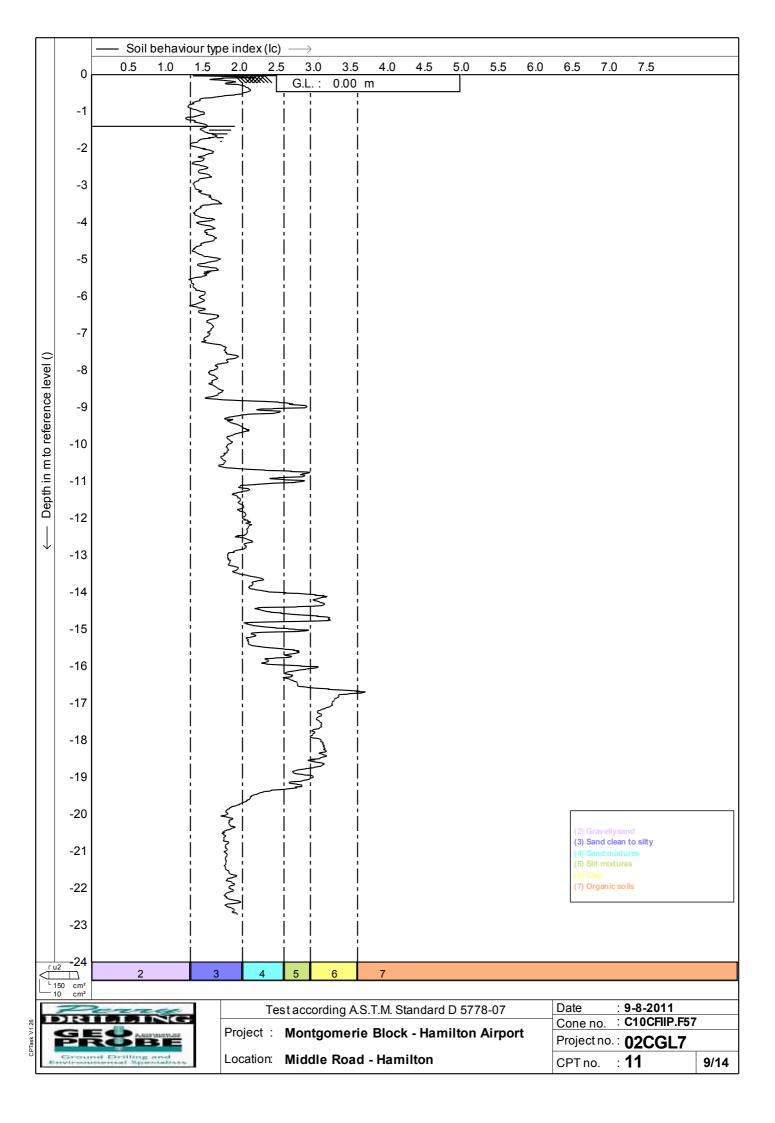


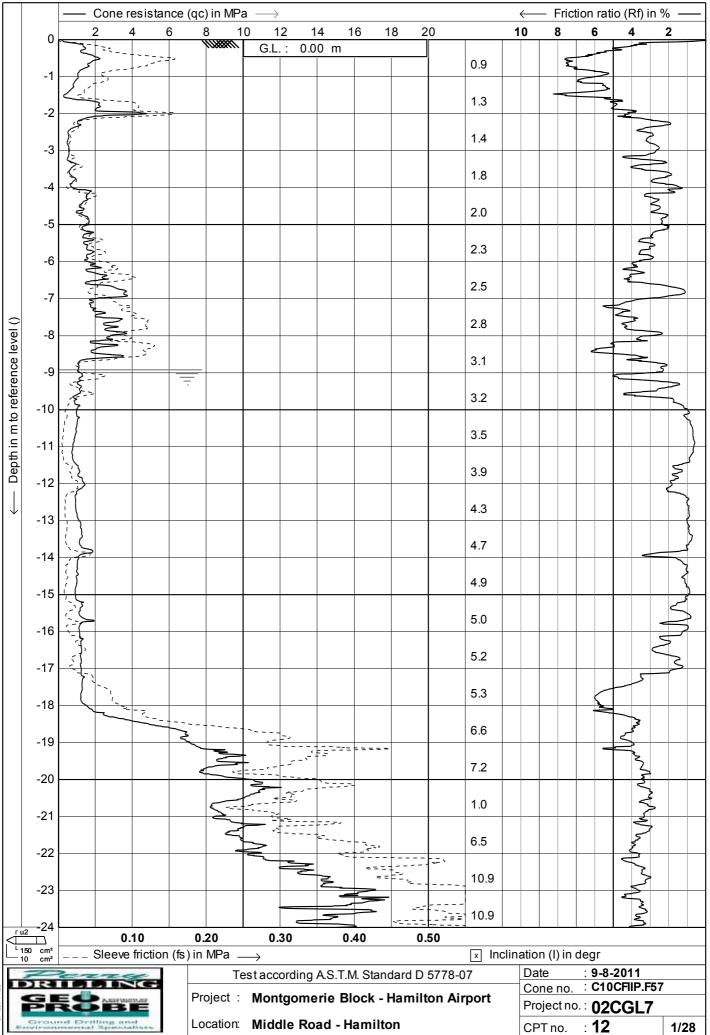

			- Soil	behavio	our typ	e inc	Jex (lc)	\longrightarrow												
	-24		0.5	1.0	1.5	2.0) 2.5	3	.0 3	.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5		
	-25					হ <u>়</u> -২														
	-26																			
	-27					<u>}</u>	1													
	-28																			
	-29																			
	-30																			
	-31					İ				ļ										
level ()	-32																			
Depth in m to reference level ()	-33																			
n to ref	-34				 															
pth in r	-35						ľ													
← De	-36						r 													
\downarrow	-37									ļ										
	-38				 		1													
	-39																			
	-40						1													
	-41																			
	-42					Ì				İ										
	-43																			
	-44					ļ	ļ			ļ						(3) Si	ravellysar and clean	to silty		
	-45				 											(5) Si (6) C		S		
	-46															(7) 0	rganic soi	15		
	-47 48				 		,													
	-40		2		3		4	5	6		7									
-	2	2			0		Too	tacc	ordina	٨٩		andard	I D 577	8-07	1	Date	· c	-8-2011		
		-		NG	4	Drai										Cone r	no. : (C10CFIIP.F		
	×.	₹2		3 8									mon	Airpor	ſ	Projec		2CGL	7	
	Grou	red E	nations.	and		Loc	ation:	Mide	lle Ro	ad ·	- Ham	ilton			(CPT no	o. : 8	3	1	8/28

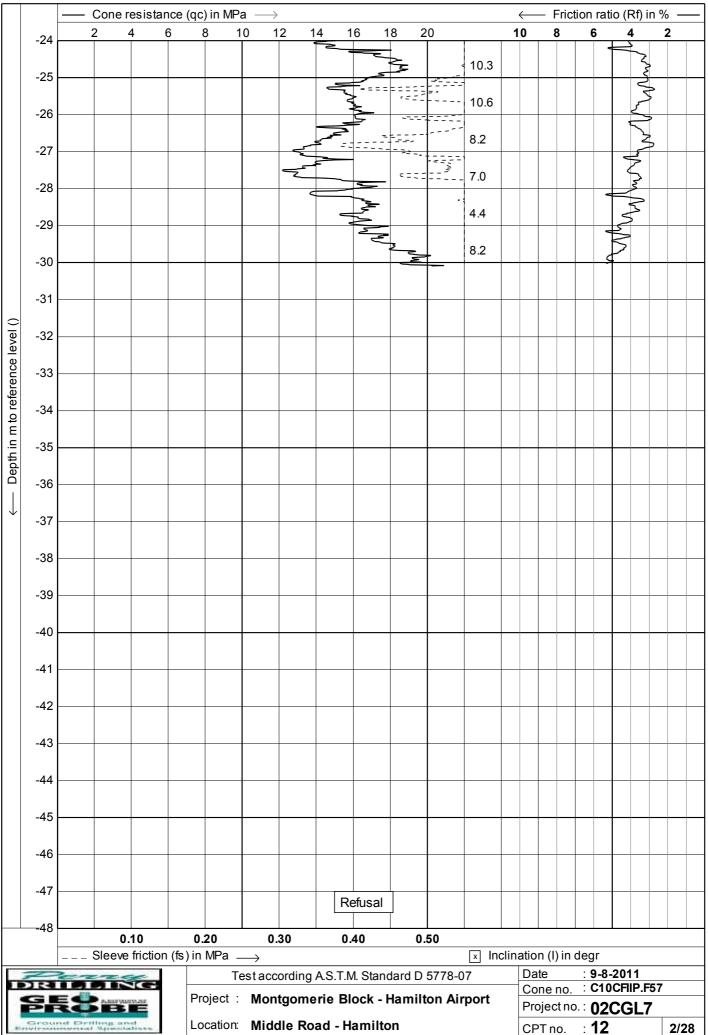


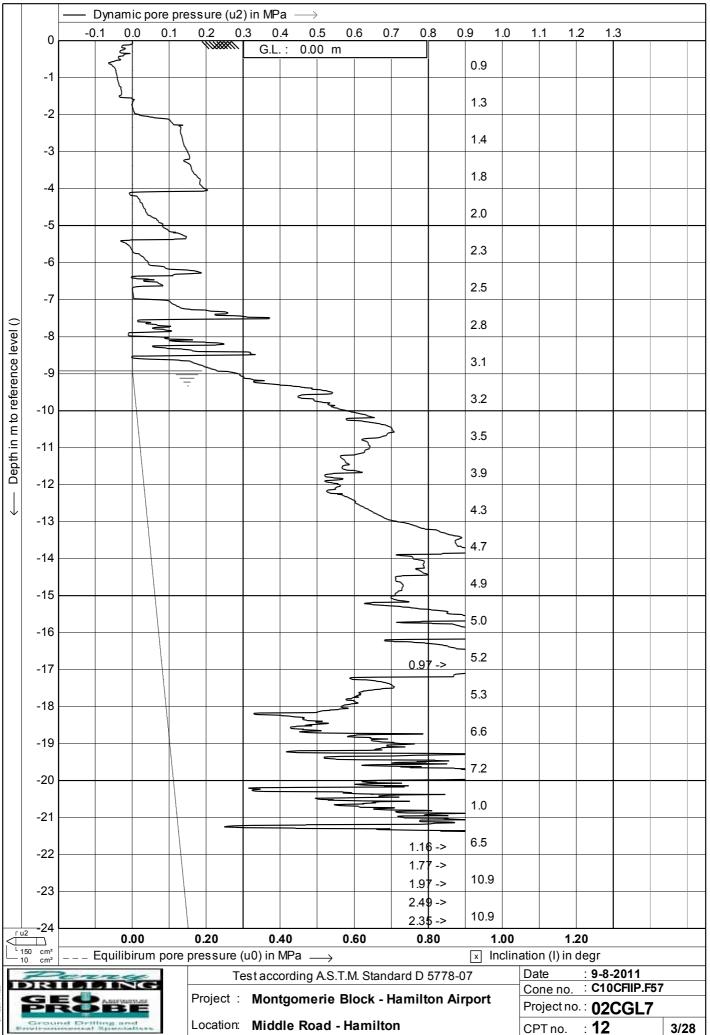


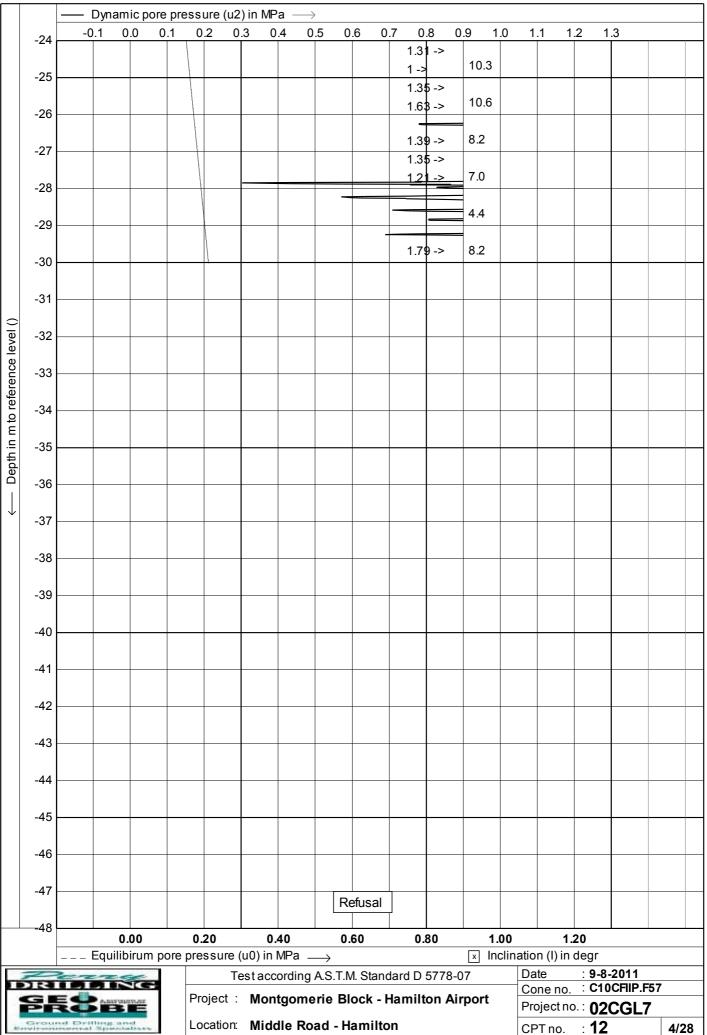


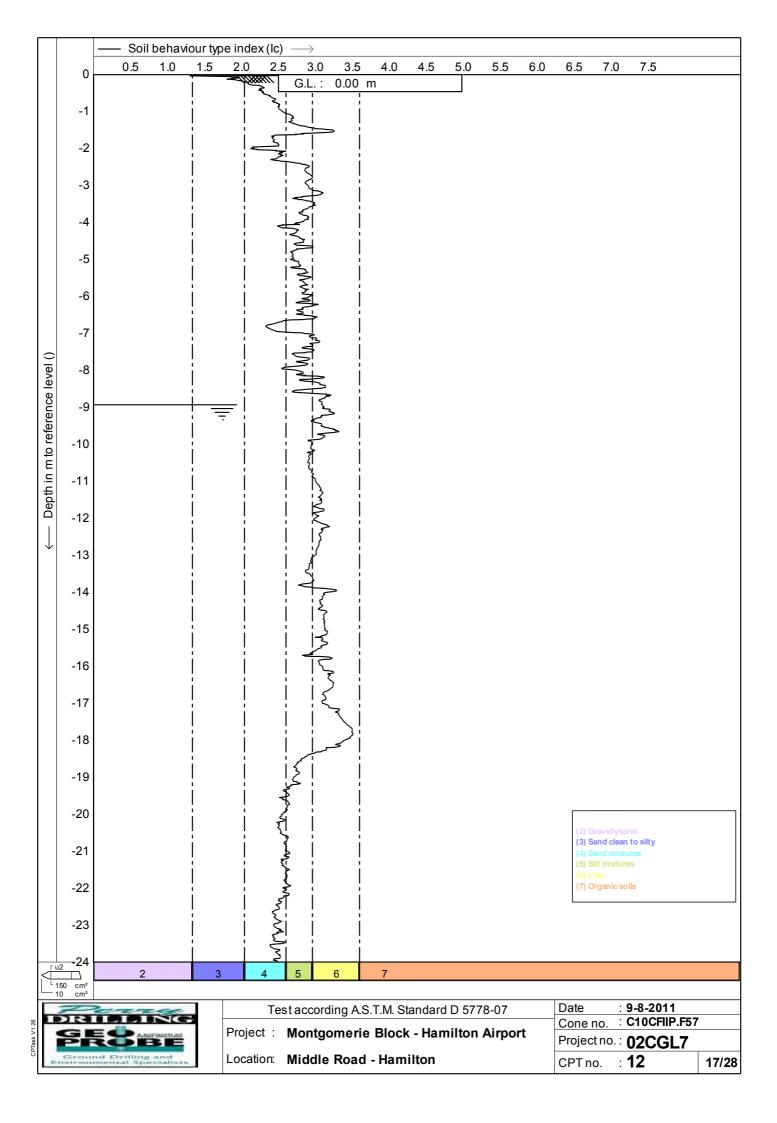


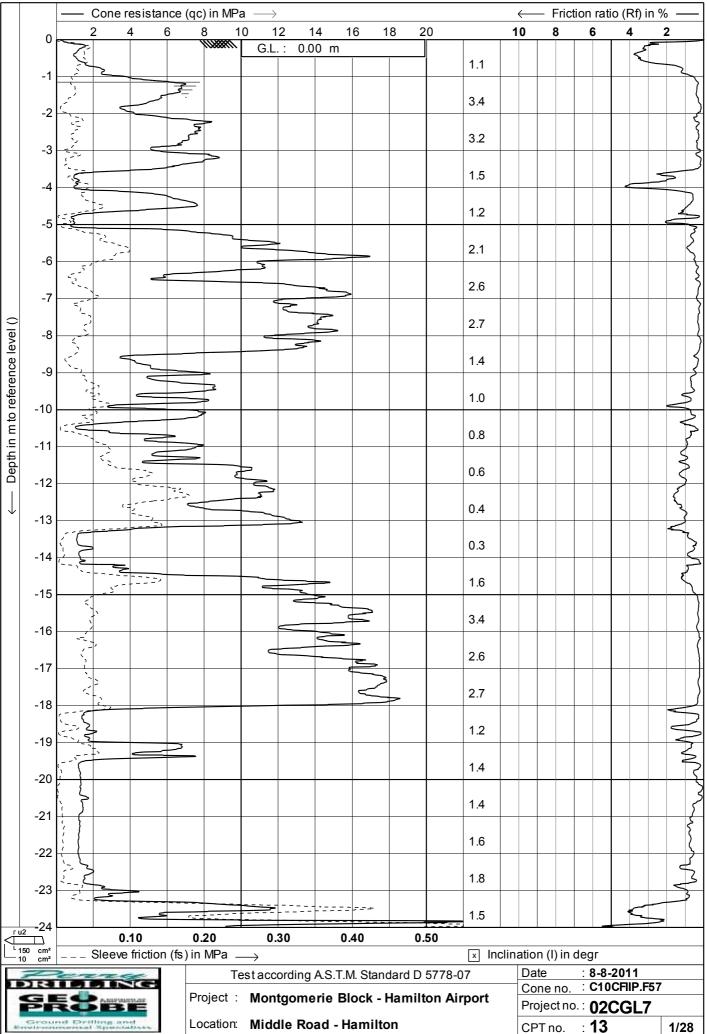


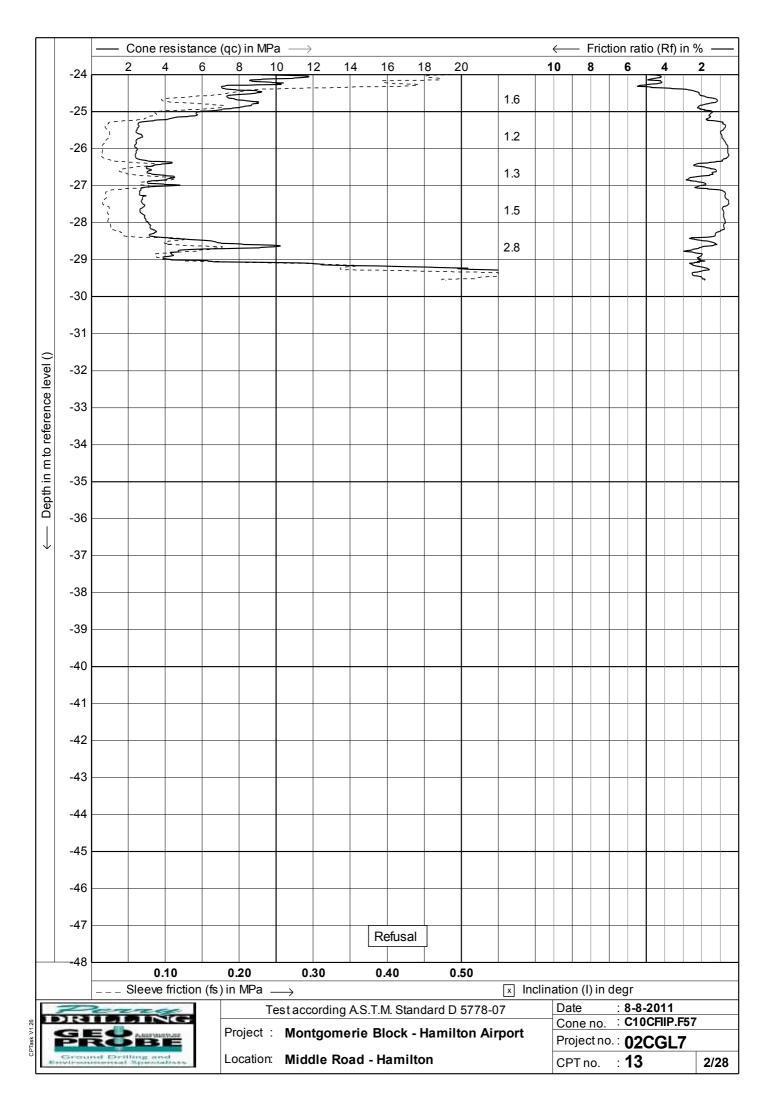


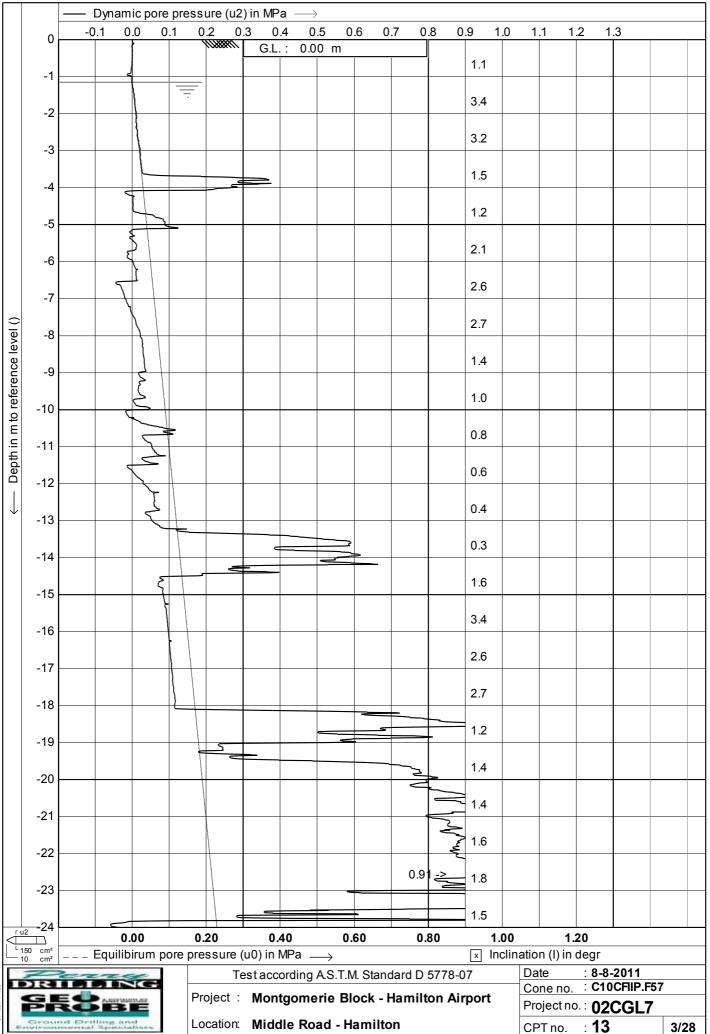


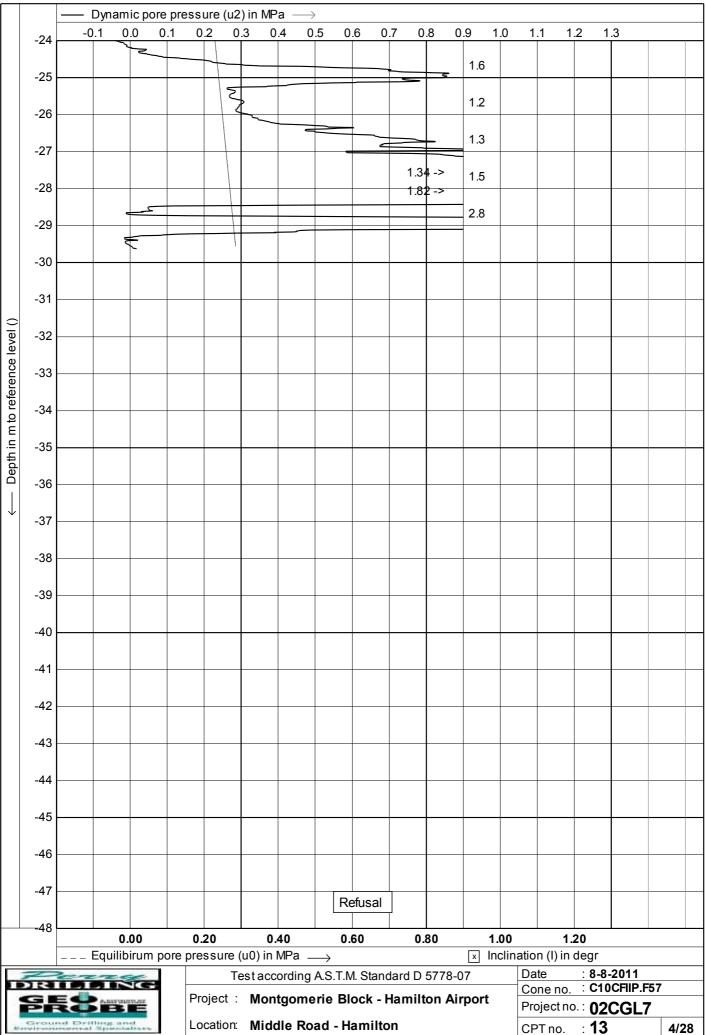


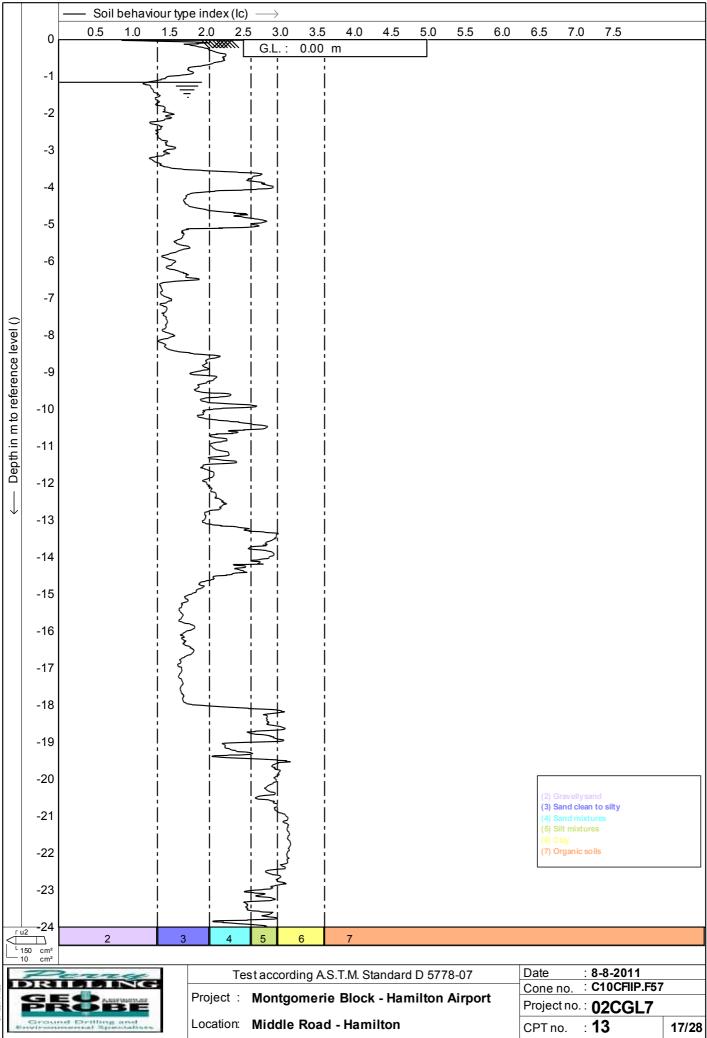


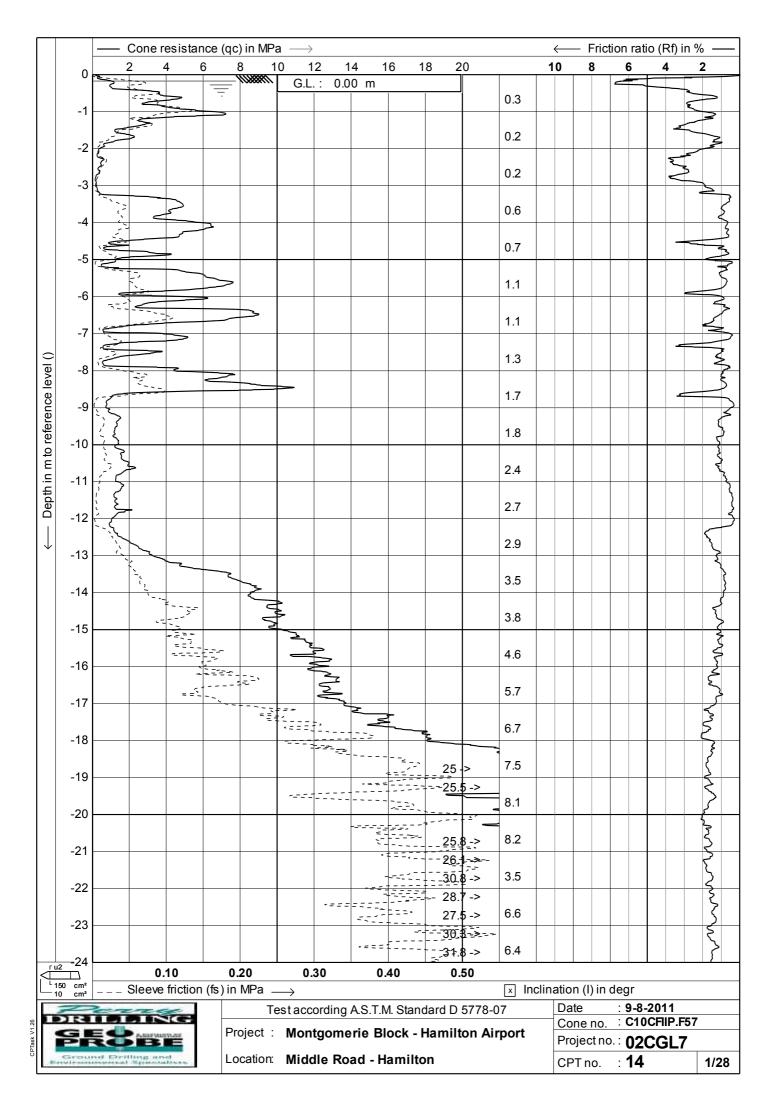


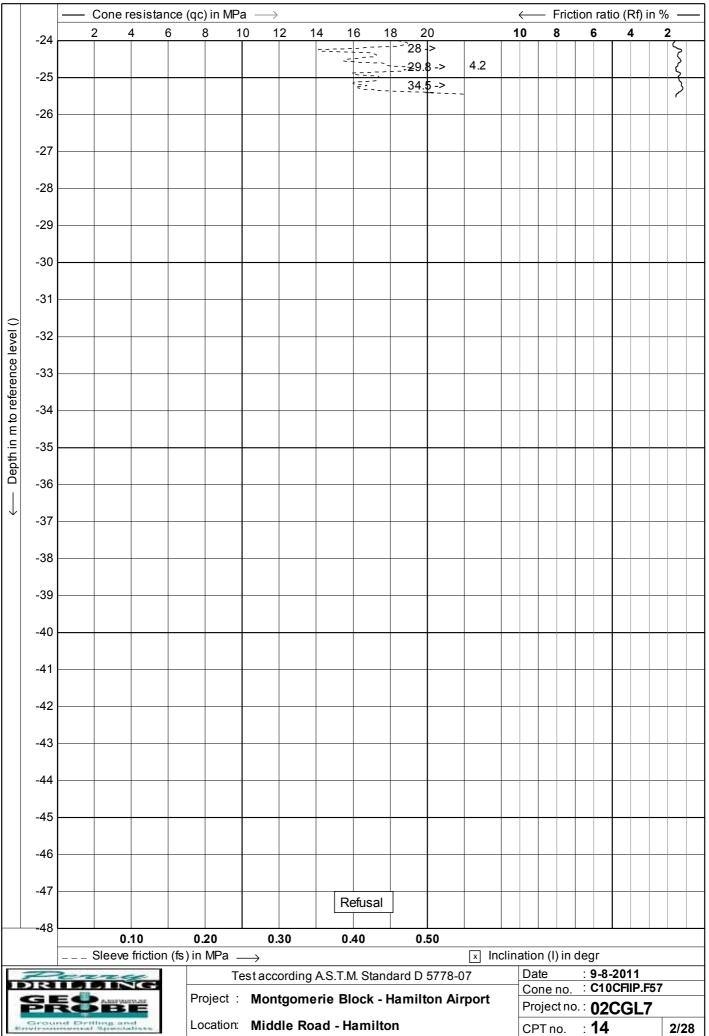


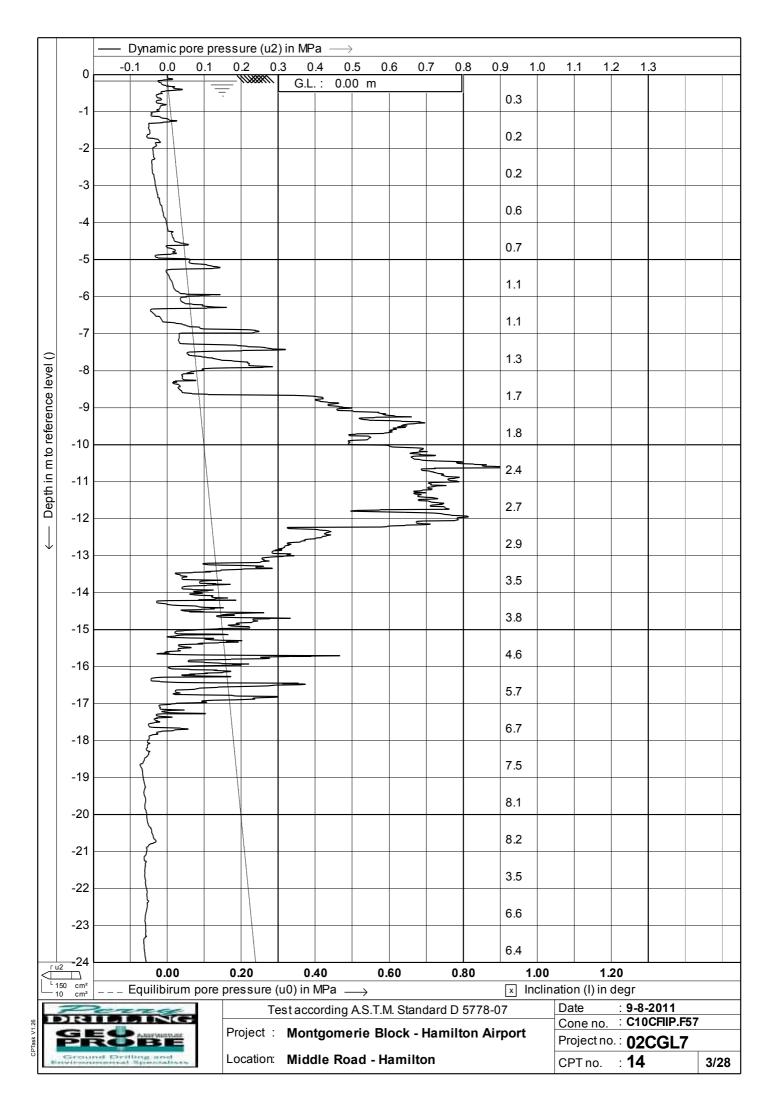


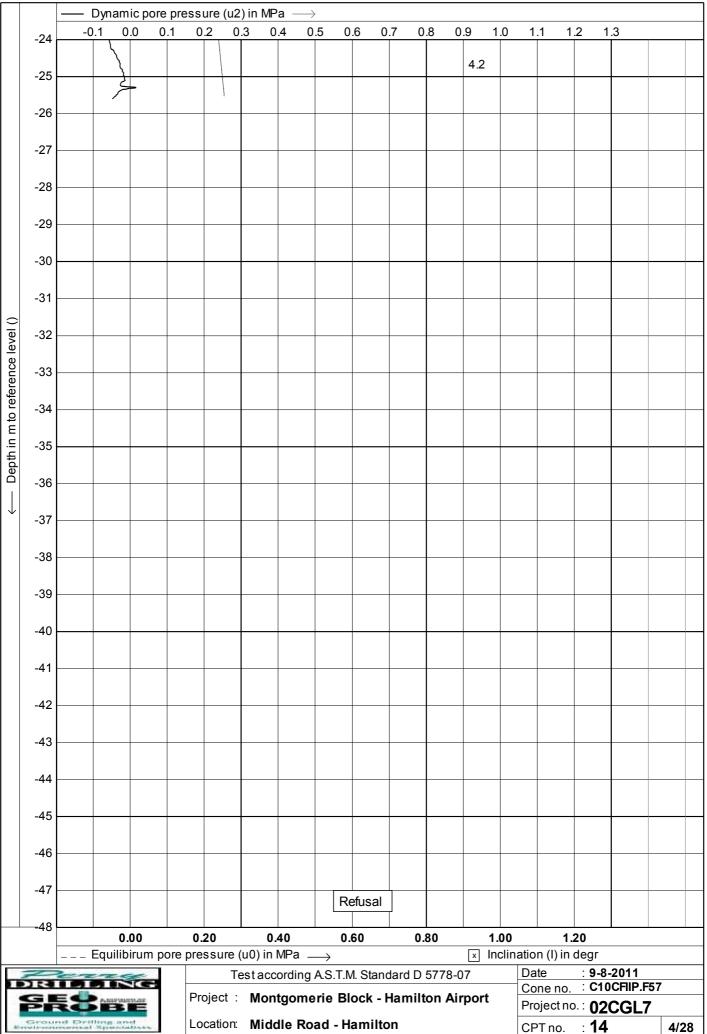


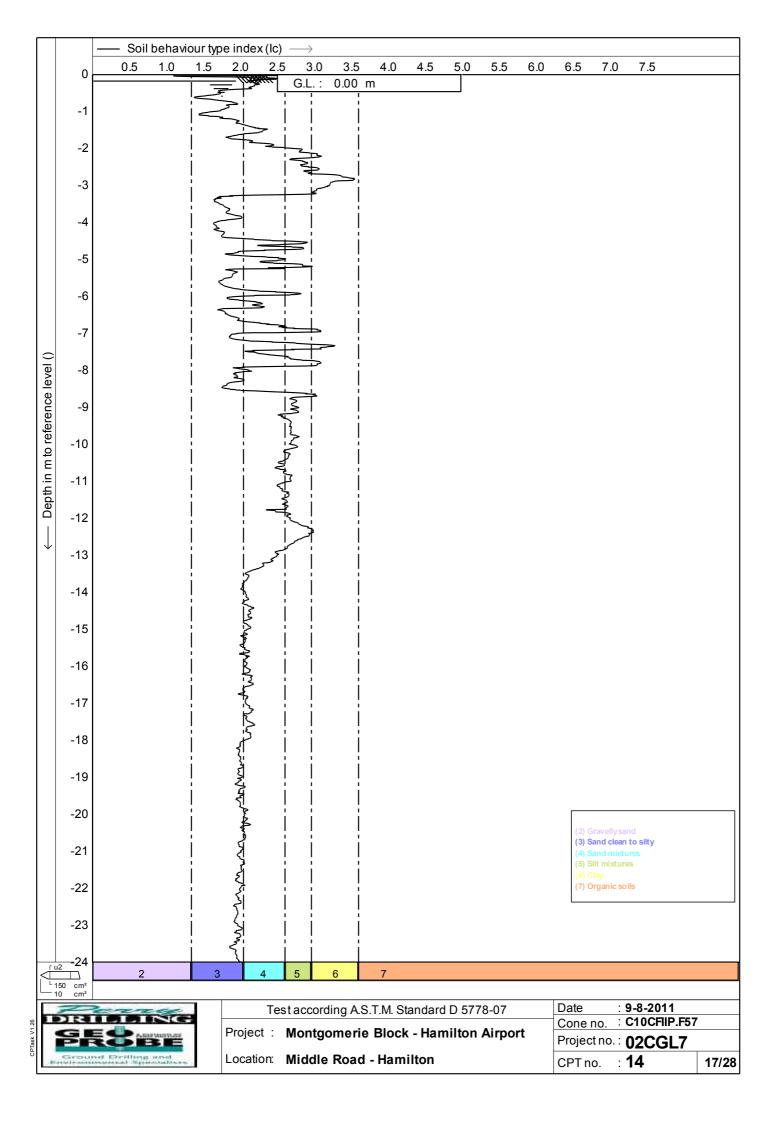

	-	— Soil	behavi	our typ	e inde	ex(lc)	\longrightarrow										
	-24	0.5	1.0	1.5	2.0	2.5 ح	3.0) 3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	
	-25					الم ر											
	-26					ڑے۔ ار											
	-27				ļ			İ									
	-28					Pr - W											
	-29					<u></u>											
	-30					dr.v.											
	-31					i											
el ()	-32				ļ												
ice lev	-32																
Depth in m to reference level ()	-34				ļ												
in m to	-35																
Depth	-36																
$\left \downarrow\right $	-37																
	-38																
	-39			ļ	ļ												
	-40																
	-41			¦ 													
	-42				ļ			İ									
	-42			 													
	-44			ļ													
	-45			 										(3) S	Gravellysar Gand clean Gand mixtu	to silty	
	-46													(5) S (6) C	lit mixture	S	
	-47																
	-48																
		2		3		4	5	6	7								
			<u>s</u>			Tes	tacco	rding A	.S.T.M. S [.]	tandaro	D 577	8-07		Date		9-8-2011	_
	GE		(Annes) and		Proje				ie Block					Cone Proiec		C10CFIIP.F5 D2CGL7	7
ŧ 📔 📲	Ground	d Driffing			Loca	tion:	Middl	e Roa	d - Ham	ilton				CPT n			18/28










	-	— Soil behav	<i>i</i> our typ	be index	(lc) —	>									
	-24	0.5 1.0	1.5	2.0	2.5 3	3.0 3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	
	-25				M V										
	-26														
	-27			ļ	- VwV	₽ ₽									
	-28				17										
	-29			ļ	₩ 										
	-30			>		 									
	-31														
el ()	-32														
nce lev	-33		Ì	İ											
Depth in m to reference level ()	-34			ļ											
in m to	-35														
Depth	-36														
$ \downarrow $	-37														
	-38														
	-39			ļ											
	-40														
	-41														
	-42			İ											
	-43		 												
	-44														
	-45											(3) S	Gravellysar Gand clean Gand mixtu	to silty	
	-46			ļ								(5) S (6) C	Silt mixture	S	
	-47														
	-48														
		2	3	4	5	6	7								
			-		Testaco	ording A	.S.T.M. S	tandaro	d D 577	8-07		Date		3-8-2011 C10CFIIP.F5	7
CPTask V1.26	SR			Project	: Mor	itgomer	ie Block	k - Han	nilton	Airpo	rt	Cone Projec		02CGL7	1
CH	Ground	d Drilling and		Locatio	n: Mid	dle Roa	d - Ham	ilton				CPTn			18/28

		— Soil b	ehaviou	ır typ	e ind	ex(lc)	\longrightarrow										
	-24	0.5	1.0 1	1.5	2.0 چ	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	
	-25				<u>اک</u>												
	-26							ļ									
	-27																
	-28							ļ									
	-29																
	-30																
	-31							ļ									
evel ()	-32																
Depth in m to reference level ()	-33				ļ			ļ									
to refe	-34																
th in m	-35																
- Dep	-36		İ		ļ			İ									
	-37																
	-38																
	-39																
	-40				ļ			ļ									
	-41																
	-42																
	-43							İ									
	-44													(2) G	iravellysar	ıd	
	-45							ļ						(3) S (4) S (5) S	and clean and mixtu ilt mixture	to silty res	
	-46													(6) C (7) O	ilay Organic soi	ls	
	-47							ļ									
	-48	2		3		4	5	6	7								
	_	>				T -	+ = = = = =	dica		loc d - 1		0.07		Data		-8-2011	
	DRI	100		-	D			ding A.S						Date Cone i		0-8-2011 C10CFIIP.F5	7
	SF					ect :		omerie			niiton	Airpoi	rt)2CGL7	
	Grou	ad Delling a	net ustanen		Loca	ition:	Middle	e Road	- Ham	ilton				CPT n	o. : •	14	18/28

Engineering Log - Hand Auger

Client: Principal:

Project:

stratigraphy

Hinuera Formation

water

T

10/08/11

Montgomerie Block, Raynes Road, Hamilton

Bloxam Burnett & Olliver Limited

material substance

classification symbol

OL SM

SP

SP

g

graphic I

× ×

depth metres

RL

<u>5</u>0.0 0.5

49.5 1.0

49.0

1.5

Refer to Site Plan Hand Auger location:

Dynamic penetrometer type: scala

Hole diameter: 100mm mm

drilling information

notes

samples,

tests, etc

Easting: 450264.23 m

Northing: 692137.2 m

10.8.2011 Date completed: ΤМ Logged by: Checked by: KAL R.L. Surface: 50.41 m

Datum: Moturiki Vertical 1953

Hand Auger No.

Sheet

Project No:

Date started:

S1

1 of 1

10.8.2011

GENZHAMI17003AA

Vane No: 4216 iiivi

			y' ex	ear led Pa	penetration resistance test
0,000	material Soil type; colour, structure. Grading; bedding; plasticity, sensitivity. Secondary and minor components, additional information.	moisture condition	consistency/ density index	25 50 75 70 70 70 71 70 720 720 720 720 720 720 720 720 720	blows per 100mm 2 4 6 8 10 12 14 16 18
	TOPSOIL; dark brown.	D	L		\mathbb{N}
	Slightly silty fine SAND; light brown, poorly graded.				
	Fine to coarse SAND; light brown, mottled orange, well graded.	М	MD		
	Fine to medium SAND; grey, well graded, pumicious.	S			
	- EOB @ 1.2m due to borehole collapse. Borehole S1 terminated at 1.2 metres.				

Slope: -90°

Bearing:

	_48.5	2.0 ⁻								
	_48.0	2. <u>5</u>								
	47.5	3.0								
	47.0	3. <u>5</u>								\leq
	_46.5	4. <u>0</u> _								
	_46.0	4. <u>5</u> _								5
	45.5	5. <u>0</u>								
	45.0	 5.5								-
soil d based and F	ification symbols an lescription d on Field Descriptic Rock, New Zealand echnical Society Inc	on of Soil	● re × pe ≫× pe	hear (kPa emoulded eak eak grea nable to	water ↓ 10/1/98 water level on date shown water inflow water outflow	moisture D dry M moist W wet S saturated	consiste VS S F St VSt H	ency/ density index very soft soft firm stiff very stiff hard	VL L D VD	very loose loose medium dense dense very dense

	-		_														
•	~		-)	y	3	,	JIECHINGS		Hand	Aug	er N	0.		S2			
Е	'n	ginee	eri	ng	Log	- H	land Auger		Sheet Projec		D:			1 of GEN		MI1	7003AA
Cli	ent:			Blox	am Bu	rnett	& Olliver Limited		Date s					10.8			
Pri	ncipa	al:							Date o	com	plete	d:		10.8	.201	1	
Pro	oject:			Mon	tgomer	rie Bl	ock, Raynes Road, Hami	lton	Logge	ed by	<i>r</i> :			ТМ			
На	nd A	uger locati	ion:	Refe	er to Sit	e Pla	n		Check	ked I	oy:			KAL			
Dyr	namic	penetromete	er type:	scala			Easting: 449830.94 m	Slope: -90°			-	: 50).63 m		Vane	e No: 42	16 iiivi
		neter: 100m			•		Northing: 692145.74 m	Bearing:	[Datur	n: Mo	oturiki	i Vertic	al 1953:			
dr	illin	g informa	tion		materia		stance							·			
stratigraphy	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	mater Soil type; colour, structur plasticity, sensitivity. Se components, additio	e. Grading; bedding; condary and minor	moisture condition	consistency/		vane shear rs (remoulded)	125 /peak) kPa 175	t	olows	per 100	mm 14 16 18
			<u>5</u> 0.5	-		OL	TOPSOIL; dark brown.		М	L	_			\mathbf{N}			
Hinuera Formation	10/08/11		_50.0 _49.5 _49.0	0.5 		SP	Fine to medium SAND; light orange br of soil Fine to medium SAND; grey, well grad		ng s						>		
	10		48.5	2.0			- EOB @ 1.9m due to borehole collaps Borehole S2 terminated at 1.9 metres.	e.									
			_48.0	2. <u>5</u>													
			47.5	3. <u>0</u>												>	
			47.0	3. <u>5</u>											<		
			<u>4</u> 6.5	4. <u>0</u>											<	$\left(\right)$	
			<u>4</u> 6.0	4. <u>5</u>												<	>

classification symbols and vane shear (kPa) **moisture** D dry M moist water consistency/ density index soil description based on Field Description of Soil 10/1/98 water level on date shown VS S F St very loose loose medium dense remoulded very soft soft VL $^{\bullet}_{\times}$ M W peak L MD and Rock, New Zealand Geotechnical Society Inc 2005 >>× peak greater than 200kPa
 UTP unable to penetrate water inflow wet firm s saturated water outflow stiff D VD dense very stiff hard VSt H very dense

 5.0^{-}

5.5

45.5

Engineering Log - Hand Auger

Client: Principal:

Project:

Montgomerie Block, Raynes Road, Hamilton

Bloxam Burnett & Olliver Limited

Hand Auger location: Refer to Site Plan

Dynamic penetrometer type: scala

Easting: 449671.49 m Northing: 691773.71 m

KAL Checked by: Slope: -90° R.L. Surface: 50.49 m Datum: Moturiki Vertical 1953

Hand Auger No.

Sheet

Project No:

Logged by:

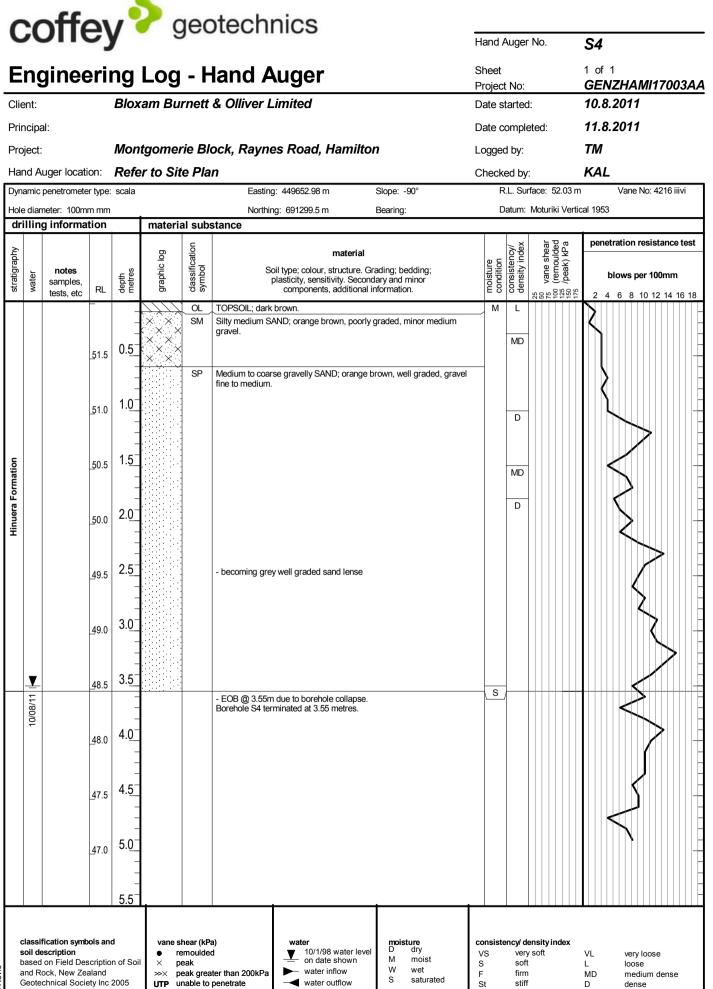
Date started:

Date completed:

S3

1 of 1

ΤМ


10.8.2011

11.8.2011

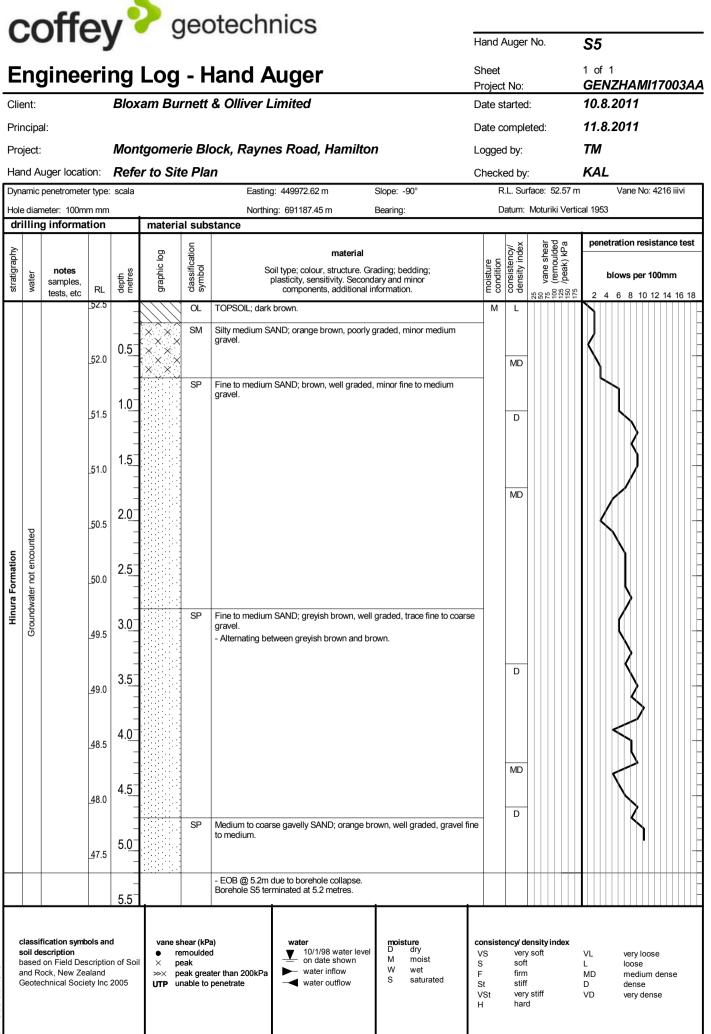
GENZHAMI17003AA

Vane No: 4216 iiivi

Hole		neter: 100mr					Northir	ng: 691773.71 m	Bearing:	D	atum:	Moturiki Verti	cal 1953	
dr	illin	g informa	tion		materia	al sub	stance						i	
stratigraphy	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	Si	material oil type; colour, structure. Gra plasticity, sensitivity. Second components, additional ir	ading; bedding; ary and minor formation.	moisture condition	consistency/ density index	25 50 vane shear 100 (remoulded 150 /peak) kPa 175	blows p	resistance test er 100mm 10 12 14 16 18
		,			$\langle \rangle$	OL	TOPSOIL; dark	brown.		М	L	1111400		
Hinuera Formation			<u>5</u> 0.0	 0. <u>5</u>		SW		ange brown, poorly graded.			MD		$\left \right\rangle$	
a For	⊻			_		SP	Fine to medium	n SAND; grey, well graded, p	umiceous.					-
Hinuer	10/08/11		<u>4</u> 9.5	1. <u>0</u>						S			\int	
			49.0	1.5	XXX	SM	Silty fine SAND	; grey, poorly graded.			L			
			48.5	- - 2.0 ⁻			- EOB @ 1.5m Borehole S3 ter	due to borehole collapse. minated at 1.5 metres.					Ì	-
				-										
			48.0	2.5									$>$	
			<u>4</u> 7.5	3.0										
			<u>4</u> 7.0	3. <u>5</u>										
			<u>4</u> 6.5	4. <u>0</u>										
			<u>4</u> 6.0	4. <u>5</u>										\leq
			_45.5	5. <u>0</u>										
			<u>45.0</u>	 5.5	i									
s b a	oil de based and Re	fication symb scription on Field Des ock, New Zea chnical Socie	criptio aland	n of Soil	● re × po ≫× po			water ↓ 10/1/98 water level on date shown water inflow water outflow	moisture D dry M moist W wet S saturated	consiste VS S F St VSt H	very soft firm stiff	y stiff	L loos MD med D dens	ium dense

very stiff

hard


VD

very dense

VSt

н

⁻orm GEO 5.2 Rev.6

⁻orm GEO 5.2 Rev.6

													Machine Borehole Sheet		1 of 3
Er	ng	giı	neeri	ng	Lo	g	- M	a	chine Borehole	Ĺ.			Project No:		GENZHAMI17003A
Clie	nt:			Blox	am	Buri	nett	& 0	lliver Limited				Date started:		16.8.2011
rin	cipa	al:											Date completed:		16.8.2011
Proj			orehole	Mon	tgor	neri	e Blo	ock,	Raynes Road, Hamilton				Logged by:		NO
.008	atio	n:		Refe	1000	1115 11 51V		2					Checked by:		KAL
			mounting: I r: 90 mm				oka Mo Biovis/				Slop	e: -90)* R.L. Surface: 5 Datum: Moturik		
			formation		Jiming	nuio.	-		substance	-	bea	ng.		-	rock mass defects
method	support	water	notes samples, tests, etc	well details	RL	depth metres	graphic log core recovery	classification symbol	material Soil - Soil type; colour, structure. Grading; bedding; plasticity, sensitivity. Secondary and minor components. Rock - Colour, fabric, rock type; discontinuities, additional information.	moisture condition	consistency/ density index	weathering alteration	estimated strength SX SN SN SN SN SN SN SN SN SN SN SN SN SN	recovery %	
TT-ł	lac				_50	-	XX	ML	TOPSOIL Sandy SILT, fine; yellowish brown,		MD				
		26/8/11 (P1)		Zone	_49			GW	GRAVEL; fine to coarse, loosely packed, well graded, sub-angular to sub-rounded, minor fine to coarse sand.					80	
		26/	SPT 9,8,5 N*=13	\$Po-Se	_48	2								56	
				Des			× × × ×	ML	Sandy SILT, fine; olive grey, no-plasticity, pumiceous.		S to F				
			SPT 2,3,1 N*=4	īd	_47	3		CL	Silty CLAY; olive grey, low plasticity with trace organic staining, trace fibrous, organic bands.						
					8	4	X							100	
IIGHOU	N	6			_46	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	SP	Silty fine SAND; olive grey, poorfy graded, pumiceous - with trace fine sandy, organic, SILT layers and trace rootlets.		MD				
		1 (P2)	-		_45	5		SM	Fine to medium SAND; some silt,					63	
5	-	26/8/1	SPT 8,9,11		_44	6	× × ×	SP	olive grey, loosely packed, well graded, some fine pumice gravels. Fine to medium SAND; minor silt, grey, loosely packed, poorly graded,	_					
			N*=20	1 8			×`×		some fine pumice gravels.					0	
					_43	7								100	
				P 5e 2	_42	8	×××	SP	Fine to coarse SAND; minor silt, grey, loosely packed, well graded, fine to medium gravels, with fine sand lenses.					56	5
			SPT 2,9,10 N*=19	P2 Ress	_41	9	{_× ×								
			N -13	18		-	××××	-						78	
AD OB TT	a	uger	drilling parrel ube		soil de based	on Fiel	symbo on d Descr	iption (of Soil and Rock, V on date si Society Inc 2005 water infi	hown	vel		consistency/ density index VS very soft S soft E frm		weathering UW unweathered SW slightly weathered MW moderately weathered
W sup N C	port c e sh re pe	vasht t nil casing near (mouli cak cak g	oore) kPa)	l0kPa		sampl undis undis distu SPT SPT bulk	es, test sturbed	s sample mple e reco id cone	e 50mm diameter e 63mm diameter vered b dry e dry wet	l fluid I drill flu			F firm St stiff VSt very stiff H hard VL very loose L loose MD medium dense D dense VD very dense		HW highly weathered CW completely weathered RS residual soil rock mass strength EW EW extremely weak VW very weak W weak MS moderately strong S strong VS very strong

Clie	-	5		_	_	_	_	_	chine Borehole		-	-	Project I	10.00	_	_	SENZHAMI1	7003A
				BIUX	am	buri	lett	or U	inver Linnted				Date sta				6.8.2011	
	ncip						-							mpleted:			6.8.2011	
	ject chir		orehole		-				Raynes Road, Hamilton				Logged	by:		٨	10	
_	atic			Refe		_		-					Checked				CAL	
			mounting: E r. 90 mm									e: -90		. Surface: 5			Vane No:	4216/iiivi
			formation		Juling	nulu.	Biovis/		substance	-	Bear	nng:	Dat	um: Moturi	-	-	al 1953 mass defects	
stratigraphy			notes samples,	well details		depth metres	_	classification symbol		moisture condition	consistency/ density index	weathering alteration	estimated strength	vane shear (remoulded /peak) kPa	recovery %		defect desc number, type, orien roughness, ape description (refe description explan	ription tation, shape rture, infill r to defect
		>	tests, etc	11	RL 40	σe	X	SP	Fine to coarse SAND; minor silt,	EO	MD	s œ	s Son Son Son Son Son Son Son Son Son Son	125 125 125 125 125 125 125 125 125 125	-	-	particular	genera
				Zene			××	(cont)	grey, loosely packed, well graded, fine to medium gravels, with fine						78			
				3		11	×		sand lenses. (continued)								-	
			-	P2 Respon	_39	-	× Ŷ								63			-
				Res		-	× × ×	ML	Sandy SILT, trace fine sand; olive brown, no-plasticity, sensitive, trace						1º			
		F.		.7d		12	× × ×		organic staining.									
			SPT 0,2,0		_38		× × ×				VSt			×				-
			N*=2			-	× × × ×											
			S1 (U60)			13	× × ×								69			-
			Vane Shear		_37	1.1	***											
G			drilling disturbed			-	×××						•	×		T		
Hinuera Formation					_36	14	* * * * *	ML	SILT; trace fine sand, olive grey, no-plasticity.		F							-
ra Fo					0	-	× × × × × × × × × × × × × × × × × × ×								73			
linue						1	****											
-			SPT		_35	15	XX	ML	SILT; some fine sand, light olive grey, no-plasticity, micaceous.		F				⊢			-
			0,0,1 N*=1		Ē.,	-	×××		grey, no-plasticity, micadeous.									
						16	* * * *	ML	SILT; light olive grey, low plasticity,						100			
					_34	10	X X X X X X X X X X X X X X X X X X X		 sensitive. with fine to medium sandy, poorly graded, silt lenses. 									
			Vane Shear drilling			-	* * * *		graded, sin lerises.				-	×	L	-		
			disturbed			17	* * * * * * *											
					_33	-	¥?		Organic SILT; dark brown, homogenous, low plasticity, minor						20			
1						1		1	fibrous rootlets.	1								
						18	XXX	1	- becoming brown, minor organic						L			
			SPT 0,0,0		_32	-	×i,	8	staining, trace rootlets.									
4			N*=0	1		-	X	SM	Silty fine SAND; olive grey,	-	D				100	3	-	
Walton Subgroup						19	××		moderately graded, pumiceous, minor fine pumice gravel.						1			
n Sub					_31		(×^											
Valto							××	1	- fine to medium pumice gravel						40	2		
	thoo						symbo	ls and	water	-		1	consistency/ d	ensity index	+		thering	-
AD OB	3 (open l			based		d Descr		of Soil and Rock, I 10/1/98 w		vel			ry soft		SW	unweathered slightly weath	ered
W	1	riple t washb		F			Geoteci es, test		Society Inc 2005 water infle	w	oss		F firm St stif	n		MW HW CW	highly weathe	red
N		hil			U ₅₀ U ₅₃	undis	sturbed	sample	e 50mm diameter - complete e 63mm diameter					ry stiff		RS	residual soil mass strength	
C va	ne si	casing hear (kPa)		D N*	distu	rbed sai - sample	mple	moisture					ry loose		EW VW	extremely we very weak	ak
• ×	p	emouli eak			Nc Bs	SPT	with soli sample						MD me	dium dense nse		W MS S	weak moderately st strong	rong
>>			reater than 20 to penetrate	0kPa	E		onment	al sam		d				ry dense	L.	VS	very strong extremely stro	

E	r	Q	JII	neeri	ng	LO	g ·	- IV	ac	chine Borehole				Project	No:		G	ENZHAMI1	70034
1.1	len	-				_	-	_	_	lliver Limited	-	-		Date sta		-	_	6.8.2011	10004
Pr	inc	ipa	al:											Date co	mpleted:		1	6.8.2011	
	oje				Mont	taon	neri	e Blo	ock.	Raynes Road, Hamilton				Logged	by:		N	10	
Ma		nine	e Bo	rehole	Refe	-								Checke	17			AL	
10.0	25.0	1000	1120 - E	nounting: E		-				Easting: 450298.81 m	-	Slop	e: -9	0000000000000	Surface: 5	0.20	1977	Vane No:	4216/iiivi
Ho	ole c	lian	neter	: 90 mm	D	rilling	fluid:	Biovis/	Water	Northing: 692416.11 m		Bea	ring:	Da	tum: Moturik	i Ve	rtica	al 1953	
d	rill	ing	inf	ormation		_		-	the second second second second second second second second second second second second second second second s	substance material	_	_	_			r	ock	mass defects	
stratigraphy	method	support	water	notes samples, tests, etc	well details	RL	depth metres	graphic log core recovery	classification symbol	Soli - Soli type; colour, structure. Grading; bedding; plasticity, sensitivity. Secondary and minor components. Rock - Colour, fabric, rock type; discontinuities, additional information.	moisture condition	consistency/ density index	weathering	estimated strength ພັ≳ຣ≌∞໑໑ຆ	25 75 76 700 (remoulded 725 /peak) kPa 175	recovery %	RQD %	number, type, orien roughness, ape description (refe description explan particular	tation, shape rture, infill r to defect
T	T-H	QN				_30		××	SM (cont)	Silty fine SAND; olive grey, moderately graded, pumiceous,		D				T			10.511.0
							-	×	looniy	minor fine pumice gravel. (continued)						40			
							21	××								L			
				SPT 13,21,23		_29	-	××	SM	Silty fine SAND; light olive grey, tightly packed, poorly graded,									
<u>a</u> .				N*=44			1	××		pumiceous, minor fine gravel.									
Walton Subgroup							22	×××	SP	Coarse SAND; trace silt; olive/black, fine angular pumice gravel.						73			
n Sub						_28	-	X X X X X X X X X X X X X X X X X X X	ML	SILT; trace fine sand, olive/grey		St							
altor							-	****		(mottled), low plasticity, sensitive, iron stained.				•	*	F			
\$							23	****											
						_27	-	C X X X C X X X C X X X								100			
							-	* * * * *											
				SPT 3,5,8		_26	24	××× ×××	SM	Silty fine SAND; white, poorly graded, pumiceous.		MD				100			
-				N*=13			1	<u></u>		MH01 terminated at 24.45 metres.		-				F			
						_25	25												1
							-												
						_24	26												-
							-												
						_23	27												-
							-												
							28												
						_22	20											-	-
							-												
							29												
						_21	-												
							30												
A	neth D	au		nilling	1	soil de	scriptio			water	ater le	vel	T	consistency/ d VS ve	lensity index ry soft	L	WU	hering unweathered	
Т		op trij	ple tu	arrel be						of Soil and Rock, Society Inc 2005	nwor			S so F firr	ft	L .	SW	slightly weath moderately we	eathered
	upp	Wa	ashbo			notes,	sample	s, tests		partial drill	fluid l			St sti	ff	Ŀ	HW CW RS	highly weathe completely we residual soil	
NC		nil	ising		1	0 ₅₀ 0 ₆₃	undist	turbed s	ample	50mm diameter - Complete 63mm diameter moleture	unii Mu	0 1058		H ha				mass strength extremely weat	ak
v	ane		ar (k		1	D N*	SPT -	sample	recov					L loc	ry loose ose		WW W	very weak weak	
XX		pea	ak	ater than 200	NDa I	Nc Bs E	bulk s	with solid ample		W wet	4			D de	edium dense Inse Iry dense		MS S VS	moderately st strong very strong	rong
				penetrate			minhau.C	onmenta	el alatti	earthater	-			Ve Ve			ES	1011 010110	ng

00	ne	y	3	Leching			Mach	ine Borehole	No. /	VH02
	neer			the second second second second second second second second second second second second second second second s	Borehole)	Shee Proje	t ct No:		of 4 GENZHAMI17003A
Client:		Bloxam	Burnett a	& Olliver Lim	ited		Date	started:	1	5.8.2011
Principal:					*		Date	completed:	1	5.8.2011
Project: Machine E	Borehole	Montgor	nerie Blo	ck, Raynes I	Road, Hamilton		Logge	ed by:	٨	10
_ocation:		Refer to					Chec	ked by:	ŀ	KAL
Jrill model & Hole diamet	1.00	Edson (Mark 2)			Easting: 449791.06 m			R.L. Surface: 4	70400.000	Vane No: 4216/iiivi
0.010	formation		fluid: Biovis/V	erial substance	Northing: 692258.98 m	Bear	ing:	Datum: Moturik		al 1953 mass defects
suangrapny method support water	notes samples tests, etc		depth metres graphic log core recovery	bedding; plasticit min Rock - Co	colour, structure. Grading; y, sensitivity. Secondary and or components. lour, fabric, rock type; s, additional information.	moisture condition consistency/ density index	estimated alteration S ^{S S S S} S S S S S S S S S S S S S S S S	s vane shear cremoulded cremoulded cremoulded		defect description number, type, orientation, shape roughness, aperture, infill description (refer to defect description explanation sheet) particular general
26/8/11 (P4)	SPT 0,1.2	49 a c o 2 a 48 47 46 46 45 44 44 43 43	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $	TOPSOIL SM Fine to mediu yellowish brow poorly graded SM Fine to coarse Ight grey, min gravels. Silty CLAY; graded SM Silty CLAY; graded, packed, poorly organic stainin Silty fine SAN ML Silty CLAY; brownish grey ML Clayey SILT; 1 brownish grey SM Fine to mediu grey, loosely p ML SILT; olive gre SM Silty fine SAN graded, pumic Silty fine SAN	e SAND; some silt, nor fine to medium rey, medium plasticity. D; grey, loosely y graded, pumiceous. rown, low plasticity, ng. edium SAND; grey, pumiceous, some fine umice gravels. trace fine sand, r, medium plasticity. m SAND; some silt, backed, poorly graded. ay, low plasticity. D; olive grey, poorly zeous.	L Sto F L Sto F L Sto F L Sto F L			70 66 100 60 100	
N N D auger d B open ba T triple tul V washbo upport nil casing the shear (kf remoulde	SPT 2,5,7 N*=12 nilling arrel be re	soil desc based on New Zeal notes, sa U ₅₀ t U ₆₃ t D c N* S	8 × 8 × 9 × 10 ×	graded, loosely minor fine grav	D; olive grey, poorly y packed, pumiceous, els. water ↓ 10/1/98 wat on date sho ↓ water inflow ↓ partial drill fl ↓ complete dr moisture D dry M moist	wn uid loss	S sc F fir St st VSt ve H ha VL ve L lor	Jensity index rry soft oft m m ff ff ry stiff	009 001 Weather UW SW MW CW RS rock m EW VW	rring unweathered slightly weathered moderately weathered highly weathered completely weathered residual soil ass strength extremely weak very weak weak

						-								M	achir	ne Bo	prehol	e No	o.	VH02	
E	n	giı	neer	ing	Lo	bg	- N	la	chine Bo	rehole	Э				neet ojec	t No:				of 4 GENZHAMI	17003A
Cli	ient:			Blo	xam	Bur	nett	& C	Olliver Limited					Da	ate s	tarte	d:		1	5.8.2011	
Pr	incip	oal:												Da	ate c	ompl	eted:		1	5.8.2011	
	ojeci			Mo	ntgo	mer	ie Bl	ock	, Raynes Road	, Hamilton	1			Lo	gge	d by:			٨	10	
	catio		orehole	Ref	fer to	pla	n							Ch	neck	ed by	<i>r</i> :		P	KAL	
Dri	ll mod	del & r	nounting: 1	Edson (Mark 2), Marc	ooka M	ounte	d Easting:	: 449791.06 m		Slope	e: -90) ^a	R	.L. Su	rface: 4	49.5	7 m	Vane No	: 4216/iiivi
	10-2-10-10-10-10-10-10-10-10-10-10-10-10-10-	and the second	: 90 mm		Drilling	g fluid:	+			g: 692258.98 m		Bear	ing:		D	atum:	Moturi	ki Ve	ertica	al 1953	
d	rillin	ig inf	ormation		-	-		-	substance material						_	-	71 -	-	ock	defect des	And in case of the local division of the loc
suaugraphy	support	water	notes samples, tests, etc	well details	RL	depth metres	graphic log core recovery	classification	Soil - Soil type; colour, s bedding; plasticity, sensitiv minor compo Rock - Colour, fabri discontinuities, additio	vity. Secondary and nents. ic, rock type;	moisture	consistency/ density index	weathering alteration	estima streng ™>>∞	ated gth	25 50 vane shear	100 (remoulded 125 /peak) kPa 175	recovery %		number, type, orie roughness, ap description (rel description expla particular	entation, shape enture, infill fer to defect
Π	-HQN			2		-	××	SM (cont				MD					IIII	100			
				Zen	_39	-	XXXX	1	SILT; olive brown, low	w plasticity,		St						-	-		
				-50		11	×	SM	minor organic staining Silty fine SAND; olive	g.	1	L									
				Respon		1	XX		graded, loosely pack									100			
				a	_38	-	××														
			SPT	Pa	-	12	×××											L			
			1,1,1 N*=2				Ŷ×	1													
				1	_37	-	Ŷ×				1										
			S1 (U60)			13	××											76			-
						1	××														
					_36	-	××	SM	Fine to medium SANI olive grey, poorly grad	D; some silt, ded, loosely								\vdash			
						14	××		packed, iron stained.												
						1	××						- 1					100			
					_35	4	××	SM	Silty fine SAND; light g graded, loosely packet	grey, poorly d, pumiceous.											1
			SPT			15	××												_		_
			2,4,6 N*=10			1	××						-								3
					_34	-	× ×											_			-
						16	(X)	CL	Silts CLAV ded all a									90			-
						1		u	Silty CLAY; dark olive medium plasticity, mod sensitive, organic stair	derately			-1								-
					_33	-	X		sensitive, organic star	ung.		St				• × •		-	-		-
						17	x-		Silty CLAY; light yellow medium plasticity, sens												-
					20	1	-X-		participation () con	Jaro.								100			-
					_32	-	× -×														-
		-	SPT			18	×									×		_	_		_
			0,1,2 N*=3		_31	K	× ×-														-
			S1 (U60)			1	x	CL	Silty CLAY; white with o medium plasticity, sens	orange flecks, sitive,								100			-
		-				19	×											F			_
					_30	-	× -×-							he.e.							-
						201	××		Silty fine SAND; white, p graded, loosely packed			L		1.5	•	×		2	1		-
th	od	er drillin	20		lassifica				wate										ather	ring	-
3	oper	n barre e tube		b	ased on	Field D	escripti	on of S	oil and Rock.	10/1/98 wate on date show		0	V	onsistenc S	very		dex	UV	V	unweathered slightly weather	ed
		hbore			otes, sa			cal So	ciety Inc 2005	water inflow partial drill flu			SF		soft firm			MV HV	V V	moderately wea highly weathere	thered d
- 14	nil casir	na		U	50 L	undistur	bed sar	nple 50	Omm diameter	complete dril			St		stiff very	stiff		RS		completely weat residual soil	thered
	shear	r (kPa)		DN	c	listurbe SPT - st	d sampl	le	mois	iture dry			H VL	Į		loose		EW VW	1	extremely weak	
	remoti peak			N	c 5	SPT with	n solid c		M	moist wet			L	D		um der	ise	W		very weak weak moderately stror	na
			r than 200kP netrate	a E		nvironn		ample	s	saturated			D	0	dens very	e dense		S VS ES		strong very strong extremely strong	

-	1	ונ	Te	y		g	eo	le	cnnics	b				Machin	ne E	Boreho	ole No	o. /	ИН02
EI	ng	gir	neeri	_		_		_	hine B					Sheet Project	N	D:			of 4 GENZHAMI17003A
lie	nt:			Blox	am l	Buri	nett	& 0	lliver Limited	d				Date st	tart	ed:		1	5.8.2011
rin	icipa	al:												Date co	om	pleted	:	1	5.8.2011
	ject			Mon	tgon	neri	e Blo	ock,	Raynes Roa	d, Hamilton				Logged	d b	y:		٨	NO
	chin atio		prehole	Refe	r to	plar	n							Checke	ed	by:		ŀ	KAL
rill	mod	el & r	mounting: E	dson (M	ark 2),	Maro	oka Mo	ounted	Easti	ng: 449791.06 m		Slop	e: -90)° R.	L. 8	Surface:	49.5	7 m	Vane No: 4216/iiivi
lole	dia	meter	: 90 mm	0	Drilling f	fluid:	Biovis/	Water	- North	iing: 692258.98 m		Bear	ing:	Da	atur	n: Motu	uriki Ve	ertica	al 1953
dri	lling	g inf	ormation		-	-	-		substance material		_		-				_	ock	k mass defects defect description
method	support	water	notes samples, tests, etc	well details	RL	depth metres	graphic log core recovery	classification symbol	Soil - Soil type; colou	sitivity. Secondary and nponents. abric, rock type;	moisture condition	consistency/ density index	weathering alteration	estimated strength ≧≷≥≊∞≶≌	52	75 vane shear 100 (remoulded 125 /peak) kPa	recovery %		number, type, orientation, shape,
TT-I	HQN				_29		× × × ×	SM (cont)	Silty fine SAND; w graded, loosely pa (continued)	hite, poorly icked, pumiceous.		L					63		
	E					21	××	ML	Sandy SILT, fine s			VSt			•	,			_
			SPT 8,11,11 N*=22			-	× × × ×		plasticity, extra ser organic inclusions	, pumiceous.									
			N =22		_28	-	×.										100		
						22	X	SM	Silty fine SAND; w			MD					=	5	-
							XIX	SM	graded, tightly pac Silty fine SAND; of	live grey, poorly		St							
					_27		× 34	OL	graded, tightly pac Organic clayey SII	ked, pumiceous.									
						23	<u>kli</u> x		plasticity, amorpho	ous.									
					_26	-	××	SM	Silty fine SAND; of graded, minor fine pumiceous.			St					56		
			SPT			24	-×- 		Silty CLAY; light gi sensitive, trace ro	rey, low plasticity, otlets.					•	×		+	-
1			1,1,1 N*=2		_25	-			- with interbedded pumiceous lenses									-	
5						25	- × -×-										100		
dooificine iloileA						20	×												-
Vallo					_24	-	X										>>>	-	_
>						26	-X-					н							
				-		-	××										100	s	
			-		_23	27	× × ×	SM	Silty fine SAND; p graded, pumiceou silt lenses.	ale grey, poorly us, with olive grey		D					-		
			SPT 6,15,16				-×												
			N*=31	-	_22	28		SP	Fine to coarse S/ graded, tightly pa pumice/rhyolite g	cked, some fine							400	201	
							-××	SM		grey, poorly icked, pumiceous.			1						
					_21				graded, ignity po	loked, purnooddor								+	-
						29	1.4411												
					_20	100			- interbedded fine lenses.	e to medium sand							100	001	_
					-	30	_						4					Wo	athering
AD		auger	drilling		soil de	escript				water 10/1/98 v on date s		evel			very	nsity ind soft	lex	UV	V unweathered V slightly weathered
OE		open l triple t	ube	L					of Soil and Rock, Society Inc 2005	► water infl	iow			F	soft firm			MV HV	V moderately weathered V highly weathered
	ppo		oore		notes, U ₅₀		les, tes isturbed		le 50mm diameter	-< partial dr complete			s	VSt		stiff		CV RS	s residual soil
NC		nil casing			U ₆₁ D	undi disti	isturbed urbed sa	sample	le 63mm diameter	moisture	erstnettels			VL		loose		EV VV	
	n	hear (emoul			N* Nc	SPT SPT	" - samp " with so	le reco lid con		D dry M moist				MD		lium den	se	W MS	weak S moderately strong
× »	× p		reater than 20 to penetrate	l0kPa	Bs E		sample ironmen		nple	W wet S saturate	ed				den verj	se / dense		S VS ES	

					y		0										M	achin	e Bo	oreho	ole N	0.	MH02	
E	r	ŋ	giı	neeri	ng	Lc	g	- N	la	chine	Bore	ehole)					neet oject	No:				4 of 4 GENZHAMI	17003AA
C	ien	nt:			Blox	am	Bur	nett	& 0	lliver Lim	ited						Da	ate st	arte	d:		_	15.8.2011	
Pr	inc	cipa	al:														Da	ate co	ompl	leted	:	1	15.8.2011	
Pr	oje	ect:	:		Mon	tgor	neri	e Bl	ock,	Raynes	Road, H	amilton					Lo	gged	l by:			1	vo	
	ach			orehole	Refe	er to	plai	n									Cł	iecke	d by			,	KAL	
Dr	ill m	bor	el &	mounting: E		-		_	ounter	đ	Easting: 44	19791.06 m	-	Slop	e: -9	0°	-		0.00	1.1	49.5	_		: 4216/iiivi
Ho	le c	diar	nete	r: 90 mm	[Drilling	fluid:	Biovis	Wate	r	Northing: 6	92258.98 m		Bea	ring:			Da	itum:	Motu	iriki V	ertic	al 1953	
d	rill	ing	g inf	ormation			_	-	-	substance			_	_	_		_		_			oc	k mass defect	
stratigraphy	method	support	water	notes samples, tests, etc	well details	RL	depth metres	graphic log core recovery	classification symbol	material Soil - Soil type bedding; plastici min Rock - Co discontinuitie		Secondary and ts. ock type;	moisture condition	consistency/ density index	weathering	S	stima treng		o vane shear	225 /peak) kPa	75 recovery %		defect des number, type, orie roughness, ap description (ref description expla particular	ntation, shape, erture, infill er to defect
Т	T-HO	NC		SPT 16,17,22 N*=39		10	-	××	SM (cont)	Silty fine SAN graded, tightl (continued)				D							100			
						_19	-			MH02 termina	ated at 30.4	15 metres.												-
							31																	1 1
						_18																		-
							32																	-
						17	-															1		
							33																	
							-																	-
						_16	-																	2
							34																	-
							-																	-
						_15	1																	1
							35																-	_
						14	-																	-
						_14	-																	-
							36					_												-
						_13	-								- 1									-
							37																	-
							-																	-
						_12	-																	-
							38																	-
							-					_												-
						_11	-																	-
							39																	-
						10	-																	-
						_10	-																	1
	thoo					lassific			and		1			_	-							eath	ering	-
AD OB TT		ope	er dri n bar e tube	rel	ba		Field I	Descrip		Soil and Rock,	water	10/1/98 wat on date sho		il.		cons VS S	isten	very soft	soft	index	U S	W	unweathered slightly weathe	red
W	٧	was	hbore			otes, sa	mples	, tests		ciety Inc 2005		water inflow partial drill fl		s		F		firm stiff			H	W	moderately we highly weather completely wea	athered ed
NC	1	nil casi	ing		U U	63	undistu	rbed sa	mple 6	0mm diameter 3mm diameter		complete dr				VSt H			stiff		R	S	residual soil nass strength	
van e	e st	hea	r (kPa		DN	•	SPT-s	ed sample i	ecover	red	D moistu	dry				VL L			loose		E	W	extremely weal very weak	¢ I
×	pe	eak		ter than 200kF	Pa E	s i	bulk sar				W	moist wet				MD D		dens			M S	IS	weak moderately stro strong	ong
				penetrate	a E		environ	mental	sample	3	S	saturated				VD		very	dens	8	V E	S	very strong extremely stron	a

E	n	ai	neer	ind	a I	Lo	a	- N	la	chine Borehol	е			Sheet	No			of 3	7000
-	ient	-		_	_	_	-	_	_	Iliver Limited	_	-	_	Project Date st		_	_	ENZHAMI1 7.8.2011	7003A
				0	UAC		Dun	ien	di U	niver Linnted								0.000000000000	
	inci														mpleted:			7.8.2011	
	ojec achi		Borehole						ock,	, Raynes Road, Hamilton	1			Logged	by:		N	10	
_0	cati	on:	_		-		plai	_						Checke	810 PM #2		0.00	AL	
			& mounting:	Edsor		1124101							e: -90°		Surface: 5			Vane No: 4	216/iiivi
-	_	-	formation		Dr	rilling	fluid:	Biovis/		r Northing: 691898.22 r substance	n	Bea	ing:	Da	tum: Moturi	-	-	mass defects	_
		ig ii	Inormation					-	-	in a second seco	-	X		estimated	ar		UCK	defect descr	
stratigraphy	method	water	notes samples, tests, etc		details	RL	depth metres	graphic log core recovery	classification	Soil - Soil type; colour, structure. Grading; bedding; plasticity, sensitivity. Secondary an minor components. Rock - Colour, fabric, rock type; discontinuities, additional information.	moisture	consistency/ density index	weathering alteration EW	strength ≷≥≊∞≈¤	25 50 750 vane shear 700 (remoulded 125 /peak) kPa 175	recovery %	RQD %	number, type, orienta roughness, apert description (refer description explana particular	ture, infill to defect
T	r-HQ0						-	77	SM	TOPSOIL	1	VL to							
							-	(XX	1	Fine to medium SAND; minor silt, yellowish brown, well graded, loosely packed, some fine rhyolite		L	-						
						_51	ī	××	SM	gravel.	1					73			
							-	××		Fine to coarse SAND; minor silt, grey, well graded, loosely packed,									
			SPT	-02				××		some fine to medium rhyolite grave	•					⊢			
			1,1,1 N*=2			_50	2	(x											
		V	,	i d			-	XX	ML	Sandy SILT, fine; brown,	-	S				100			
		(P5)		Resp		10	-	×		no-plasticity, pumiceous.									
		26/8/11 /		bs		_49	3	××											
		26/8	SPT 2,3,4 N*=7	1	VA			××	SM	Silty fine SAND; light grey, poorly graded, loosely packed, pumiceous	6	L							
			N=/			48	1	××		- with interbedded fine pumiceous silt/gravel lenses and fine to coarse									
					Ø	_40	4	××		gravelly lenses						100			
					Ø		-	× ×											
						47	-	(x)								-	-		
					ØÂ		5	×											_
							-	×								60			
						46	-	×											
	N		SPT				6	×											
	IN		1,1,2 N*=3				1	×						5. N. P.					
		Y				45	-	* * * * * * *	ML	SILT; pale grey, medium plasticity.		F							13
		26/8/11 (P6)					7	* * *	ML SM	SILT; trace fine sand, pale grey, low plasticity, pumiceous.						86			2
		6/8/1					-	××	SM	Silty fine SAND; grey, poorly graded, loosely packed, pumiceous.		L							
					A_	44	+	x×1		- with some purnice gravels							-		
							8	×											-
Ľ							1	××								8			-
						43	ľ	×											-
			SPT				9	××	ML	SILT; trace fine sand, grey, low	-	St			-	-	_		_
			1,3,4 N*=7					* * * *	0.00	plasticity, pumiceous.		St							
					12-	42		× ×	ML	SILT; greyish brown, low plasticity,						100			3
	hod		1	7/4 8				/mbols				-				We	athe	ring	-
B	op	en ba			bas	ed on	Field D	Descript	ion of t	Soil and Rock, Value on date st		쾨	VS			UI	NN	unweathered slightly weathered	đ
T /	Wa	ole tul ishbo		ł	1.000		and Ge mples,	10.00	ical So	viciety Inc 2005	N		S F	soft firm		M H	W N	moderately weath highly weathered	nered
	nil	alar				U	indistur	bed sa		i0mm diameter – Complete d i3mm diameter			St VSI			CI RS	S	completely weath residual soil	ered
3176	e she	sing ar (kl			D N*	d	isturbe	bed samp d samp ample n	le	moisture			H VL		loose	EV	N	extremely weak	
	rem pea	oulde k	be		Nc	S		h solid d		M moist			L MD		um dense	W MS		very weak weak moderately strong	
×	pea	k grea	ater than 200k	Pa	E			nple nental s	sample	W wet S saturated			D VD	dens	dense	S		strong very strong	

	ile											Machine	Borenol	e N	No. MH03
Engi	neer	rin	g	Lo	bg	- N	la	chine Borehol	е			Sheet Project N	No:		2 of 3 GENZHAMI17003A
Client:		E	Blox	am	Bur	nett	& 0	Olliver Limited				Date sta	rted:		17.8.2011
Principal:												Date cor	npleted:		17.8.2011
Project: Machine B	Boreholo	Ν	Non	tgoi	meri	e Bl	ock	, Raynes Road, Hamilto	n			Logged I	by:		NO
ocation:		-	_	-	plai							Checked	l by:		KAL
	& mounting:	Eds)e: -9	0° R.L.	Surface:	51.7	78 m Vane No: 4216/iiivi
	ter: 90 mm	n		Jrilling	fluid:	Biovis/	a she a she	v Northing: 691898.22 i substance	n	Bea	ring:	Datı	ım: Moturi	-	/ertical 1953 rock mass defects
Śud	notos		10		h es	log covery	classification		moisture	consistency/ density index	hering	estimated strength	vane shear (remoulded /peak) kPa	%	e defect description
method support water	samples tests, et	c	details	RL	depth metres	graphic core rec	class	Rock - Colour, fabric, rock type; discontinuities, additional information.	mois	cons	weat	N N N N N N N N N N N N N N N N N N N	50 Val 75 Val 125 /pe	recovery	description (refer to defect description explanation sheet) particular general
TT-HQN				_41	11		OH (cont,	minor organic. Organic sitty CLAY; dark brown, homogenous, medium plasticity, sensitive, amorphous, organic inclusions. (continued))	St St		•	×	100	
				_40	1 1 1	12-54 12-54 1474-5								100	
	SPT 0,2,2 N*=4			~	12							•	×		-
				_39	13	17-54 17-54								80	-
				_38	14	****	ML	SILT; light bluish grey, medium plasticity.						76	-
÷.	SPT 40.27,8			_37	1 <u>5</u>	××××××××××××××××××××××××××××××××××××××	SM	Silty fine SAND; grey, poorly graded, tightly packed, pumiceous.		D					
	N*=35 S1 (U60)			_36	16	× × × × ×		graueu, agriny paokeu, purniceous.						100	
				_35	17		OH	Organic silty CLAY; dark brown, homogenous, medium plasticity, amorphous, organic inclusions.		St					
				_34	18	- X - X - X - X - X - X - X	SM	Silty CLAY; trace fine sand, olive grey, medium plasticity, micaceous, Fine silty SAND; olive grey, poorly	-	MD				100	
	SPT 10,10,14 N*=24	. 201.		_33	3 1 1 1	× × × × ×		graded, tightly packed, major fine to coarse purnice gravels, purniceous.						0	-
		Resporse			19	× × × × × ×				-				100	-
		1.90		_32	20	××								100	-
ethod D auger of S open b triple tu washbo pport nil casing me shear (k	arrel Ibe ore		bi N	oil des ased or ew Zea otes, s otes, s	ation s cription n Field I aland G amples undistu disturbe	Descript eotechn , tests rbed sa rbed sa ed samp	tion of nical S imple i mple i ple	Soil and Rock, bociety Inc 2005 Somm diameter 33mm diameter Total Construction Solution Sol	nown w fluid Ic	055		consistency/ dens VS very s S soft F firm St stiff VSt very s H hard VL very k	oft		veathering UW unweathered SW slightly weathered MW moderately weathered HW highly weathered CW completely weathered RS residual soil vock mass strength EW extremely weak W very weak
remould peak	ed sater than 200)kPa	N B E	C S	SPT will bulk sa	ample r th solid mple mental	cone	M moist W wet	1			L loose MD mediu D dense VD very d		S N S N	W weak MS moderately strong

CO	ne	У	•	y	eu	ne	CHINCS				Machine Boreh	ole I	No.	MH03
Engi	neer	-	_	_	_	_	chine Boreho	ole			Sheet Project No:			3 of 3 GENZHAMI17003A
Client:		Blo	oxam	Bur	nett	& 0	lliver Limited				Date started:			17.8.2011
Principal:											Date complete	d:		17.8.2011
Project:		Мо	ntgo	meri	e Ble	ock,	Raynes Road, Hamil	ton			Logged by:			NO
Machine B .ocation:	orehole	Re	fer to	pla	n						Checked by:		8	KAL
Drill model &	mounting:	Edson	(Mark 2)	, Maro	oka Mo	ounted	Easting: 450037.0	3 m	Slo	pe: -9	0° R.L. Surfac	: 51.	78 n	n Vane No: 4216/iiivi
iole diamete			Drilling	fluid:	<u> </u>	_	0	22 m	Bea	aring:	Datum: Mo	turiki \	Verti	cal 1953
drilling inf	formation		-	-			substance material	-	-			-	roc	ck mass defects defect description
suaugrapriy method support water	notes samples, tests, etc		RL	depth metres	graphic log core recovery	classification symbol	Soil - Soil type; colour, structure. Grad bedding; plasticity, sensitivity. Secondar minor components. Rock - Colour, fabric, rock type; discontinuities, additional information	CONTRACTOR	consistency/	weathering	estimated strength SS VS SS VS SS SS SS SS SS SS SS SS SS	175	RCOVERY %	number, type, orientation, shape roughness, aperture, infill
TT-HQN			_31			SM (cont)	Fine silty SAND; olive grey, poor graded, tightly packed, major fin- coarse pumice gravels, pumiceo (continued)	e to	MD				nnt	
	SPT 17,22,28 N*=50	20- 0		21					D			-	+	_
		80-56	_30	22								100	B	
		P6 Respo-	_29	23	× × × ×							F	+	
			_28		× × × ×							100	8	
	SPT 15,20,26 N*=46	<u> </u>		-	× × × ×							F		
			_27	25	× × × × ×							100	001	
			_26	26	× × × × × × × ×							F		
			_25	27	×××××							100	2	
	SPT 18,30,20 N*=50		22	-	×××		MH03 terminated at 27.45 metre	s.				100	2	
			_24	28						-				
			_23	29										-
without			_22	30										
nethod D auger d DB open ba T triple tut V washbo upport I nil Casing ane shear (Ki remoulde	nrrel De re Pa)	-	New Ze notes, s U ₅₀ U ₆₃ D N*	scriptio on Field aland G sample undist disturt SPT -	n Descrip Geotechi s, tests urbed sa urbed sa urbed sam sample	tion of nical S ample ample ple recove	Soli and Rock, ociety Inc 2005 50mm diameter 63mm diameter rred D dry	98 water le ste shown r inflow el drill fluid plete drill fl	loss		consistency/ density inder VS very soft S soft F firm St stiff VSt very stiff H hard VL vory loose L loose		UW SW MW HW CW RS	slightly weathered moderately weathered highly weathered completely weathered residual soil c mass strength extremely weak
< peak >× peak gre	ater than 200 penetrate	lkPa	Nc Bs E	bulk s	ith solid ample nmental		e S satu	st irated			MD medium dens D dense VD very dense	2	MS S VS ES	moderately strong strong very strong extremely strong

Clie			neeri	Blox	am	Bur	nett	& 0	lliver Limited				Date st	tarted:		18.8.2011	
Prir	cip	al:											Date c	ompleted:		18.8.2011	
Pro	ect	tt		Mon	taor	meri	e Bl	ock.	Raynes Road, Hamilto	n			Logged			NO	
2010101	chin	ne Bo	rehole	Refe	100								Checke			KAL	
		2011	nounting: E					ounted	Easting: 449993.41 r	1	SI	ope: -		L. Surface: 6	60.13		4216/iiivi
Hole	dia	meter	: 90 mm	1	Drilling	fluid:	Biovis	Water	r Northing: 691557.43	m	Be	earing:	Da	atum: Moturil	ki Ver	tical 1953	
dri	llin	g info	ormation					-	substance						ro	ck mass defect	
stratigraphy	support	water	notes samples, tests, etc	well details	RL	depth metres	graphic log core recovery	classification symbol	material Soil - Soil type; colour, structure. Grading bedding; plasticity, sensitivity. Secondary a minor components. Rock - Colour, fabric, rock type; discontinuities, additional information.		consistency/	density index weathering	estimated strength	25 50 75 75 75 75 75 75 76 70 725 76 76 75 76 75 75 76 75 75 76 75 75 76 75 75 75 75 75 75 75 75 75 75 75 75 75	recovery %	defect dese number, type, orieu roughness, apo description (ref description expla particular	ntation, shape erture, infill er to defect
Π-	HQC				_60	-	\geq	CH	TOPSOIL	-	1	-	THEFT	NUMPER P			
						-	-X- -X-	CL	Fine to coarse SAND; minor silt, light yellowish brown, poorly grade loosely packed. Silty CLAY; brown, medium	1.					100		
			SPT		_59	1			plasticity, sensitive, black streaks (manganese staining), homogenous.					• ×			
			3,5,6 N*=11			2	-X-				V	St					
					_58		×								56		
dsn						-	- ×										
ITON A			SPT		57	3											
Hamilton Ash			2,3,3 N*=6			1	~~X- ~X-		- becoming yellowish brown.								
						-		-	- with 50mm thick clay and sand lenses.						73		
					_56	4	X-X	CL	Silty CLAY; orangey brown, medius plasticity.	n	S	ŝt			• •		-
							TX-	CL	Silty CLAY; light brown, medium plasticity, sensitive, manganese	1				• ×			
						5	-×- 2_X		stained.		S	st					
					_55	-					1				46		
						1	~_×_ -×-										
-	L		SPT		54	6	X	SM	Silty fine to medium SAND;	-	-	_					-
	N		3,3,4 N*=7	E			* * * *	ML	yellowish brown and light grey (mottled), well graded, loosely		F	_					
				E		-	****		packed, some fine weathered gravels. - with interspersed white sandy silt						80		
				E	_53	7	(XXXX)		lenses. SILT; trace very fine sand, light								-
ding				~		-	* * * * *		brown, medium plasticity, black streaks (manganese staining).								
vvalion subgroup		F		N-		8	****										
e uoi				3	_52	-	(X X X) (X X X) (X X X)								100		
PAA				00		-	××××× ×××××	1.0	OIL T. Louise Line Line	_		_			-		
			CDT	Respo	_51	9	× × × × × × × × × × × ×	ML	SILT; brownish white, medium plasticity. - becoming brownish white and		S						
		26/8/11 (P7)	SPT 1,0,0 N*=0	td	10	1	* * * *		reddish mottled.								
		8/11		E			****								86		
met	bod	26/		E	classifi	10 cation	symbol	s and	1						we	athering	
AD	0	uger dr pen ba	rrel		soil des based o	scription on Field	n Descrij	otion of	f Soil and Rock, water 10/1/98 on date		evel			ry soft	UI SI	W unweathered W slightly weather	
W	W	ple tub ashbor			16	224	Geotech		society Inc 2005 water in	low	loss		S so F fin St sti	m	HI CI	W moderately w W highly weathe	eathered red
sup N C	ni				U ₅₀ U ₅₃	undist	turbed s	ample	50mm diameter - complet 63mm diameter			55		ry stiff	R		
van	she	ear (kP noulde			D N*	distur SPT -	bed san sample	nple recove	moisture				VL ve	ry loose ose	EV VV W	N extremely weak	ak
• × »×	pe	ak	o ater than 2001	0.	Nc Bs	bulk s	vith solid ample		M maist W wet				D de	edium dense Inse	M: S	S moderately st strong	rong
UTP			penetrate		E	enviro	nmenta	a samp	le S satura	e0			VD ve	ry dense	VS	S very strong	

PIEZOMETER - MACHINE 17003AA MONTGOMERIE FARM BORELOGS.GPJ COFFEY.GDT 7,11,11

Client:		_		-	_	_	chine Borehole	-			ct No: started:		_	ENZHAMI1 8.8.2011	7003A
Principal:														8.8.2011	
Project:		Mo	ntao	mori	o RI	ock	Raynes Road, Hamilton				completed:				
Machine E	orehole		er to			oon,	naynes noad, nannton				ed by:			10	
Location:	mounting:		-	-	-	ounter	Easting: 449993.41 m		Clar	A SOUNDES	ked by: R.L. Surface: 6	0.4	100	AL	
Hole diamet		200011	Drilling						Bea		Datum: Moturil			Vane No: 4	4216/IIIVI
drilling in	formation				1		substance	-			Datom. Wotom	-		mass defects	
stratigraphy method support water	notes samples, tests, etc	well details	RL	depth metres	graphic log core recovery	classification symbol	material Soil - Soil type; colour, structure. Grading; bedding; plasticity, sensitivity. Secondary and minor components. Rock - Colour, fabric, rock type; discontinuities, additional information.	moisture condition	consistency/ density index	estimated strength uotiteent estimated strength	ES 25 50 vane shear 750 (remoulded 1255 (peak) kPa 1750	recovery %	RQD %	defect descri number, type, orient roughness, aper description (refer description explana particular	ation, shape ture, infill to defect
TT-HQN		H	_50	-	****	ML (cont)	SILT; brownish white, medium plasticity.		S		ADR FFF	86			
		E		-	* * * *		- becoming brownish white and reddish mottled. (continued)					-	-	e.	
		E	_49	11	(X X X) X X X X X X X X X X X X X X X X										
		E	_49	4	* * * * *							100			

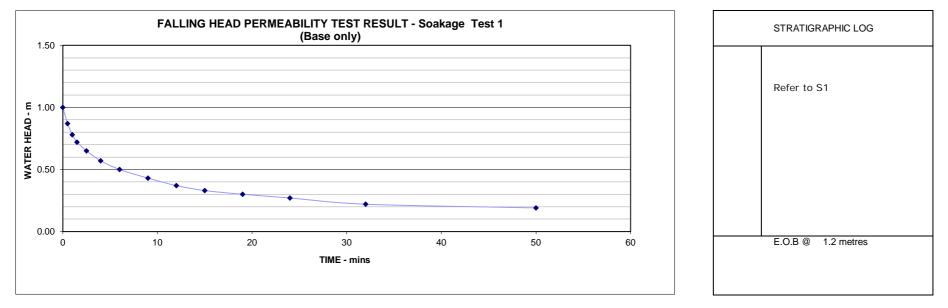
	SPT	E	48	12	****							L			
	0,0,0 N*=0		_10	-	****	ML	SILT; white, low plasticity, sensitive with fine sandy silt and thin		F						
		1 8	3	3	(interspersed fine to medium pumiceous sand lenses.		-						
			47	13	****							100			-
		in the		-	* * * *										
		H	3	-	****						• ×	\vdash			
		56	46	14	****										
		Respe.	_40		<pre>x x x x x x x x x x x x x x x</pre>							100			
				4	* * * *										
	- equip failure (no	td	45	15	****										
	SPT)	E	40	-	* * * * * *										
DAA		E		-	* * * * *										
		E	44	16	***							80			
			_44	-	****										
		E		1 2	XXX XXX XXX XXX	ML	Sandy SILT, fine; pale greyish		F			\vdash			
			_43	17	***		brown, low plasticity, sensitive, minor weathered purnice gravels,		-						
		E	_43	-	****		trace mica.					100			
			8	-	****										
	SPT	F	42	18	* * * *							L			
	0,0,0 N*=0		_42	-	* * *										
	N =0			1	* * *										
				19	***							100			_
			_41	T	* * * * *										
					* * * *						۰×	0	-		
				20	***							100			
method AD auger			classif soil de	scriptio	n		water 10/1/98 ws	ater lev	vel		/ density index very soft		WU	unweathered	
OB open I TT triple t W washb support N nil C casing vane shear (ube ore			sample undis undis	Geoteci os, testi turbed : turbed : bed sar	nnical S s sample sample mple	Society Inc 2005 Society Inc 2005 Somm diameter G3mm diameter molsture	iown w fluid la	oss	S F St VSt H VL	very solt soft firm stiff very stiff hard very loose loose		SW MW HW CW RS rock EW VW	slightly weather moderately we highly weather completely wea residual soil mass strength extremely weal very weak	athered ad athered

GEO 5.3 Rei

0				y		0								Machine	e Borehole	e No	o.	VIH04
E	ng	giı	neeri	ng	Lc	bg	- N	la	chine	Borehole)			Sheet Project	No:			of 3 GENZHAMI17003AA
Clie	ent:			Blox	am	Bur	nett	& 0	lliver Lim	ited				Date sta	arted:		1	8.8.2011
Prir	ncipa	al:												Date co	mpleted:		1	8.8.2011
Pro	Sale and the second			Mon	tgoi	meri	e Bl	ock,	Raynes	Road, Hamilton				Logged	by:		٨	VO
	chin atio		prehole	Refe	r to	plai	n							Checke	d by:		ŀ	KAL
Drill	mod	el & i	mounting: E	Edson (M	ark 2)	, Maro	oka M	ounte	d	Easting: 449993.41 m		Slop	e: -90		. Surface; 6	0.1		
Hole	e diar	mete	r: 90 mm	0	Drilling	fluid:	Biovis	Wate	r	Northing: 691557.43 m		Bear	ing:	Dat	tum: Moturil	ci Ve	ertica	al 1953
dri	lling	g inf	ormation		-	-	-	-	substance		_	-				r	ock	mass defects
stratigraphy	support	water	notes samples, tests, etc	well details	RL	depth metres	graphic log core recovery	classification	Soil - Soil type bedding; plastici mir Rock - Co discontinuitie	colour, structure. Grading; ty, sensitivity. Secondary and or components. Jour, fabric, rock type; is, additional information.	moisture condition	consistency/ density index	weathering alteration	estimated strength	 vane shear vane shear (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded (remoulded	recovery %		defect description number, type, orientation, shape, roughness, aperture, infill description (refer to defect description explanation sheet) particular general
TT-	HQN				_40	-	* * *	ML (cont)		fine; pale greyish asticity, sensitive,		F				T		-
							***			red pumice gravels,						100		-
						21	X X X X X X X X X		1									-
			SPT 0,0,0		_39	-	* * *					S	-	Ī		Γ		
			N*=0			1	× × × ×					-						-
			S1 (U60)		38	22	* * * *									100		-
					00	-	* * * *											-
Walton Subgroup						-	(⊢	-	-
Subg					27	23	***											-
Iton					_37	-	****									100		-
Wa						-	×××	ML	Fine silty SAN	ID; pale brown, poorly / packed, some fine to		MD						-
						24	x,×	1	medium highl gravel.	y weathered pumice								-
			SPT 4,7,10		_36	-	× ×		graves.									
			N*=17			-	×××											-
					22	25	×××									93		-
					_35	-	×××	*										
			SPT							-						_	-	-
			9,15,16 N*=31			26	×Ŷ×									100		-
					_34	-			MH04 termina	ited at 25.95 metres.								-
						-												-
						27												_
					_33	-												
						-												
						28												-
				1	_32	-												-
						-												-
						29												_
					_31	-												-
						-	_											-
						30												-
meth AD	aug	er dril		so	oil desc	ation s	1			water	or loc	1		consistency/ den			eathe W	unweathered
OB TT	triple	n ban e tube	3						Soil and Rock, ociety Inc 2005	✓ 10/1/98 wat on date sho water inflow	WD	4	1	/S very S soft	soft	S	W	unweathered slightly weathered moderately weathered
W supp	ort	hbore)			amples		umale c	Omm diamates	-<> partial drill fl	uid los			St stiff		HC	W	highly weathered completely weathered
N C	nil casi	ing		U, U, D	a 1	undistu	rbed sa	mple 6	i0mm diameter i3mm diameter	complete dr	iil fluid	loss					ck m	residual soil nass strength
vane e		r (kPa ulded		N' N		disturbe SPT - s	ample	recover	red	D dry			1			EVS	W	extremely weak very weak weak
≫X		great	er than 200kF	Be	1	SPT wit	mple		_	M moist W wet				MD medium dense W weak D dense S stron			moderately strong strong	
			penetrate	E		environ	mental	sample	9	S saturated			L '	/D very o	dense	VS	S	very strong extremely strong

•			ne	y		9	00	10	CHINCS			Mac	hine Borehole	N	o. /	/H05
		giı	neeri	_		_	_	_	chine Borehole	•		She Proj	et ect No:		G	of 3 SENZHAMI17003A
	ent:			Blox	am	Bur	nett	& 0	lliver Limited			Date	e started:		1	7.8.2011
Pri	ncip	al:										Date	completed:		1	7.8.2011
	oject		orehole	Mon	tgo	meri	e Bl	ock,	Raynes Road, Hamilton			Logg	ged by:		٨	10
	catio		brenole	Refe	er to	pla	n					Che	cked by:		K	AL
Dril	l mod	del &	mounting: E	dson (N	lark 2)	, Maro	oka Me	ountee	d Easting: 449625.59 m		Slop	e: -90°	R.L. Surface: 6	1.6	8 m	Vane No: 4216/iiivi
			r: 90 mm	1	Drilling	fluid:	Biovis			2	Bear	ing:	Datum: Moturik	-		
	more	gini	ormation		1	1	_	_	substance material	-	_ ×		. 12 D a	r	ock	mass defects defect description
stratigraphy	support	water	notes samples, tests, etc	well details	RL	depth metres	graphic log core recovery	classification symbol	Soll - Soil type; colour, structure. Grading; bedding; plasticity, sensitivity. Secondary and minor components. Rock - Colour, fabric, rock type; discontinuities, additional information.	moisture condition	consistency/ density index	estimated strength wsw wsw strength		recovery %	RQD %	number, type, orientation, shape roughness, aperture, infill description (refer to defact description explanation sheet) particular genera
π	-HQC					1	\overline{D}	1	TOPSOIL							
					61	1	X-X	CL	Silty CLAY; yellowish brown, medium plasticity.		F					
						Í	-X-							8		
						-	X2	CL	Silty CLAY; yellowish brown/light brown (mottled), medium plasticity,							-
			SPT		60		-X- -X	CL	some mica.					L		
			0,1,1 N*=2			2	2.7		Silty CLAY; brown, medium plasticity.							
									- becoming yellowish brown					93		-
					59		- X-							0		
						3	X-X									
		t i	SPT 2,4,5			-	-x-	CL	Silty CLAY; pale pinkish brown							-
			N*=9		50	-	-X-		mottled yellowish brown, medium plasticity.							
	-15		_		_58	4	×							80		
						4	X X	ML	SILT, fine to medium sandy; reddish							-
						-	XX		brown/light yellowish brown (mottled), low plasticity.							
			-		_57	5	××	SM	Silty fine to medium SAND;		L					
E		V				2	××		yellowish white mottled pinkish brown, loosely packed, poorly graded, with some manganese		-					
		/8/11					(X)		nodules.					80		
		17/8			_56	-	Û×.									
	N		SPT			6	ŶX							-	-	-
			5,4,5 N*=9			-	×									
					_55	-	×							83		
1						-	×									-
			-			-	X									
					_54	-	××	CL-ML ML	SILT; white, flecked pink, medium plasticity.		S					
						8	××××		Sandy SILT, fine; light grey, no-plasticity.		3					_
						-	***							73		
					_53	-	×××									-
			SPT 0,1.0			9	× × ×	ML	SILT; trace fine sand, light brownish	-	S			-	-	
			N*=1			-	* * * *		white, no-plasticity.							
					_52	10	× × × × × ×							83		
D	hod	ger dri	Ilina				x x	ML	water		S	consistence	/ density index	W	eathe	aring
DBT	ope	en bar ele tub	rrel	b	ased o		Descrip		Soil and Rock, T 10/1/98 wal		el .	VS	very soft	S	W	unweathered slightly weathered
V		shbor				-	eolechr	iical So	vociety Inc 2005 water inflow		s	F	firm stiff	н	W W W	moderately weathered highly weathered completely weathered
up) I	nil	sing		U	50	undistu	urbed sa		50mm diameter di complete di 53mm diameter			VSt	very stiff	R	S	residual soil
ane	e shea	ar (kP		DN	1	disturb	ed sample i	ple	moisture			VL	hard very loose		W	extremely weak very weak
2	peak			N	lc		th solid		M moist W wet			MD	loose medium dense	M	/ IS	weak moderately strong
o× TP			ter than 200k penetrate	Pa E			imental	sample				CONTRACT OF A	dense very dense	SVE	S	strong very strong extremely strong

														Machine				
_	-	gir	neeri		_	_	_	_		Borehole)			Sheet Project N	lo:		G	of 3 SENZHAMI17003A
Clie	nt:			Blox	am	Bur	nett	& 0	lliver Limit	ted				Date star	ted:		1	7.8.2011
Prin	cipa	al:												Date con	pleted:		1	7.8.2011
Proj			rehole	Mon	tgor	meri	e Bl	ock,	Raynes R	oad, Hamilton				Logged b	by:		Ν	10
Loc			renole	Refe	er to	plai	1							Checked	by:		ĸ	AL
			nounting: E	2	1	3.				asting: 449625.59 m		Slop	e: -9(° R.L.	Surface: 6	61.68	Bm	Vane No: 4216/iiivi
-			: 90 mm	0	Drilling	fluid:	Biovis/		substance	orthing: 691385.55 m	_	Bear	ring:	Datu	m: Moturik	-	-	
stratigraphy			notes samples,	well details	6	depth metres	log covery	classification symbol	in the start of the	blour, structure. Grading; sensitivity. Secondary and components. Ir, fabric, rock type; additional information.	moisture condition	consistency/ density index	weathering alteration	estimated strength ≙S≥≌∞S≌ g	vane shear (remoulded /peak) kPa	1	RQD %	mass defects defect description number, type, orientation, shape, roughness, aperture, infill description (refer to defect description explanation sheet)
		>	tests, etc	şé	RL	0 2	8 0 × ×	ML		e; light olive grey,	EO	S	≥ m	W W W W W W W W W W W W W W W W W W W	75 125 175	2	æ	particular general
					140.5	-	×××	(cont)	low plasticity, p (continued)	umiceous.						83		
	-				_51	11		1	some highly we	t brownish white with athered fine pumice								
						-	$\frac{2}{2}$	SM	gravel. Silty fine SAND	light grey, poorly		MD				93		-
					_50	-	××		graded, tightly p weathered fine	backed, with highly to coarse pumice						6		
						12	×		gravel.									
			SPT 4,5,7 N*=12			-	× ×											
T-			N=12		_49	-	××	- 1										
						13	××									100		_
						-	(×											
					_48	-	(x											
						14	×						_					
						-	×									100		
noific					_47	-	×											
Inc			SPT			15	××									-	_	
			9,12,15 N*=27			-	××						-					
					_46	16	××									100		
						16	××											-
					15	-	×											
					_45	17	×				-							-
						-	×									100		_
					_44	1	×				Ξ.					ž		
					-	18	××											
			SPT 6,11,15			-	××											
			N*=26		_43	1.1	× ×											
						19	×	1								100		
						-	×											
					_42	1	×									0		
meti	lord		-	-	classif	20	×	e and					-			100		orino
AD OB	au	ger dr en ba		5	soil des	scriptio			f Soil and Rock,	water 10/1/98 w		el		consistency/ den VS very		1	veath JW SW	unweathered slightly weathered
TT W	trip	ole tub ishbor	6	1	New Ze	aland (Seotech	nical S	Society Inc 2005	► water inflo	w			S soft F firm		ŀ	WN HW	moderately weathered highly weathered
supp				1	U ₅₀	undist		ample	50mm diameter	-<> partial drill 				St stiff VSt very	stiff	F	CW RS	completely weathered residual soil
C vane		sing ar (kP	'a)	1	U ₆₃ D	disturt	bed san	nple	63mm diameter	moisture				H hard VL very		E	ock r EW /W	mass strength extremely weak very weak
• ×		oulde		1	N* Nc	SPTW	sample ith solid		ered	D dry M moist					um dense	Ì	N MS	weak moderately strong
»×			ater than 200k		Bs E	bulk s	ample nmenta	leamn	la	W wet S saturated			1	D dens VD verv	e dense		s /s	strong very strong


-				y		0										Machi	ine B	orehol	e No	o. 🖊	/H05	
E	n	giı	neeri	ng	Lo	g	- IV	lad	chine l	Bore	hole	•				Sheet Projec					of 3 GENZHAMI	17003AA
Clie	ent:			Blox	am	Buri	nett	& 0	lliver Limi	ted					1	Date s	starte	d:		1	7.8.2011	
Pri	ncip	al:														Date o	comp	leted:		1	7.8.2011	
Pro	ject	5		Mon	tgon	neri	e Bl	ock,	Raynes R	load, Ha	milton				1	Logge	d by:			٨	10	
	chir		orehole	Refe												Check				K	CAL	
_		101.	mounting: E				-	ounted	d E	asting: 449	625.59 m		Slop	e: -9			10/00	Inface:	61.6	_	Vane No:	4216/iiivi
Hole	e dia	mete	r: 90 mm	C	Drilling	fluid:	Biovis	Wate	r N	orthing: 691	1385.55 m		Bea	ring:		C	Datum	Motur	iki Ve	ertica	al 1953	
dr	illin	g inf	ormation		_	_	ma	-	substance			_	_		_		-		r	ock	mass defects	and the second se
stratigraphy	support	water	notes samples, tests, etc	well details	RL	depth metres	graphic log core recovery	classification symbol	Soil - Soil type; o bedding; plasticity mino Rock - Colo discontinuities	, sensitivity. Se r components. our, fabric, rock	condary and type;	moisture condition	consistency/ density index	weathering alteration	estin stre	mated ength ≌ິິິິິ	teo bio vane shear	100 (remoulded 125 /peak) kPa	recovery %	RQD %	defect desc number, type, orien roughness, ape description (refe description explar particular	tation, shape, erture, infill er to defect
TT	HQN				_41	21	× × × × ×	SM (cont)	Silty fine SANE graded, tightly weathered fine gravel. (contine	packed, with to coarse p	h highly		MD						100			
					_40	22			MH05 terminal	led at 21 me	etres.											
					_39	23																
					_38	24																-
					_37	25																
					_36	26																
					_35	27																-
					_34	28																
					_33	29																
me	thod				_32	30 cation	symbo	ls and						-						veat	nering	
NC	oj tri port ni cr rer pei	l asing ear (kl noulde ak ak gre	arrel De re Pa)		New Zes notes, s J ₅₀ J ₆₃) N* Nc As	n Field aland G undist disturt SPT - SPT w bulk s	Descri Seotech s, tests urbed s urbed s bed sar sample (th soli	inical S ample ample pple recove d cone		water With the second	10/1/98 wa on date sh water inflov partial drill complete d e dry moist wet saturated	own w fluid lo irill fluid	SS		Consi VS S F St VSt H VL L MD D VD	v sfi svh v la d	very sof ioft irm itiff very stiff iard very loo pose	f se dense			unweathered slightly weather moderately we highly weather completely we residual soil mass strength extremely weak weak moderately str strong very strong very strong	eathered ed athered k ong

PIEZOMETER - MACHINE 17003AA MONTGOMERIE FARM BORELOGS.GPJ COFFEY.GDT 7.11.11

coffey Seotechnics

JOB NUMBER: GENZHAMI17003AA

DATE: 31-Oct-11

HVORSLEV CASE C:

Soakage out base of test hole only with no overlying restrictive layer:

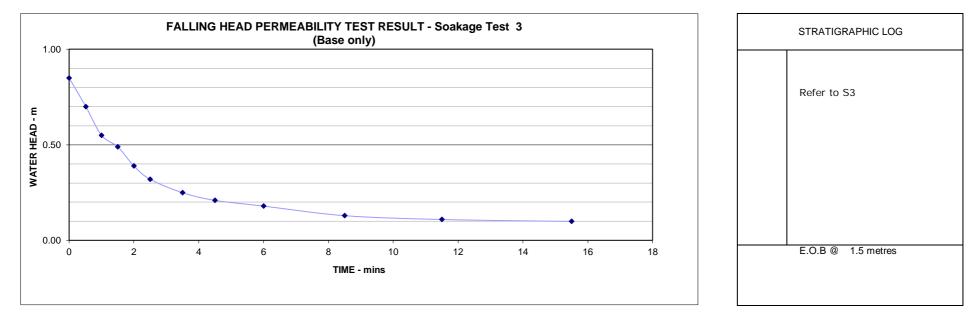
Hydraulic conductivity (k)	=	PI.D	x In	<u>H1</u>
		11 . (t2 - t1)		H2

where	d = D = test hole diameter (m) =	0.100 m	Elapsed Time	t2 - t1	Water level from	Piezometric Head	ln (H1/H2)	Hydraulic Conductivity
	m = transformation ratio = 1		(mins)	(secs)	top of hole (m)	H (m)		k (m/sec)
	L = average soakage length (m)		0.00	0	0.00	1.00		
	t = time (secs)		0.50	30	0.13	0.87	0.14	1.33E-04
	H1 = piezometric head for t = t1		1.00	30	0.22	0.78	0.11	1.04E-04
	H2 = piezometric head for t = t2		1.50	30	0.28	0.72	0.08	7.62E-05
			2.50	60	0.35	0.65	0.10	4.87E-05
	Standing groundwater level before test (metres):	<mark>1</mark> m	4.00	90	0.43	0.57	0.13	4.17E-05
			6.00	120	0.50	0.50	0.13	3.12E-05
			9.00	180	0.57	0.43	0.15	2.39E-05
			12.00	180	0.63	0.37	0.15	2.38E-05
			15.00	180	0.67	0.33	0.11	1.82E-05
			19.00	240	0.70	0.30	0.10	1.13E-05
			24.00	300	0.73	0.27	0.11	1.00E-05
			32.00	480	0.78	0.22	0.20	1.22E-05
			50.00	1080	0.81	0.19	0.15	3.88E-06

<u>H1</u> H2

JOB NUMBER: GENZHAMI17003AA

DATE: 31-Oct-11



HVORSLEV CASE C:				
Soakage out base of test hole only with no overlying restrictive layer:	Hydraulic conductivity (k)	=	PI.D	x In
			11 . (t2 - t1)	

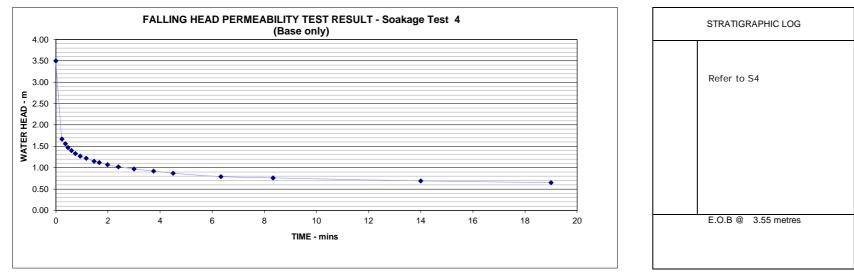
where	d = D = test hole diameter (m) =	0.100 m	Elapsed Time	t2 - t1	Water level from	Piezometric Head	ln (H1/H2)	Hydraulic Conductivity
	m = transformation ratio = 1		(mins)	(secs)	top of hole (m)	H (m)		k (m/sec)
	L = average soakage length (m)		0.00	0	0.00	1.40		
	t = time (secs)		0.42	25	0.60	0.80	0.56	6.39E-04
	H1 = piezometric head for t = t1		0.75	20	0.69	0.71	0.12	1.70E-04
	H2 = piezometric head for $t = t2$		1.00	15	0.85	0.55	0.26	4.86E-04
			1.33	20	0.94	0.46	0.18	2.55E-04
	Standing groundwater level before test (metres):	1.4 m	1.58	15	0.99	0.41	0.12	2.19E-04
			2.00	25	1.04	0.36	0.13	1.49E-04
			2.33	20	1.07	0.33	0.09	1.24E-04
			2.75	25	1.11	0.29	0.13	1.48E-04
			3.33	35	1.16	0.24	0.19	1.54E-04
			3.83	30	1.19	0.21	0.13	1.27E-04
			4.75	55	1.24	0.16	0.27	1.41E-04
			5.50	45	1.26	0.14	0.13	8.47E-05
			7.00	90	1.30	0.10	0.34	1.07E-04
			10.50	210	1.35	0.05	0.69	9.43E-05
			18.00	450	1.39	0.01	1.61	1.02E-04
			27.50	570	1.40	0.00	#DIV/0!	#DIV/0!

coffey Seotechnics

JOB NUMBER:GENZHAMI17003AADATE:31-Oct-11

HVORSLEV CASE C:

Soakage out base of test hole only with no overlying restrictive layer:


Hydraulic conductivity (k)	=	PI.D	x In	<u>H1</u>
		11 . (t2 - t1)		H2

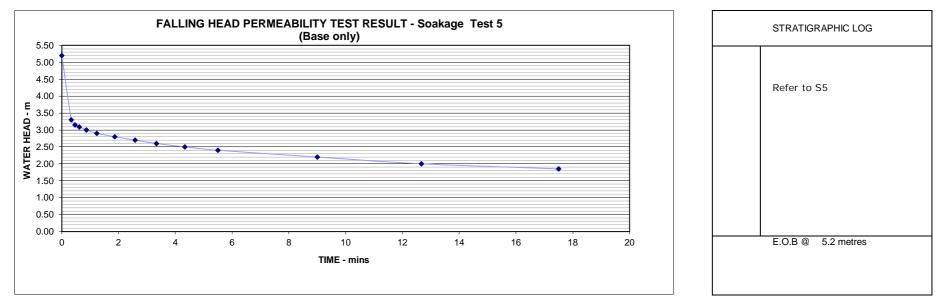
where	m = transformation ratio = 1	=	0.100	m	Elapsed Time (mins)	t2 - t1 (secs)	Water level from top of hole (m)	Piezometric Head H (m)	ln (H1/H2)	Hydraulic Conductivity k (m/sec)
	L = average soakage length (m)				0.00	0	0.00	0.85		
	t = time (secs)				0.52	31	0.15	0.70	0.19	1.79E-04
	H1 = piezometric head for $t = t1$				1.00	29	0.30	0.55	0.24	2.38E-04
	H2 = piezometric head for t = t2				1.50	30	0.36	0.49	0.12	1.10E-04
					2.00	30	0.46	0.39	0.23	2.17E-04
	Standing groundwater level before test (metre	s):	0.8	8 <mark>5</mark> m	2.50	30	0.53	0.32	0.20	1.88E-04
					3.50	60	0.60	0.25	0.25	1.18E-04
					4.50	60	0.64	0.21	0.17	8.30E-05
					6.00	90	0.67	0.18	0.15	4.89E-05
					8.50	150	0.72	0.13	0.33	6.20E-05
					11.50	180	0.74	0.11	0.17	2.65E-05
					15.50	240	0.75	0.10	0.10	1.13E-05

JOB NUMBER: GENZHAMI17003AA

DATE: 31-Oct-11

HVORSLEV CASE C:

Soakage out base of test hole only with no overlying restrictive layer:

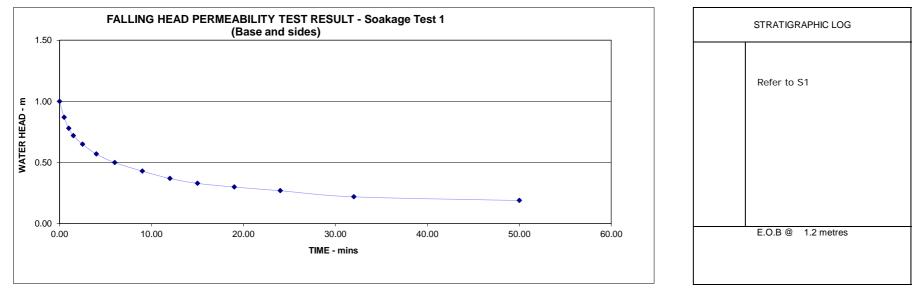

Hydraulic conductivity (k)	=	PI.D	x In	<u>H1</u>
		11 . (t2 - t1)	-	H2

where	d = D = test hole diameter (m) = m = transformation ratio = 1 L = average soakage length (m)	0.100 m	Elapsed Time (mins) 0.00	t2 - t1 (secs) 0	Water level from top of hole (m) 0.00	Piezometric Head H (m) 3.50	ln (H1/H2)	Hydraulic Conductivity k (m/sec)
	t = time (secs)		0.23	14	1.83	1.67	0.74	1.51E-03
	H1 = piezometric head for $t = t1$		0.37	8	1.94	1.56	0.07	2.43E-04
	H2 = piezometric head for $t = t2$		0.47	6	2.03	1.47	0.06	2.83E-04
			0.60	8	2.10	1.40	0.05	1.74E-04
	Standing groundwater level before test (metres):	3.5 m	0.75	9	2.17	1.33	0.05	1.63E-04
			0.93	11	2.23	1.27	0.05	1.20E-04
			1.17	14	2.28	1.22	0.04	8.19E-05
			1.47	18	2.35	1.15	0.06	9.38E-05
			1.67	12	2.38	1.12	0.03	6.29E-05
			1.98	19	2.43	1.07	0.05	6.86E-05
			2.40	25	2.48	1.02	0.05	5.47E-05
			3.00	36	2.53	0.97	0.05	3.99E-05
			3.75	45	2.58	0.92	0.05	3.36E-05
			4.50	45	2.63	0.87	0.06	3.55E-05
			6.33	110	2.71	0.79	0.10	2.50E-05
			8.33	120	2.74	0.76	0.04	9.21E-06
			14	340	2.81	0.69	0.10	8.12E-06
			19	300	2.85	0.65	0.06	5.69E-06

coffey Seotechnics

JOB NUMBER: GENZHAMI17003AA

DATE: 31-Oct-11


HVORSLEV CASE C:

Soakage out base of test hole only with no overlying restrictive layer:	Hydraulic conductivity (k)	=	PI.D	x In	<u>H1</u>
			11 . (t2 - t1)		H2

where	d = D = test hole diameter (m) = m = transformation ratio = 1	0.100 m	Elapsed Time (mins)	t2 - t1 (secs)	Water level from top of hole (m)	Piezometric Head H (m)	ln (H1/H2)	Hydraulic Conductivity k (m/sec)
	L = average soakage length (m)		0.00	0	0.00	5.20		
	t = time (secs)		0.33	20	1.90	3.30	0.45	6.49E-04
	H1 = piezometric head for t = t1		0.47	8	2.05	3.15	0.05	1.66E-04
	H2 = piezometric head for $t = t2$		0.62	9	2.11	3.09	0.02	6.10E-05
			0.87	15	2.20	3.00	0.03	5.63E-05
	Standing groundwater level before test (metres):	5.2 m	1.23	22	2.30	2.90	0.03	4.40E-05
			1.87	38	2.40	2.80	0.04	2.64E-05
			2.58	43	2.50	2.70	0.04	2.42E-05
			3.33	45	2.60	2.60	0.04	2.40E-05
			4.33	60	2.70	2.50	0.04	1.87E-05
			5.50	70	2.80	2.40	0.04	1.67E-05
			9.00	210	3	2.20	0.09	1.18E-05
			12.67	220	3.2	2.00	0.10	1.24E-05
			17.50	290	3.35	1.85	0.08	7.68E-06

JOB NUMBER: GENZHAMI17003AA

DATE: 31-Oct-11

HVORSLEV CASE G: Soakage out base and sides of test hole with no overlying restrictive layer: Hydraulic conductivity (k) = <u>d^2 x ln (2.m.L/D)</u> x In <u>H1</u> H2 8.L.(t2 - t1) where d = D = test hole diameter (m)Elapsed Time t2 - t1 Water level from Piezometric Head Average L ln (H1/H2) Hydraulic Conductivity 0.100 m = m = transformation ratio = 1 (mins) top of hole (m) H (m) (secs) (m) L = average soakage length (m) 0.00 0.00 0 1.00 t = time (secs) 0.50 30 0.13 0.87 0.94 0.14 H1 = piezometric head for t = t10.22 0.83 1.00 30 0.78 0.11 H2 = piezometric head for t = t21.50 30 0.28 0.72 0.75 0.08 2.50 60 0.35 0.65 0.69 0.10 Standing groundwater level before test (metres): 4.00 90 0.43 0.57 0.61 0.13 1 m 6.00 120 0.50 0.50 0.54 0.13 9.00 180 0.57 0.43 0.47 0.15 12.00 180 0.63 0.37 0.40 0.15 15.00 180 0.67 0.33 0.35 0.11 19.00 240 0.70 0.30 0.32 0.10 0.27 0.29 24.00 300 0.73 0.11 32.00 480 0.78 0.22 0.25 0.20

50.00

1080

0.81

0.19

0.21

0.15

k (m/sec)

1.82E-05

1.55E-05

1.20E-05

8.14E-06

7.48E-06

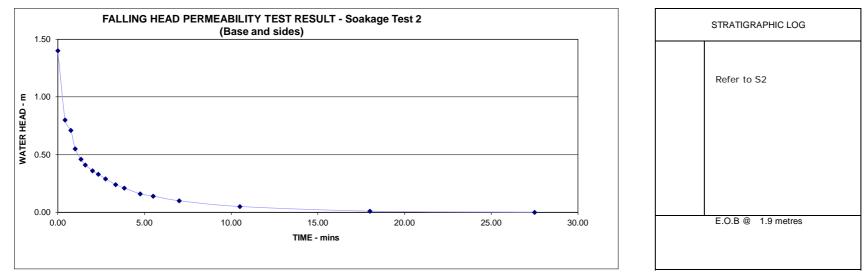
6.05E-06

5.02E-06

5.43E-06

4.42E-06

2.90E-06


2.68E-06

3.46E-06

1.17E-06

BBO Ltd CLIENT: LOCATION: Montgomerie Block coffey Seotechnics

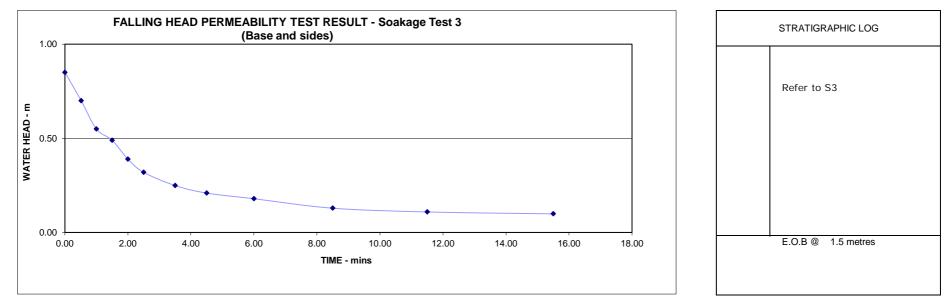
JOB NUMBER: GENZHAMI17003AA DATE: 31-Oct-11

HVORSLEV CASE G:

Soakage out base and sides of test hole with no overlying restrictive layer:

					8.L.(t2 - t1	1)	H2		
where	d = D = test hole diameter (m) = 0.	100 m	Elapsed Time	t2 - t1	Water level from	Piezometric Head	Average L	ln (H1/H2)	Hydraulic Conductivity
	m = transformation ratio = 1		(mins)	(secs)	top of hole (m)	H (m)	(m)		k (m/sec)
	L = average soakage length (m)		0.00	0	0.00	1.40			
	t = time (secs)		0.42	25	0.60	0.80	1.10	0.56	7.86E-05
	H1 = piezometric head for t = t1		0.75	20	0.69	0.71	0.76	0.12	2.68E-05
	H2 = piezometric head for $t = t2$		1.00	15	0.85	0.55	0.63	0.26	8.56E-05
			1.33	20	0.94	0.46	0.51	0.18	5.11E-05
	Standing groundwater level before test (metres):	<mark>1.4</mark> m	1.58	15	0.99	0.41	0.44	0.12	4.77E-05
			2.00	25	1.04	0.36	0.39	0.13	3.45E-05
			2.33	20	1.07	0.33	0.35	0.09	3.04E-05
			2.75	25	1.11	0.29	0.31	0.13	3.80E-05
			3.33	35	1.16	0.24	0.27	0.19	4.25E-05
			3.83	30	1.19	0.21	0.23	0.13	3.72E-05
			4.75	55	1.24	0.16	0.19	0.27	4.37E-05
			5.50	45	1.26	0.14	0.15	0.13	2.72E-05
			7.00	90	1.3	0.10	0.12	0.34	3.41E-05
			10.5	210	1.35	0.05	0.07	0.69	2.23E-05
			18	450	1.39	0.01	0.03	1.61	-7.61E-05
			27.5	570	1.4	0.00	0.01	#DIV/0!	#DIV/0!

Hydraulic conductivity (k) =


<u>d^2 x ln (2.m.L/D)</u>

<u>H1</u>

x In

JOB NUMBER: GENZHAMI17003AA

DATE: 31-Oct-11

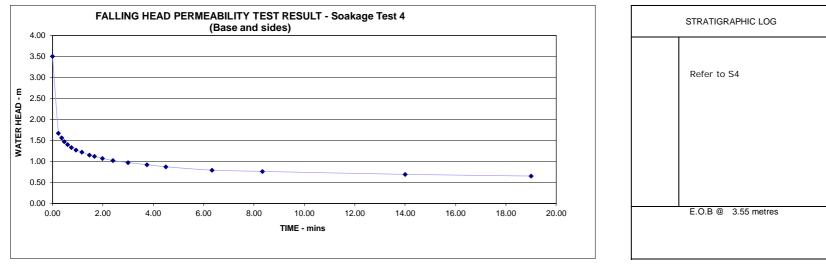
HVORSLEV CASE G:

Soakage out base and sides of test hole with no overlying restrictive layer:

where	d = D = test hole diameter (m) = m = transformation ratio = 1 L = average soakage length (m)	0.100 m	Elapsed Time (mins) 0.00	t2 - t1 (secs) 0	Water level from top of hole (m) 0.00	Piezometric Head H (m) 0.85	Average L (m)	ln (H1/H2)	Hydraulic Conductivity k (m/sec)
	t = time (secs)		0.52	31	0.00	0.85	0.78	0.19	2.77E-05
	H1 = piezometric head for t = t1		1.00	29	0.30	0.55	0.63	0.24	4.20E-05
	H2 = piezometric head for $t = t2$		1.50	30	0.36	0.49	0.52	0.12	2.17E-05
			2.00	30	0.46	0.39	0.44	0.23	4.70E-05
	Standing groundwater level before test (metres):	0.85 m	2.50	30	0.53	0.32	0.36	0.20	4.55E-05
			3.50	60	0.60	0.25	0.29	0.25	3.14E-05
			4.50	60	0.64	0.21	0.23	0.17	2.41E-05
			6.00	90	0.67	0.18	0.20	0.15	1.49E-05
			8.50	150	0.72	0.13	0.16	0.33	1.98E-05
			11.50	180	0.74	0.11	0.12	0.17	8.46E-06
			15.50	240	0.75	0.10	0.11	0.10	3.51E-06

Hydraulic conductivity (k) =

<u>H1</u> H2

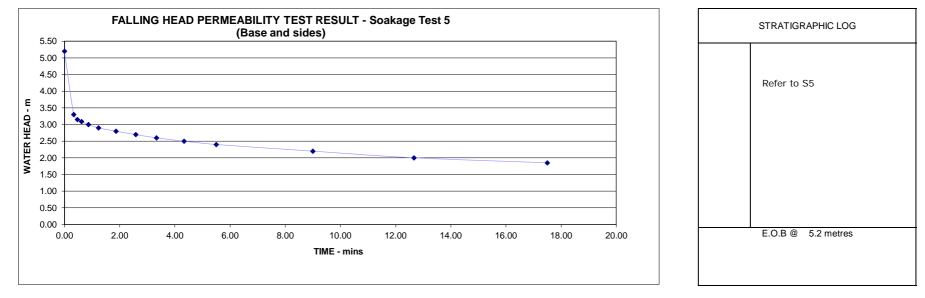

x In

<u>d^2 x ln (2.m.L/D)</u>

8.L.(t2 - t1)

-	
coffey 🕈	
	agetechnica
conev •	geotechnics
00.109	-

JOB NUMBER: GENZHAMI17003AA DATE: 31-Oct-11

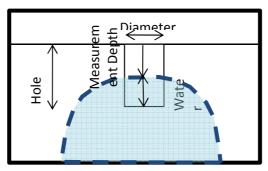


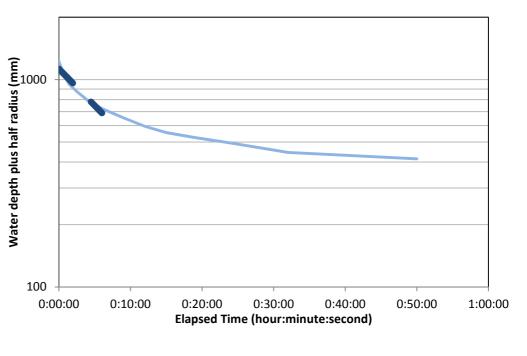
HVORSLEV	CASE G:
----------	---------

HVORSLEV Soakage out	CASE G: base and sides of test hole with no overlying restrictive layer:	Hydraulic conductivity	(k) =	<u>d^2 x ln (2.</u> 8.L.(t2 - t		<u>H1</u> H2		
where	d = D = test hole diameter (m) = 0.100 m	Elapsed Time	t2 - t1	Water level from	Piezometric Head	Average L	ln (H1/H2)	Hydraulic Conductivity
	m = transformation ratio = 1	(mins)	(secs)	top of hole (m)	H (m)	(m)		k (m/sec)
	L = average soakage length (m)	0.00	0	0.00	3.50			
	t = time (secs)	0.23	14	1.83	1.67	2.59	0.74	1.01E-04
	H1 = piezometric head for t = t1	0.37	8	1.94	1.56	1.62	0.07	2.29E-05
	H2 = piezometric head for t = t2	0.47	6	2.03	1.47	1.52	0.06	2.79E-05
		0.60	8	2.10	1.40	1.44	0.05	1.78E-05
	Standing groundwater level before test (metres): 3.5 m	0.75	9	2.17	1.33	1.37	0.05	1.73E-05
		0.93	11	2.23	1.27	1.30	0.05	1.31E-05
		1.17	14	2.28	1.22	1.25	0.04	9.26E-06
		1.47	18	2.35	1.15	1.19	0.06	1.10E-05
		1.67	12	2.38	1.12	1.14	0.03	7.57E-06
		1.98	19	2.43	1.07	1.10	0.05	8.47E-06
		2.40	25	2.48	1.02	1.05	0.05	6.96E-06
		3.00	36	2.53	0.97	1.00	0.05	5.25E-06
		3.75	45	2.58	0.92	0.95	0.05	4.57E-06
		4.50	45	2.63	0.87	0.90	0.06	5.00E-06
		6.33	110	2.71	0.79	0.83	0.10	3.71E-06
		8.33	120	2.74	0.76	0.78	0.04	1.43E-06
		14.00	340	2.81	0.69	0.73	0.10	1.31E-06
		19.00	300	2.85	0.65	0.67	0.06	9.64E-07

JOB NUMBER: GENZHAMI17003AA

DATE: 31-Oct-11

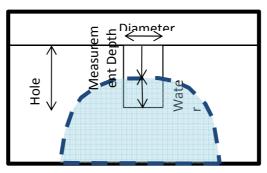


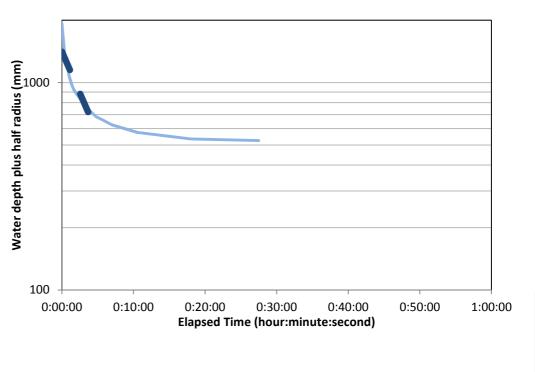

HVORSLEV Soakage out	CASE G: t base and sides of test hole with no overlying restrictive	<i>v</i> e layer:	Hydraulic conductivity (k	<) =	<u>d^2 x ln (2.r</u> 8.L.(t2 - t1		<u>H1</u> H2		
where	d = D = test hole diameter (m) =	0.100 m	Elapsed Time	t2 - t1	Water level from	Piezometric Head	Average L	ln (H1/H2)	Hydraulic Conductivity
	m = transformation ratio = 1		(mins)	(secs)	top of hole (m)	H (m)	(m)		k (m/sec)
	L = average soakage length (m)		0.00	0	0.00	5.20			
	t = time (secs)		0.33	20	1.90	3.30	4.25	0.45	2.97E-05
	H1 = piezometric head for t = t1		0.47	8	2.05	3.15	3.23	0.05	9.39E-06
	H2 = piezometric head for $t = t2$		0.62	9	2.11	3.09	3.12	0.02	3.54E-06
			0.87	15	2.20	3.00	3.05	0.03	3.32E-06
	Standing groundwater level before test (metres):	5.2 m	1.23	22	2.30	2.90	2.95	0.03	2.66E-06
			1.87	38	2.40	2.80	2.85	0.04	1.64E-06
			2.58	43	2.50	2.70	2.75	0.04	1.54E-06
			3.33	45	2.60	2.60	2.65	0.04	1.57E-06
			4.33	60	2.70	2.50	2.55	0.04	1.26E-06
			5.50	70	2.80	2.40	2.45	0.04	1.16E-06
			9.00	210	3	2.20	2.30	0.09	8.62E-07
			12.67	220	3.2	2.00	2.10	0.10	9.64E-07
			17.50	290	3.35	1.85	1.93	0.08	6.37E-07

HOLE DIMENSIONS				
Diameter (mm)	100			
Depth (mm)	1200			

MEASURE	MENTS	
Time (hr:min:sec)	Depth (mm)	
0:00:00	0	
0:00:30	130	
0:01:00	220	
0:01:30	280	
0:02:30	350	
0:04:00	430	
0:06:00	500	
0:09:00 0:12:00	570	
0:12:00	630	
0:15:00	670 700	
0:19:00	700	
0:32:00	730	
0:50:00	810	
	010	
		No
		INC
drawn	BR	
approved	RJB	(
date	12-Sep-2011	0
scale	AS SHOWN	S T
original		,

Match interval	
Initial time	0:00:00
Final time	0:06:00


Intepreted Permeability
3.4E-05 m/s
2.9E+00 m/d

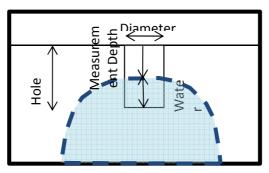

Note: Method described by: RJ Oosterbaan and HJ Nijland in Determining the saturated hydraulic conductivity. In Chapter 12 of Drainage Principals and Applications ILRI Publication 16 2nd Edition 1994

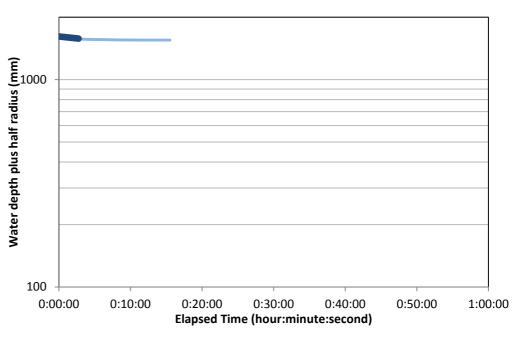
drawn	BR		client.	BBO Li	mited	
approved	RJB	coffey	project:	Montgome	rie Block	
date	12-Sep-2011			Raynes Road	I, Hamilton	
scale	AS SHOWN	SPECIALISTS MANAGING	title:	Permeability Te	st Result - S1	
original size	A4		project no:	GENZHAMI17003AA	figure no:	FIGURE

HOLE DIMENSIONS			
Diameter (mm)	100		
Depth (mm̀)	1900		

MEASURE	MENTS	-
Time (hr:min:sec)	_	
0:00:00	0	
0:00:25	600	
0:00:25	600	
0:00:45		
0:01:00	850 940	
0:01:20		
0:01:35	990	
0:02:00	1040	
0:02:20	1070	
0:02:45	1110	
0:03:20	1160	
0:03:50	1190	
0:04:45	1240	
0:05:30	1260 1300	
0:10:30		
	1350	
0:18:00	1390	
0:27:30	1400	
		N
drawn	BR	
Jumi	DI	
approved	RJB	-
date	12 San 2014	- V
uale	12-Sep-2011	1
scale	AS SHOWN	
original		

Match interval	
Initial time	0:00:00
Final time	0:04:45


Intepreted Permeability
7.6E-05 m/s
6.6E+00 m/d

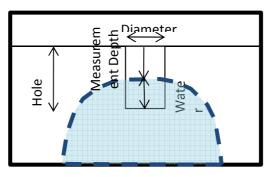

Note: Method described by: RJ Oosterbaan and HJ Nijland in Determining the saturated hydraulic conductivity. In Chapter 12 of Drainage Principals and Applications ILRI Publication 16 2nd Edition 1994

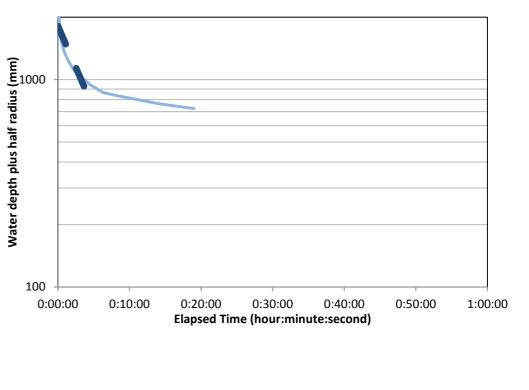
drawn	BR		client:	BBO Li	mited	
approved	RJB	coffey	project:	Montgome	rie Block	
date	12-Sep-2011			Raynes Road	I, Hamilton	
scale	AS SHOWN	SPECIALISTS MANAGING	title:	Permeability Te	st Result - S2	
original size	A4		project no:	GENZHAMI17003AA	figure no:	FIGURE

HOLE DIMENSIONS			
Diameter (mm)	100		
Depth (mm)	1600		

,		
MEASURE	MENTS	
Time (hr:min:sec)	Depth (mm)	
0:00:00	0	
0:00:31	15	
0:01:00	30	
0:01:30	36	
0:02:00	46	
0:02:30	53	
0:03:30	60	
0:04:30	64	
0:06:00	67	
0:08:30	72	
0:11:30	74	
0:15:30	75	
		No
drawn	BR	
approved	RJB	(
date	12-Sep-2011	
scale	AS SHOWN	S ST
original		1

Match interval	
Initial time	0:00:00
Final time	0:04:30


Intepreted Permeability
3.6E-06 m/s
3.1E-01 m/d


Note: Method described by: RJ Oosterbaan and HJ Nijland in Determining the saturated hydraulic conductivity. In Chapter 12 of Drainage Principals and Applications ILRI Publication 16 2nd Edition 1994

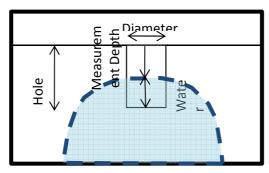
drawn	BR	·	cherit.	BBO Lii	mited	
approved	RJB	coffey	project:	Montgome	rie Block	
date	12-Sep-2011			Raynes Road	I, Hamilton	
scale	AS SHOWN	SPECIALISTS MANAGING	title:	Permeability Te	st Result - S3	
original size	A4		project no:	GENZHAMI17003AA	figure no:	FIGURE

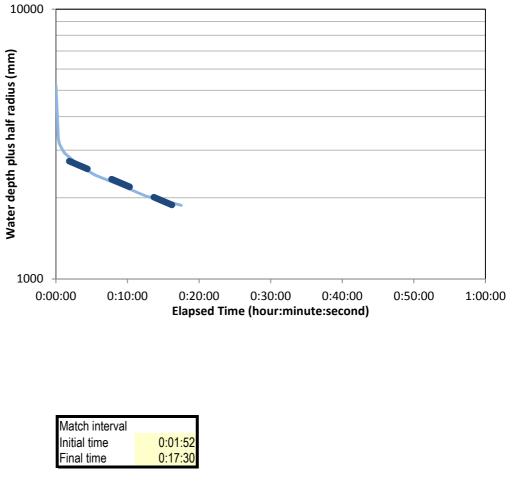
HOLE DIMENSIONS			
Diameter (mm)	100		
Depth (mm̀)	3550		

MEASURE	MENTS	
Time (hr:min:sec)	Depth (mm)	
0:00:00	0	
0:00:14	1830	
0:00:22	1940	
0:00:28	2030	
0:00:36	2100	
0:00:45	2170	
0:00:56	2230	
0:01:10	2280	
0:01:28	2350	
0:01:40	2380	
0:01:59	2430	
0:02:24	2480	
0:03:00 0:03:45	2530	
0:03:45	2580	
0:04:30	2630	
0:08:20	2710 2740	
0:14:00	2810	
0:19:00	2850	
	2000	
		Ν
drawn	BR	
approved	RJB	
date	12-Sep-2011	
scale	AS SHOWN	
original		

Match interval	
Initial time	0:00:00
Final time	0:04:30

Intepreted Permeability
7.7E-05 m/s
6.6E+00 m/d


Note: Method described by: RJ Oosterbaan and HJ Nijland in Determining the saturated hydraulic conductivity. In Chapter 12 of Drainage Principals and Applications ILRI Publication 16 2nd Edition 1994


drawn	BR	· · · · · · · · · · · · · · · · · · ·	chern.	BBO Lii	mited	
approved	RJB	coffey	project:	Montgome	rie Block	
date	12-Sep-2011			Raynes Road	I, Hamilton	
scale	AS SHOWN	SPECIALISTS MANAGING	title:	Permeability Tes	st Result - S4	
original size	A4		project no:	GENZHAMI17003AA	figure no:	FIGURE

HOLE DIMENSIONS					
Diameter (mm)	100				
Depth (mm̀)	5200				

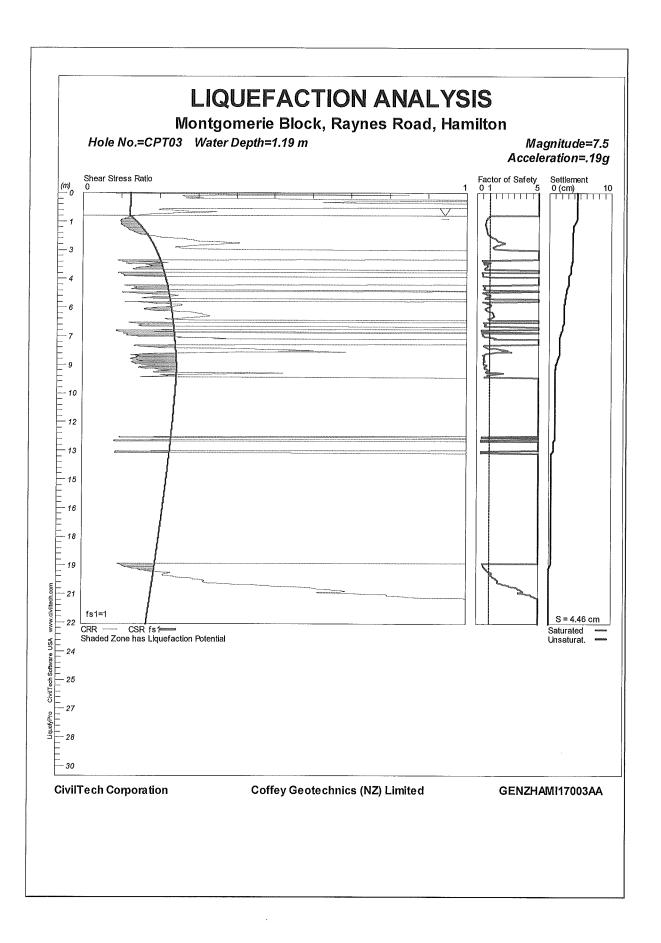
MEASUREMENTS Time (hr:min:sec) Depth (mm) 0:00:00 0 0:00:20 1900 0:00:28 2050 0:00:37 2110 0:00:52 2200 0:01:14 2300 0:01:52 2400 0:02:35 2500 0:03:20 2600 0:04:20 2700 0:05:30 2800 0:09:00 3000 0:12:40 3200 0:17:30 3350

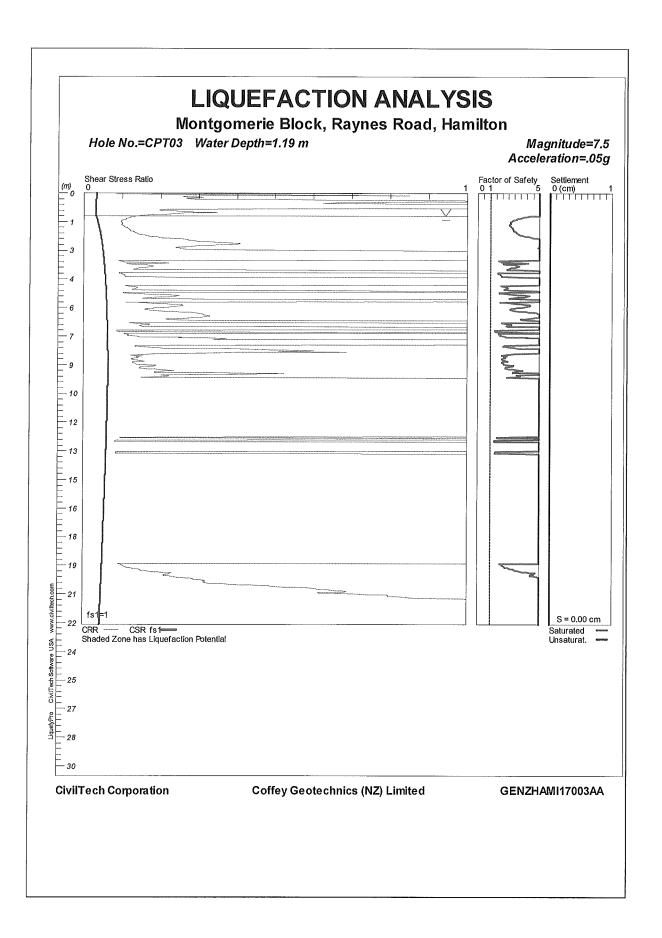
INVERTED AUGER TEST

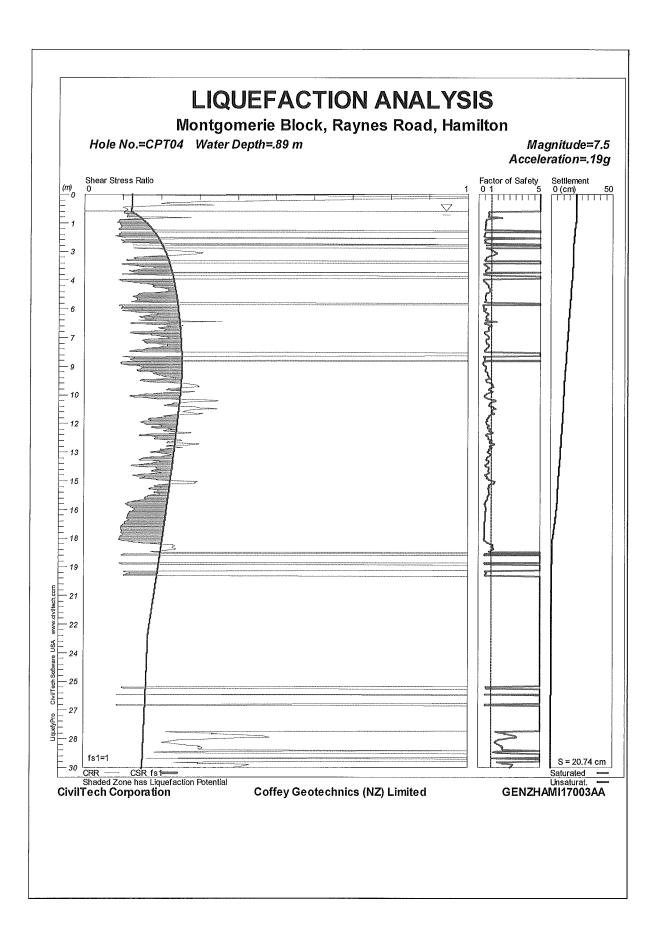
Intepreted Permeability
1.1E-05 m/s
9.3E-01 m/d

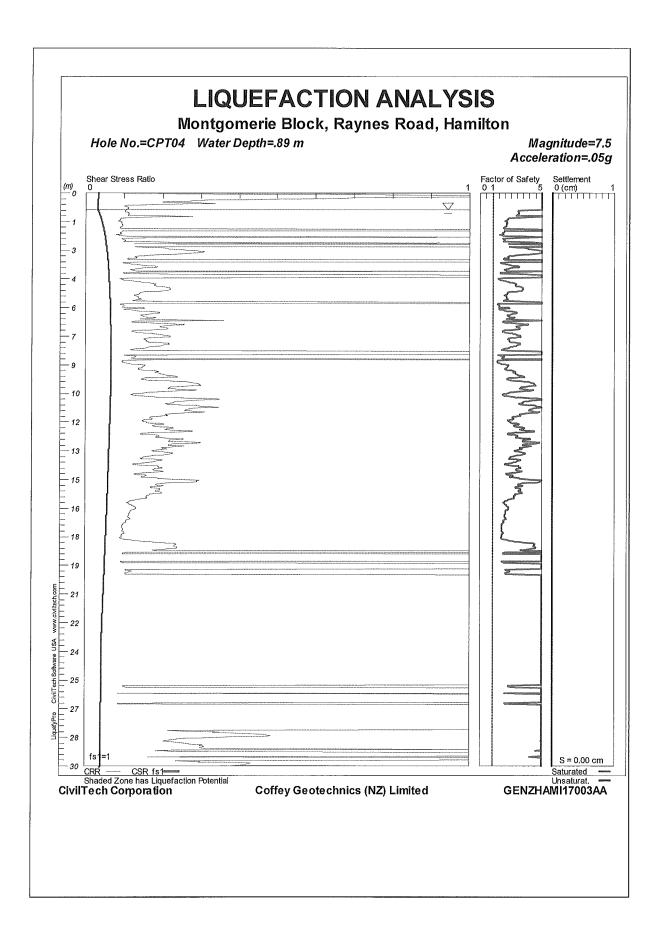
Note: Method described by: RJ Oosterbaan and HJ Nijland in Determining the saturated hydraulic conductivity. In Chapter 12 of Drainage Principals and Applications ILRI Publication 16 2nd Edition 1994

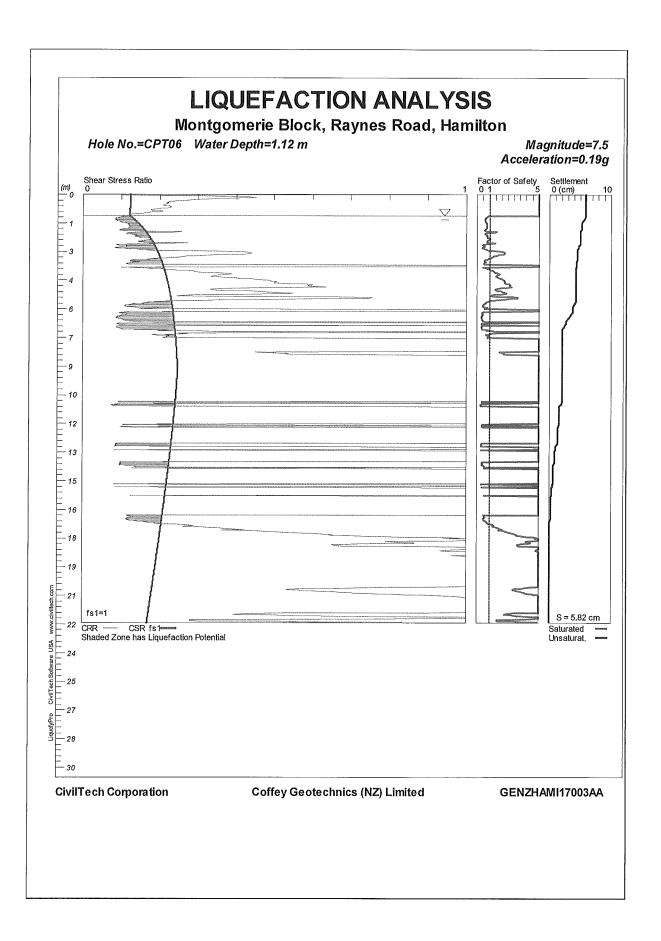
drawn	BR	· · · · · · · · · · · · · · · · · · ·	chent.	BBO Lii	mited	
approved	RJB	coffey	project:	Montgome	rie Block	
date	12-Sep-2011			Raynes Road	I, Hamilton	
scale	AS SHOWN	SPECIALISTS MANAGING	title:	Permeability Tes	st Result - S5	
original size	A4		project no:	GENZHAMI17003AA	figure no:	FIGURE

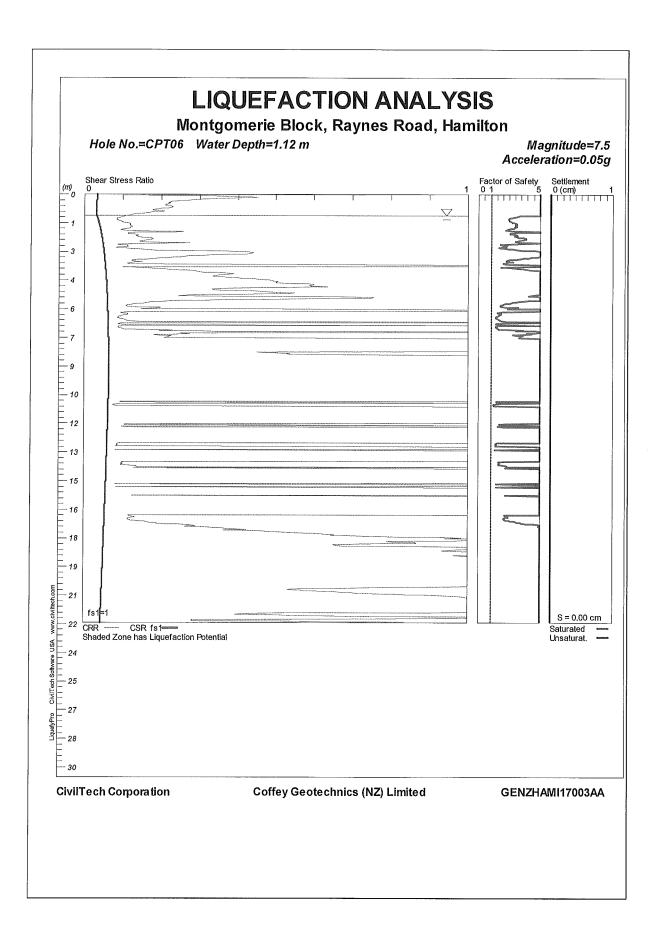

Appendix 2

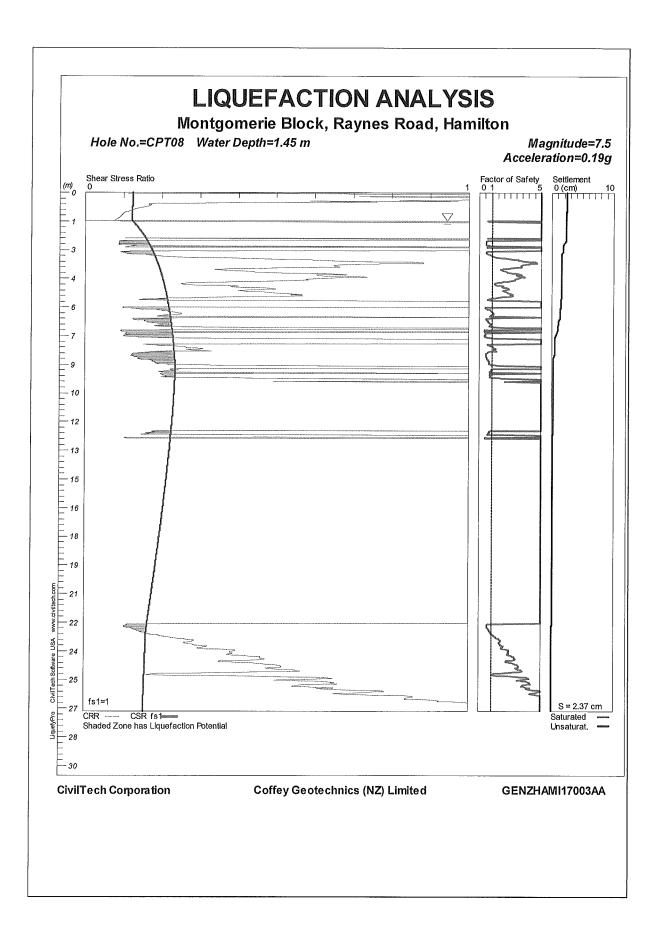

Stormwater Soakage Calculations

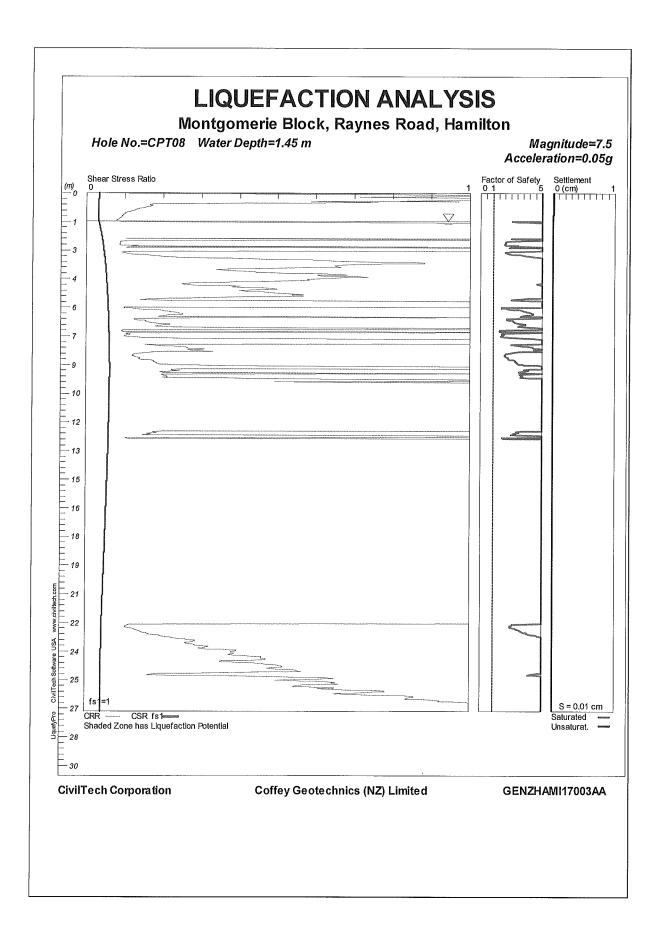

CLIENT:	BI OXAM BUR	NETT AND OLL						JOB NUMBER:	GENZHAMI17003AA	
			NES ROAD, HAMILTON	J				DATE:	7-Nov-2011	
200/11011.	MONTOOMEN							DATE.	1100 2011	
				STORMWAT		AGEMENT PLAN				
			10 YEAR			DESIGN REQUI	REMENT			
LOT CATCHM	ENT AREA:			Lot Area	100	% Imperviousness		Runoff Coefficient		
				(m ²)		(m ²)		(C)		
				30,000		30,000		0.9		
				00,000		00,000				
DRAINAGE	AGGREGATE	FILLED SOAK	AGE TRENCH							
Average Tren		3.0			Expose	d Soil Depth:	1.5	m (excludes 0.5 m d	leep capping)	
Backfill void r		0.35				e Water Head (H):	0.4		cop capping)	
Average Tren		2.0	m			lic Conductivity (k)	2.3E-06			
	·									
					Trench	Soakage Capacity:	3.1E-02	m ² /hr		
					in chich	Soakaye Capacity.	5.12-02			
SOAKAGE TR	ENCH DESIGN	:								
		50 Yr ARI RF	Rational For	mula Runoff)	m Deep Trench		
Duration		Depth (D)	Q = CDA	I		Trench Capacity	Required Trench			
		,	$\frac{O = CDA}{(m^3)}$					JU 11 ENCESS (III)		
(hrs)	(mm)	(mm)				-	Length (10 Yr) (m)			
0.167	18.0	23.0	486			2.11	230.9			
0.33		35.0	729			2.11	345.4			
0.5		45.0	891	495.0		2.12	421.2			
2	45.0 54.0	61.0 73.0	1215 1458			2.13 2.16	<u> </u>	-511 -219		
6			1458			2.18	849.8			
12			2457			2.48	992.7			
24		149.0	3024			2.85	1061.1	1137		
48			3645			3.60	1012.5			
72			3834			4.35	881.4	726		
MODULAR S	OAKAGE TRE	NCH								
Average Tren	hch Width:	3.0	m		Expose	d Soil Depth:	1.5	m (excludes 0.5 m d	leep capping)	
Backfill void r		0.95				e Water Head (H):	0.4			
Average Tren	ich Depth:	2.0	m		Hydrau	lic Conductivity (k)	2.3E-06	m/sec		
					Trench	Soakage Capacity:	3.1E-02	m²/hr		
SOAKAGE TR	ENCH DESIGN	:								
	10 Yr ARI RF	50 Yr ARI RF	Rational For	mula Runoff			2	m Deep Trench		
Duration			Q = CDA	Q = CIA		Trench Capacity	Required Trench			
(hrs)	(mm)		(m ³)				Length (10 Yr) (m)			
0.167			486			5.71	85.2			
0.187			729			5.71	127.7			
0.55			891			5.72	155.9			
1	45.0		1215			5.72	212.0			
2			1458			5.76	253.0			
6	72.0		1944	90.0		5.89	330.2			
12	91.0		2457	56.9		6.08	404.4	165		
24			3024			6.45	468.8			
48			3645			7.20	506.3			
72	142.0	190.0	3834	14.8		7.95	482.3	1105		

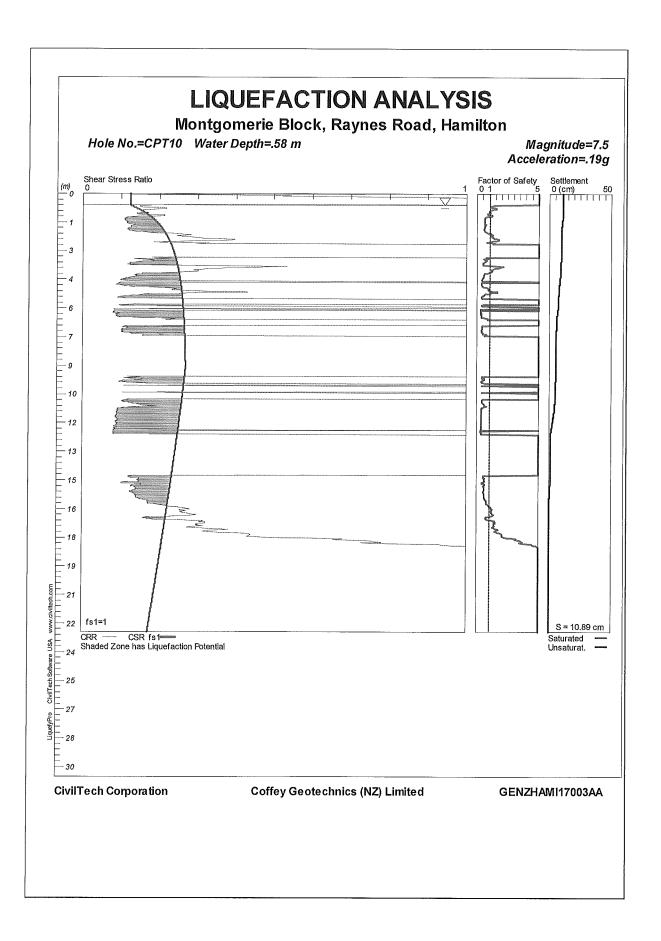

Appendix 3

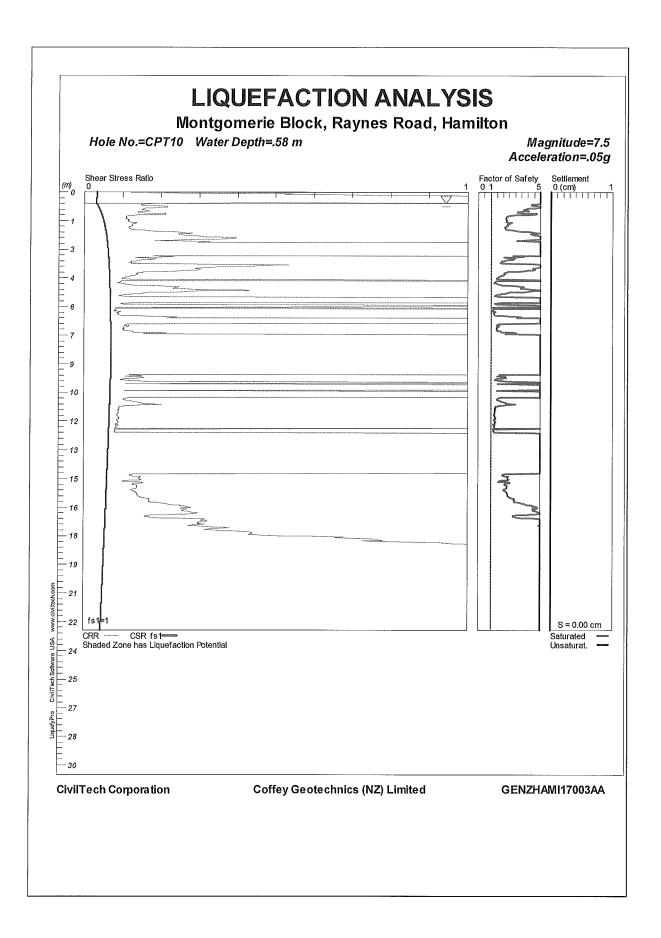

Liquefaction Analysis Results

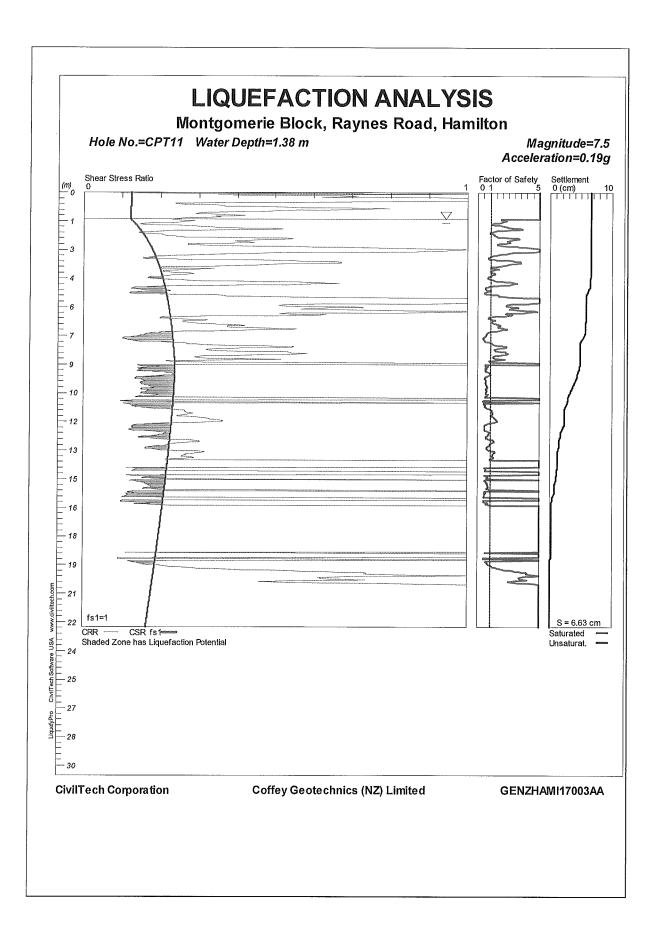


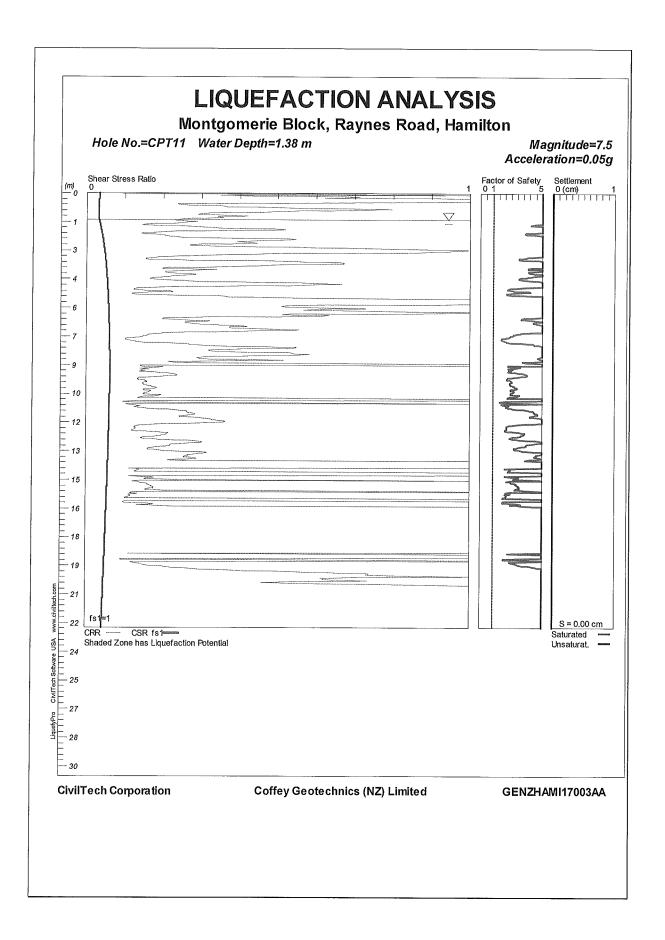


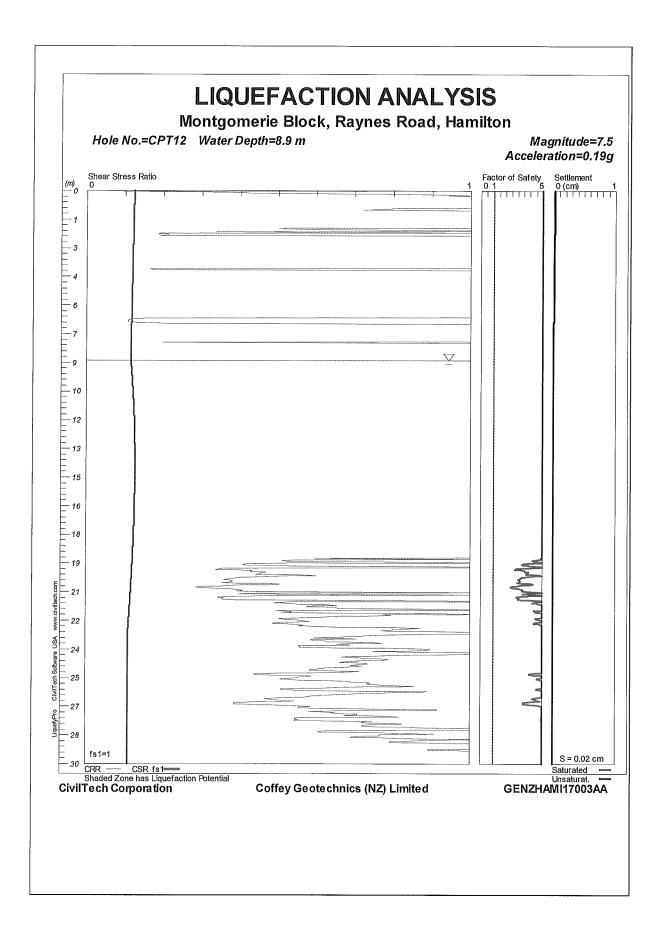


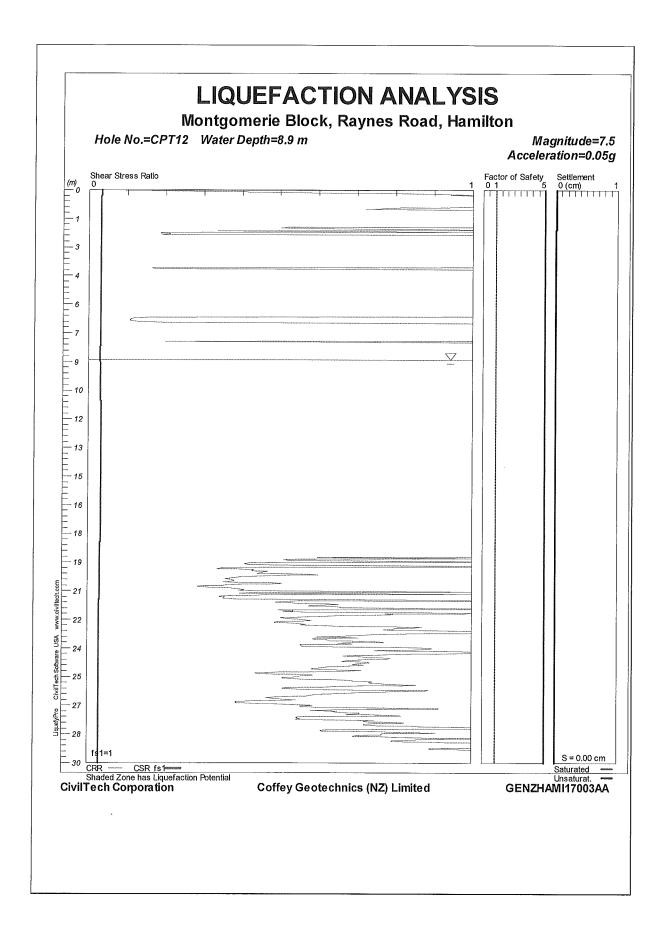


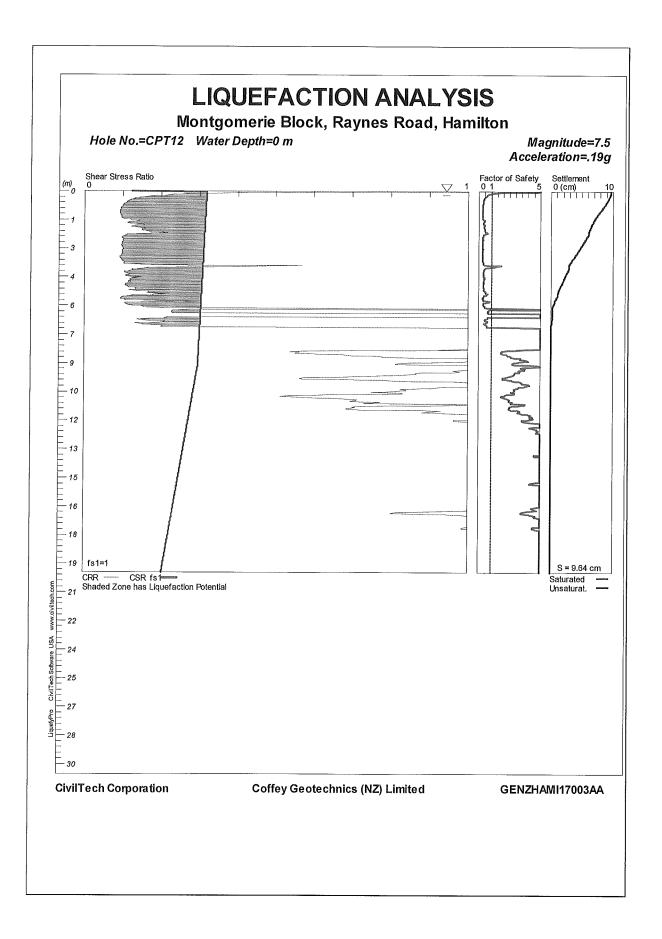


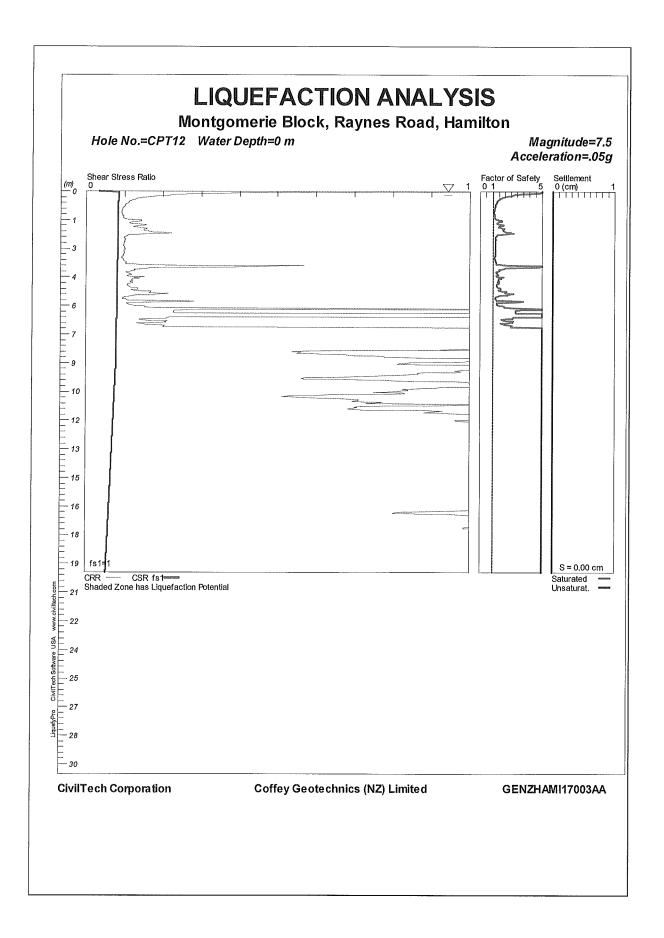


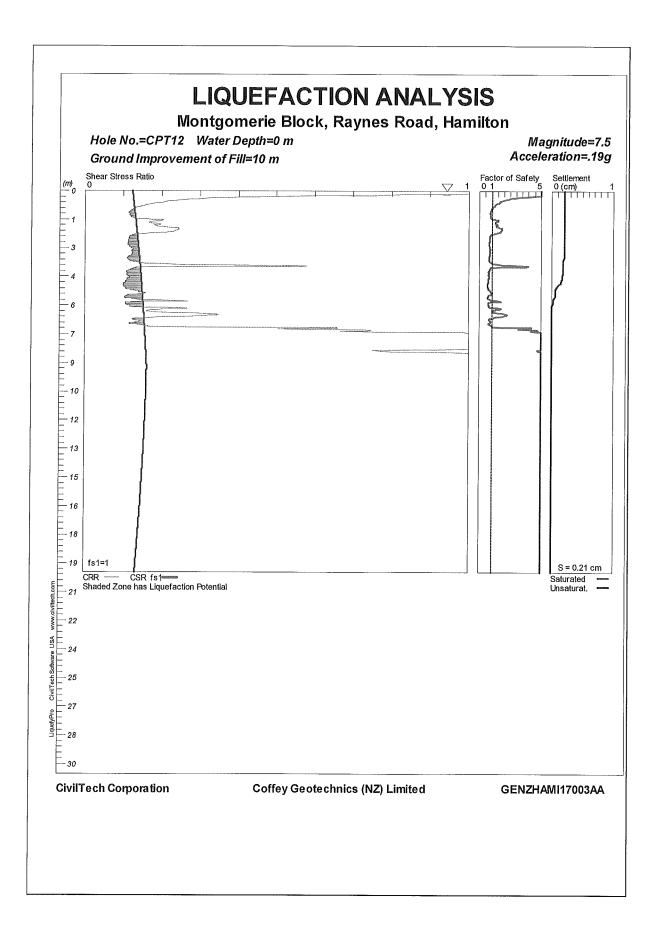


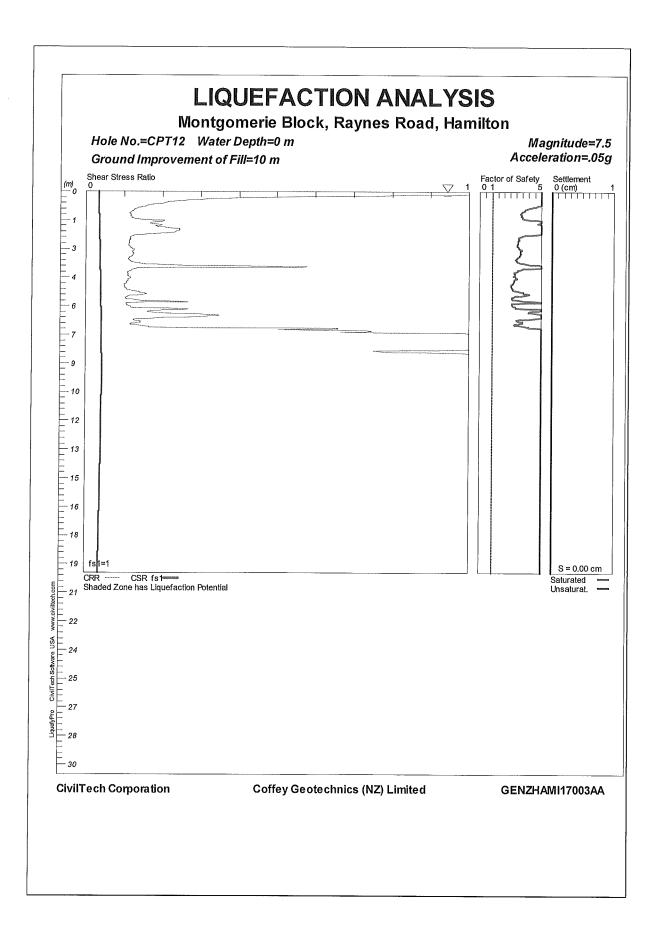


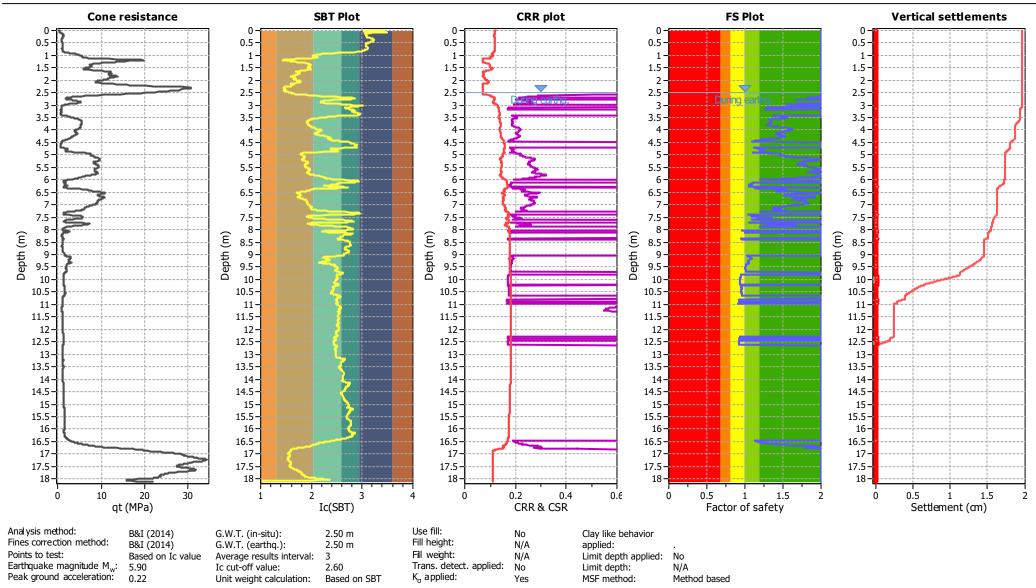












Appendix D: Liquefaction Analysis Results

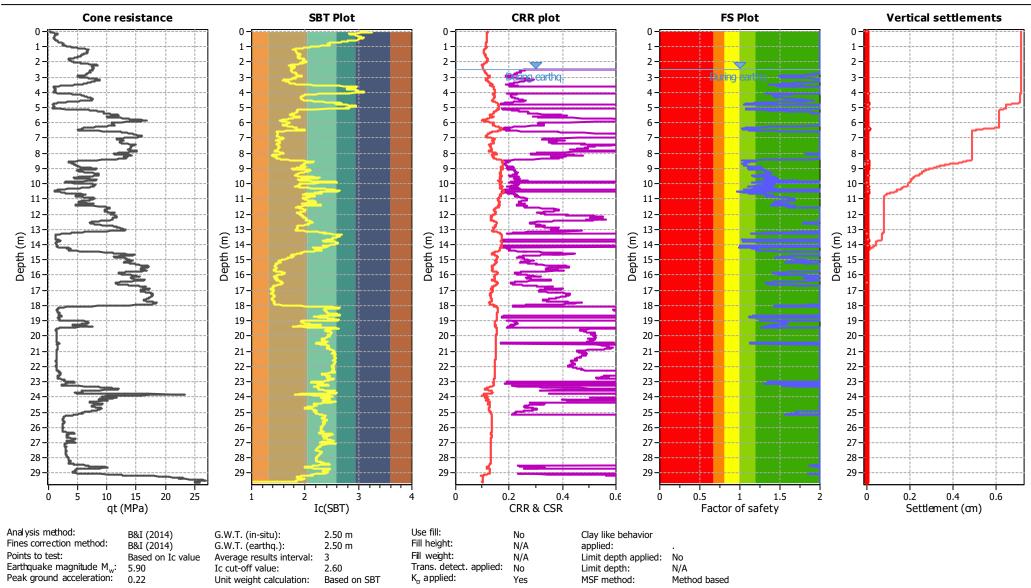
GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project: Titanium Park Northern Precinct

Location: Raynes Road, Hamilton

CLiq v.3.0.2.1 - CPTU data presentation & interpretation software - Report created on: 30/03/2021, 9:15:23 AM Project file: C:\Users\KoriL\Downloads\CPT01 - CPT14 - Aging Factor 1.65.clq

1


CPT: CPT-01

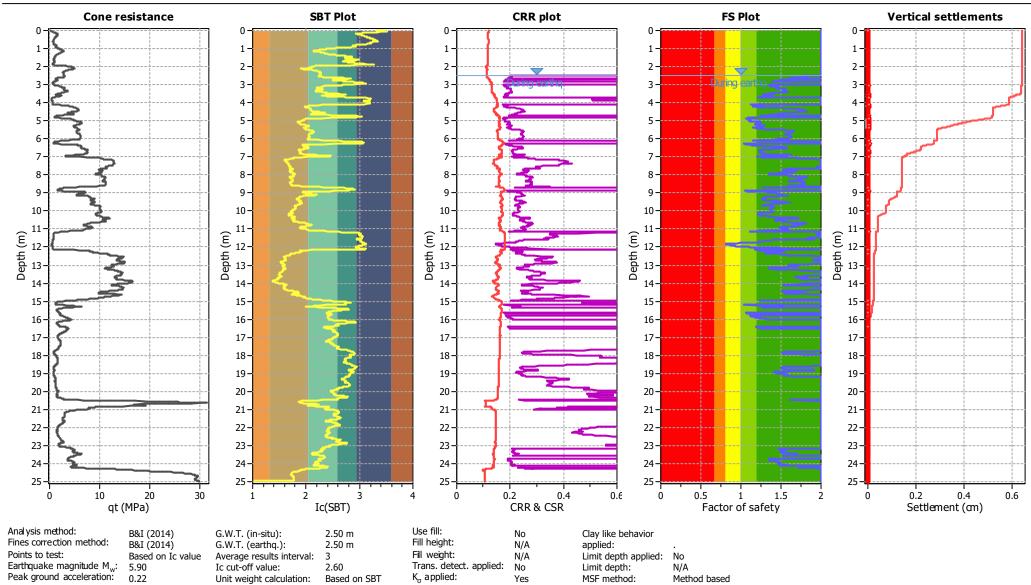
Total depth: 18.11 m

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project: Titanium Park Northern Precinct

Location: Raynes Road, Hamilton

CLiq v.3.0.2.1 - CPTU data presentation & interpretation software - Report created on: 30/03/2021, 9:15:25 AM Project file: C:\Users\KoriL\Downloads\CPT01 - CPT14 - Aging Factor 1.65.clq


CPT: CPT-02

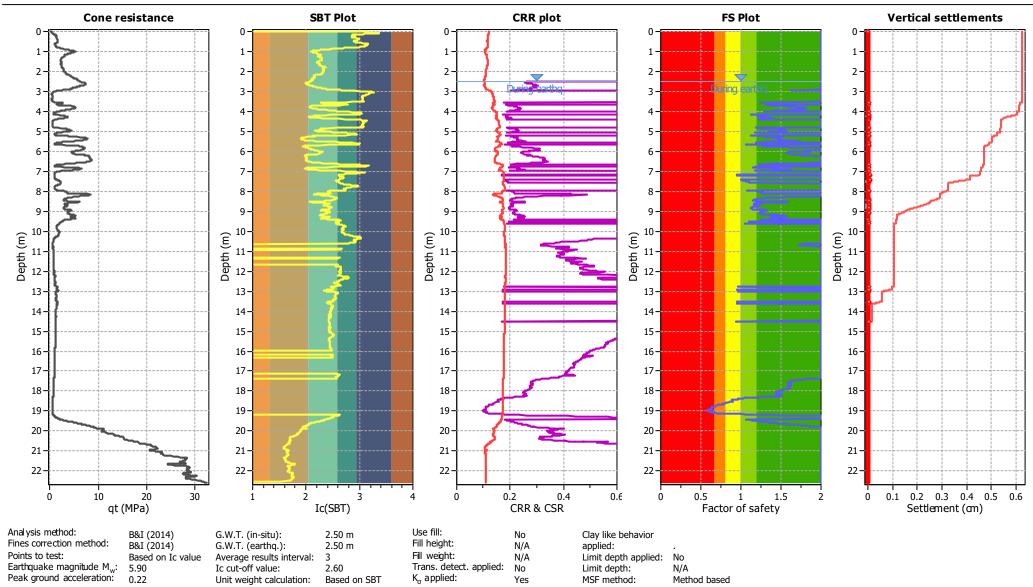
Total depth: 29.63 m

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project: Titanium Park Northern Precinct

Location: Raynes Road, Hamilton

CLiq v.3.0.2.1 - CPTU data presentation & interpretation software - Report created on: 30/03/2021, 9:15:26 AM Project file: C:\Users\KoriL\Downloads\CPT01 - CPT14 - Aging Factor 1.65.clq


CPT: CPT-03

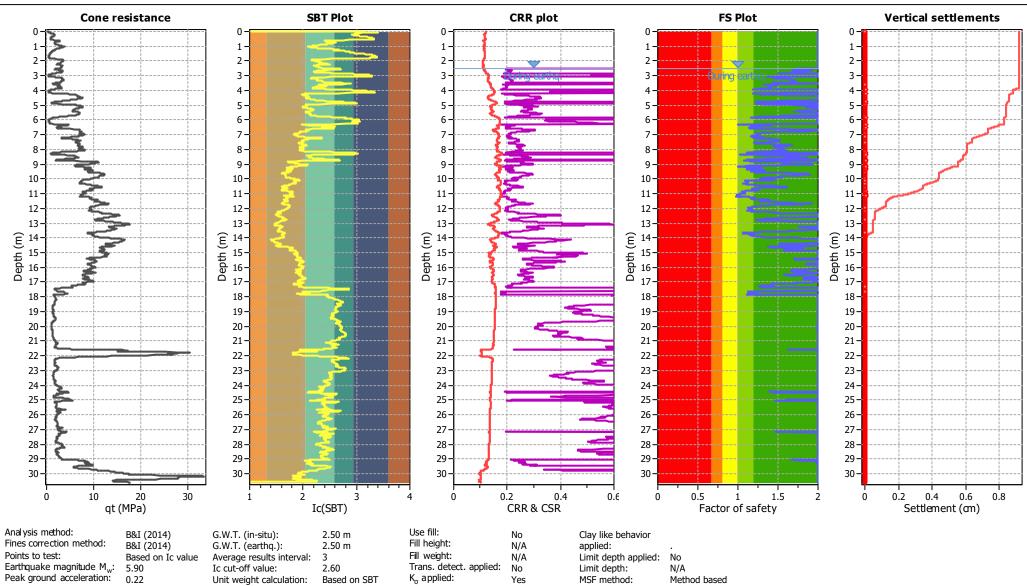
Total depth: 24.99 m

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project: Titanium Park Northern Precinct

Location: Raynes Road, Hamilton

CLiq v.3.0.2.1 - CPTU data presentation & interpretation software - Report created on: 30/03/2021, 9:15:28 AM Project file: C:\Users\KoriL\Downloads\CPT01 - CPT14 - Aging Factor 1.65.clq


CPT: CPT-04

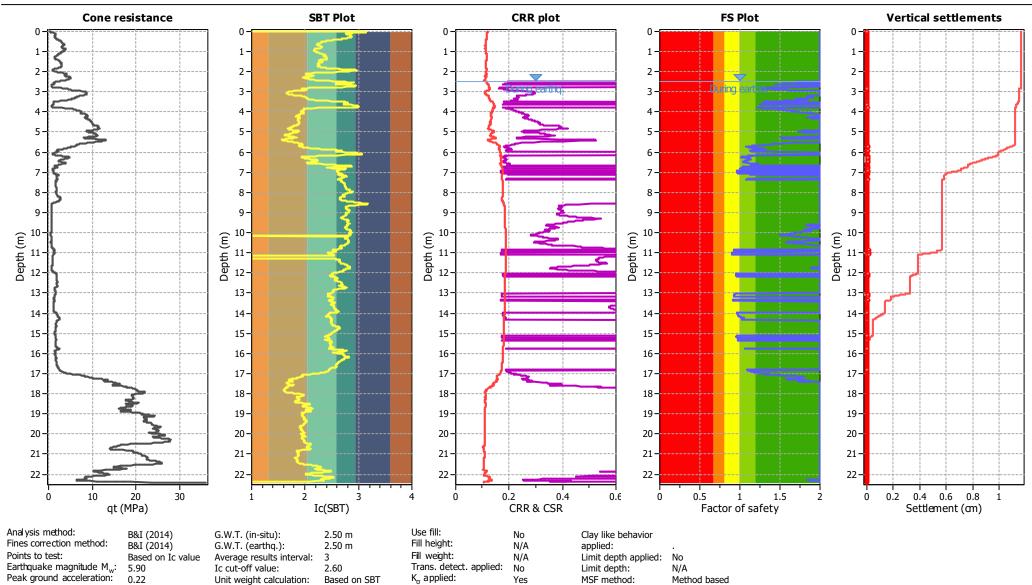
Total depth: 22.58 m

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project: Titanium Park Northern Precinct

Location: Raynes Road, Hamilton

CLiq v.3.0.2.1 - CPTU data presentation & interpretation software - Report created on: 30/03/2021, 9:15:30 AM Project file: C:\Users\KoriL\Downloads\CPT01 - CPT14 - Aging Factor 1.65.clq

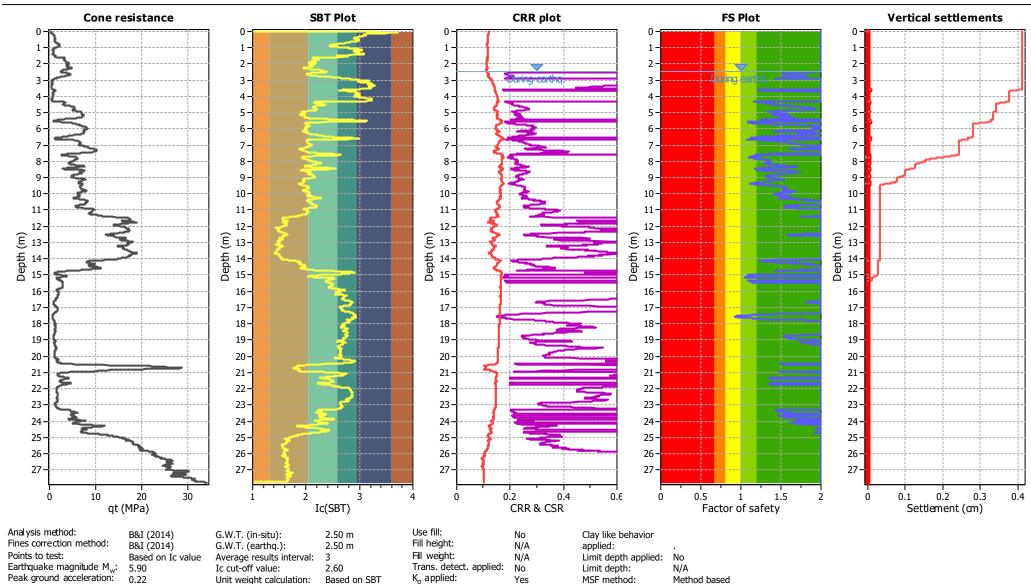

CPT: CPT-05

Total depth: 30.60 m

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project: Titanium Park Northern Precinct

Location: Raynes Road, Hamilton


CLiq v.3.0.2.1 - CPTU data presentation & interpretation software - Report created on: 30/03/2021, 9:15:31 AM Project file: C:\Users\KoriL\Downloads\CPT01 - CPT14 - Aging Factor 1.65.clq CPT: CPT-06

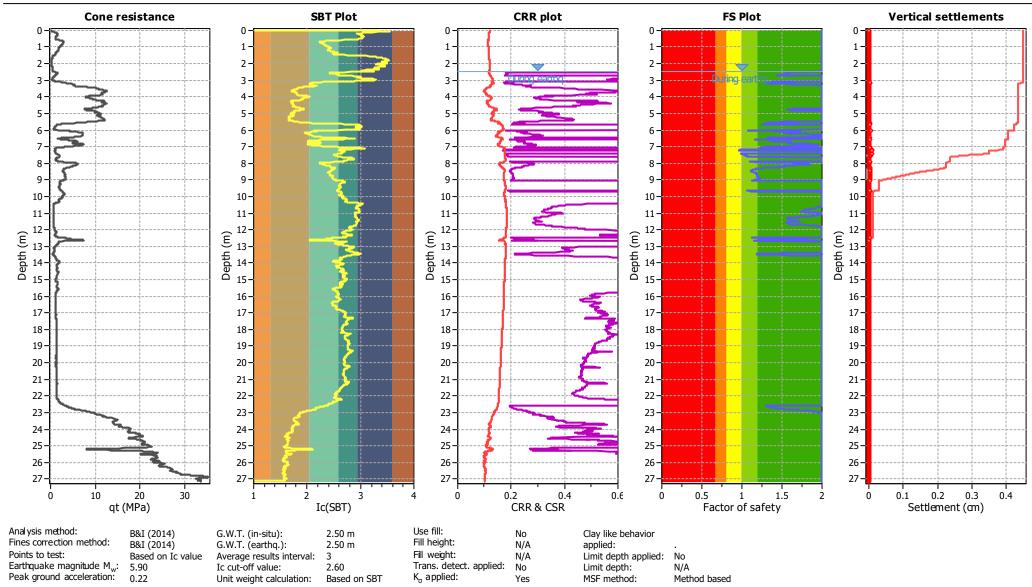
Total depth: 22.42 m

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project: Titanium Park Northern Precinct

Location: Raynes Road, Hamilton

CLiq v.3.0.2.1 - CPTU data presentation & interpretation software - Report created on: 30/03/2021, 9:15:33 AM Project file: C:\Users\KoriL\Downloads\CPT01 - CPT14 - Aging Factor 1.65.clq


CPT: CPT-07

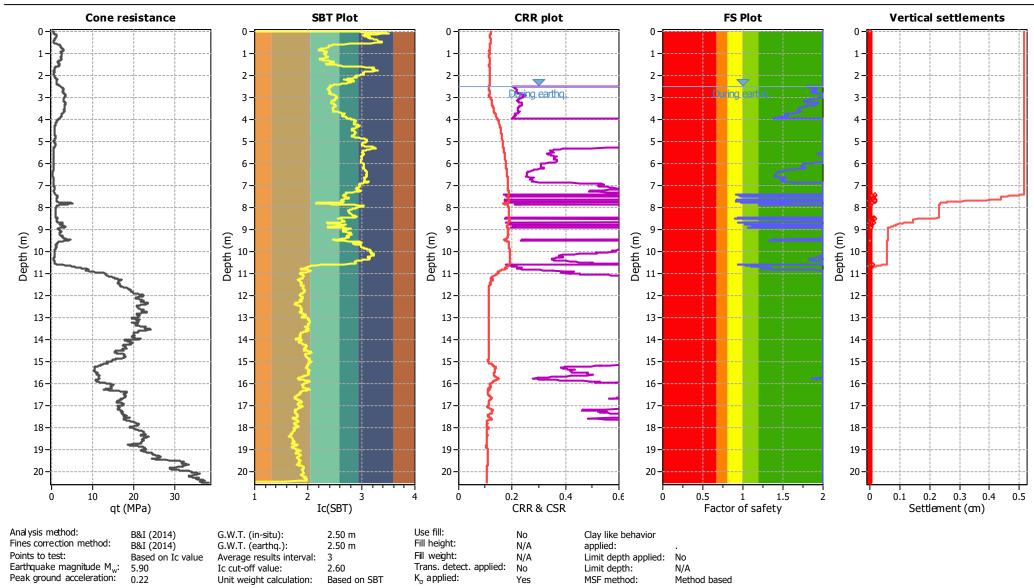
Total depth: 27.78 m

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project: Titanium Park Northern Precinct

Location: Raynes Road, Hamilton

CLiq v.3.0.2.1 - CPTU data presentation & interpretation software - Report created on: 30/03/2021, 9:15:34 AM Project file: C:\Users\KoriL\Downloads\CPT01 - CPT14 - Aging Factor 1.65.clq


CPT: CPT-08

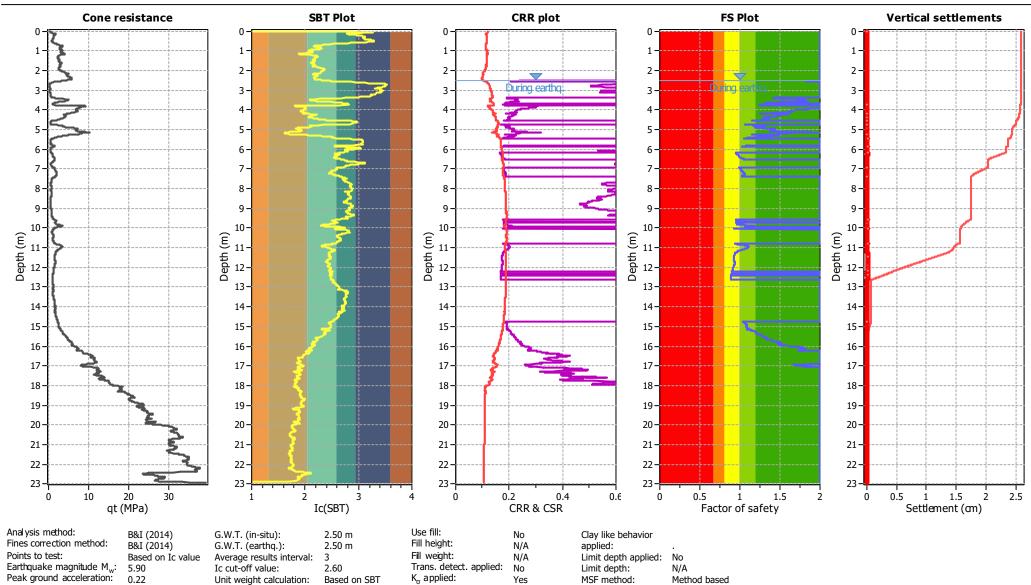
Total depth: 27.16 m

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project: Titanium Park Northern Precinct

Location: Raynes Road, Hamilton

CLiq v.3.0.2.1 - CPTU data presentation & interpretation software - Report created on: 30/03/2021, 9:15:36 AM Project file: C:\Users\KoriL\Downloads\CPT01 - CPT14 - Aging Factor 1.65.clq


CPT: CPT-09

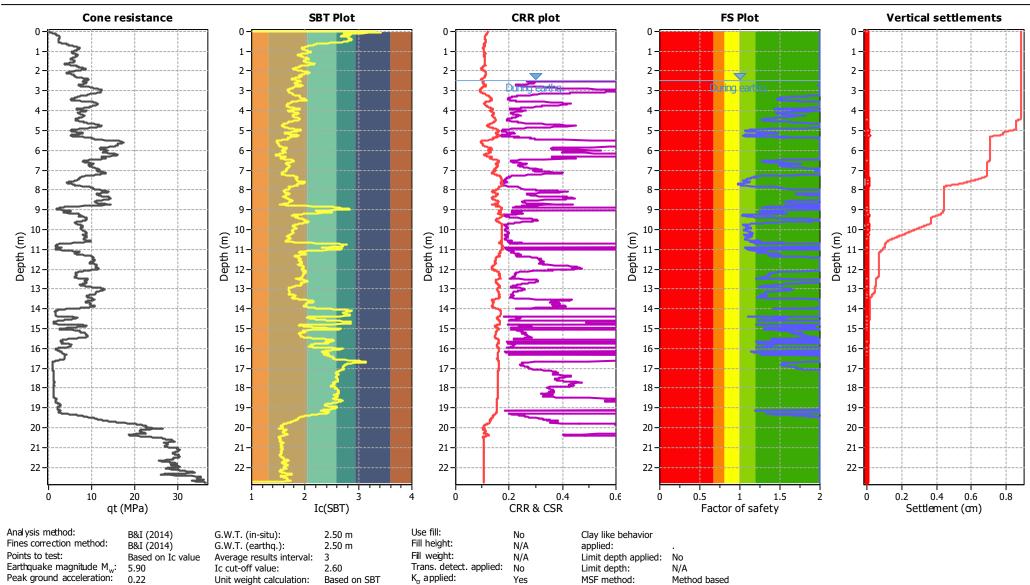
Total depth: 20.48 m

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.qeologismiki.gr

Project: Titanium Park Northern Precinct

Location: Raynes Road, Hamilton

CLiq v.3.0.2.1 - CPTU data presentation & interpretation software - Report created on: 30/03/2021, 9:15:37 AM Project file: C:\Users\KoriL\Downloads\CPT01 - CPT14 - Aging Factor 1.65.clq 10


CPT: CPT-10

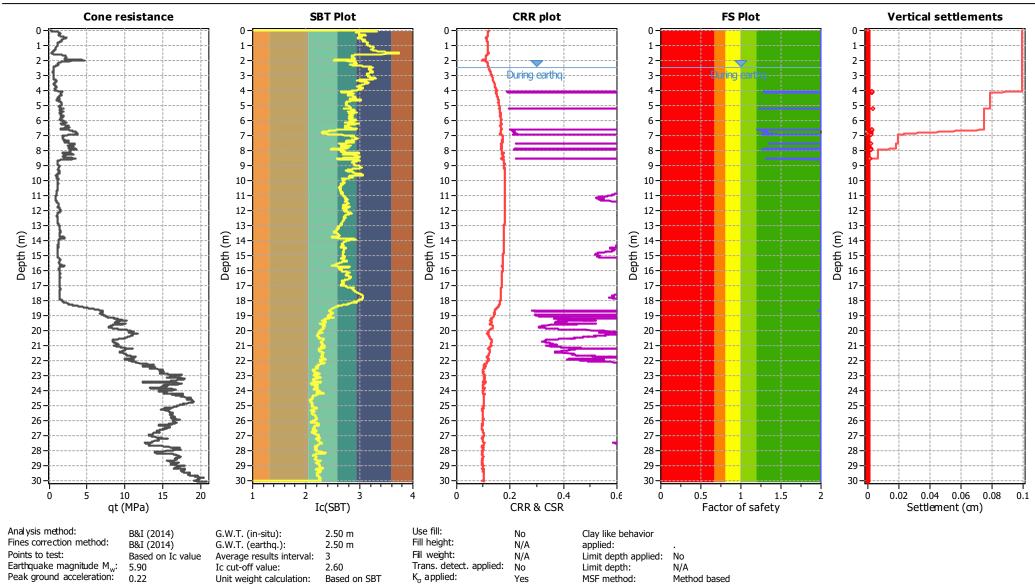
Total depth: 22.94 m

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project: Titanium Park Northern Precinct

Location: Raynes Road, Hamilton

CLiq v.3.0.2.1 - CPTU data presentation & interpretation software - Report created on: 30/03/2021, 9:15:39 AM Project file: C:\Users\KoriL\Downloads\CPT01 - CPT14 - Aging Factor 1.65.clq


CPT: CPT-11

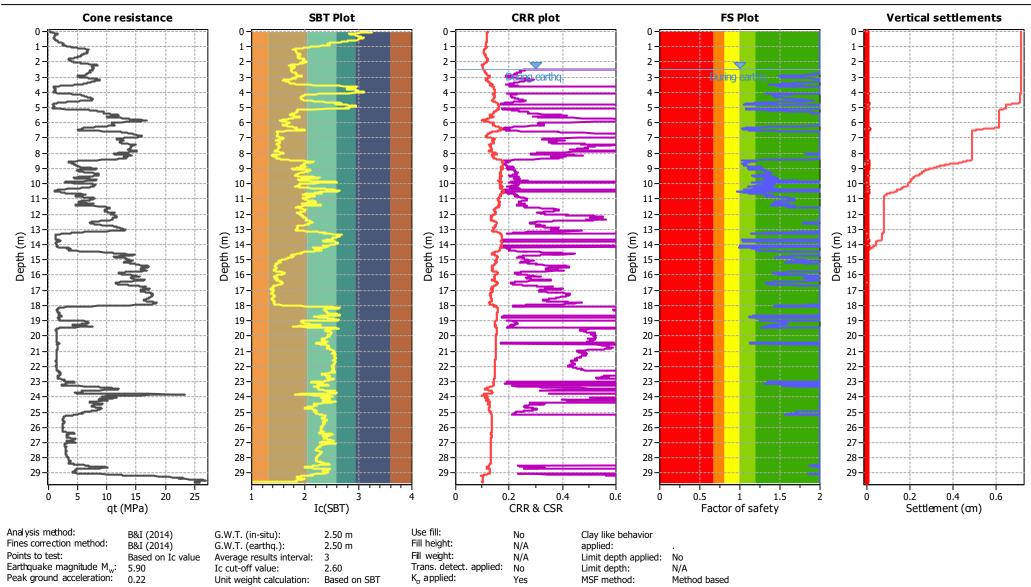
Total depth: 22.77 m

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project: Titanium Park Northern Precinct

Location: Raynes Road, Hamilton

CLiq v.3.0.2.1 - CPTU data presentation & interpretation software - Report created on: 30/03/2021, 9:15:40 AM Project file: C:\Users\KoriL\Downloads\CPT01 - CPT14 - Aging Factor 1.65.clq


CPT: CPT-12

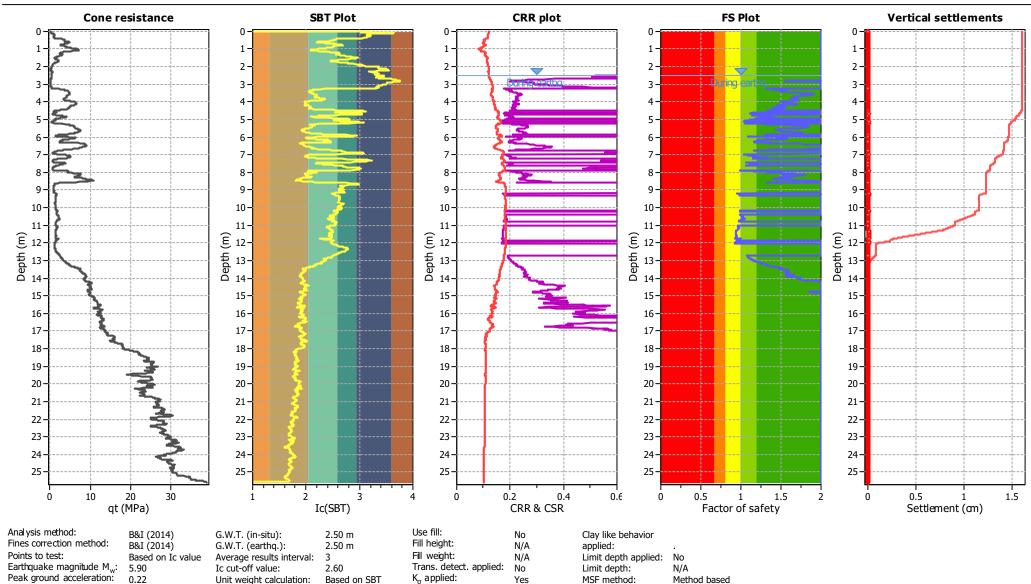
Total depth: 30.09 m

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project: Titanium Park Northern Precinct

Location: Raynes Road, Hamilton

CLiq v.3.0.2.1 - CPTU data presentation & interpretation software - Report created on: 30/03/2021, 9:15:42 AM Project file: C:\Users\KoriL\Downloads\CPT01 - CPT14 - Aging Factor 1.65.clq


CPT: CPT-13

Total depth: 29.63 m

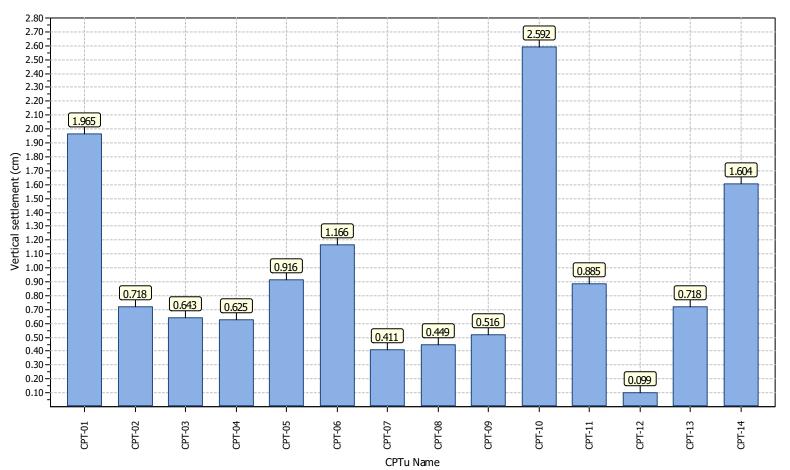
GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project: Titanium Park Northern Precinct

Location: Raynes Road, Hamilton

CLiq v.3.0.2.1 - CPTU data presentation & interpretation software - Report created on: 30/03/2021, 9:15:43 AM Project file: C:\Users\KoriL\Downloads\CPT01 - CPT14 - Aging Factor 1.65.clq

CPT: CPT-14


Total depth: 25.60 m

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project title : Titanium Park Northern Precinct

Location : Raynes Road, Hamilton

Overall vertical settlements report